E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	15
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l031f6p6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 45.	RAM and hardware registers
Table 46.	Flash memory and data EEPROM characteristics74
Table 47.	Flash memory and data EEPROM endurance and retention
Table 48.	EMS characteristics
Table 49.	EMI characteristics
Table 50.	ESD absolute maximum ratings
Table 51.	Electrical sensitivities
Table 52.	I/O current injection susceptibility
Table 53.	I/O static characteristics
Table 54.	Output voltage characteristics
Table 55.	I/O AC characteristics
Table 56.	NRST pin characteristics
Table 57.	ADC characteristics
Table 58.	R _{AIN} max for f _{ADC} = 16 MHz
Table 59.	ADC accuracy
Table 60.	Temperature sensor calibration values
Table 61.	Temperature sensor characteristics
Table 62.	Comparator 1 characteristics
Table 63.	Comparator 2 characteristics
Table 64.	TIMx characteristics
Table 65.	I2C analog filter characteristics
Table 66.	USART/LPUART characteristics
Table 67.	SPI characteristics in voltage Range 1
Table 68.	SPI characteristics in voltage Range 293
Table 69.	SPI characteristics in voltage Range 394
Table 70.	LQFP48 - 48-pin low-profile quad flat package, 7 x 7 mm, package mechanical data97
Table 71.	LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data 100
Table 72.	UFQFPN32, 5 x 5 mm, 32-pin package mechanical data
Table 73.	UFQPN28, 4 x 4 mm, 28-pin package mechanical data 104
Table 74.	WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data 106
Table 75.	WLCSP25 recommended PCB design rules 107
Table 76.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
	package mechanical data
Table 77.	Thermal characteristics
Table 78.	STM32L031x4/6 ordering information scheme
Table 79.	Document revision history

2 Description

The access line ultra-low-power STM32L031x4/6 family incorporates the high-performance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash program memory, 1 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L031x4/6 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L031x4/6 devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L031x4/6 devices embed standard and advanced communication interfaces: one I2C, one SPI, one USART, and a low-power UART (LPUART).

The STM32L031x4/6 also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L031x4/6 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

	-		Low-	Low-		Stop	5	Standby	
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability	
Power-on/down reset (POR/PDR)	Υ	Y	Y	Y	Y	Y	Y	Y	
High Speed Internal (HSI)	0	О			(2)				
High Speed External (HSE)	0	О	0	0					
Low Speed Internal (LSI)	0	О	0	0	0		0		
Low Speed External (LSE)	0	О	0	0	0		0		
Multi-Speed Internal (MSI)	0	О	Y	Y					
Inter-Connect Controller	Y	Y	Y	Y	Y				
RTC	0	0	0	0	0	0	0		
RTC Tamper	0	0	0	0	0	0	0	0	
Auto WakeUp (AWU)	0	0	0	0	0	0	0	0	
USART	0	0	0	0	O ⁽³⁾	0			
LPUART	0	0	0	0	O ⁽³⁾	0			
SPI	0	0	0	0					
12C	0	0	0	0	O ⁽⁴⁾	0			
ADC	0	0							
Temperature sensor	0	0	0	0	0				
Comparators	0	0	0	0	0	0			
16-bit timers	0	0	0	0					
LPTIMER	0	0	0	0	0	0			
IWDG	0	0	0	0	0	0	0	0	
WWDG	0	0	0	0					
SysTick Timer	0	0	0	0	1				
GPIOs	0	0	0	0	0	0		2 pins	
Wakeup time to Run mode	0 µs	0.36 µs	3 µs	32 µs	3.5 µs			65 µs	

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾

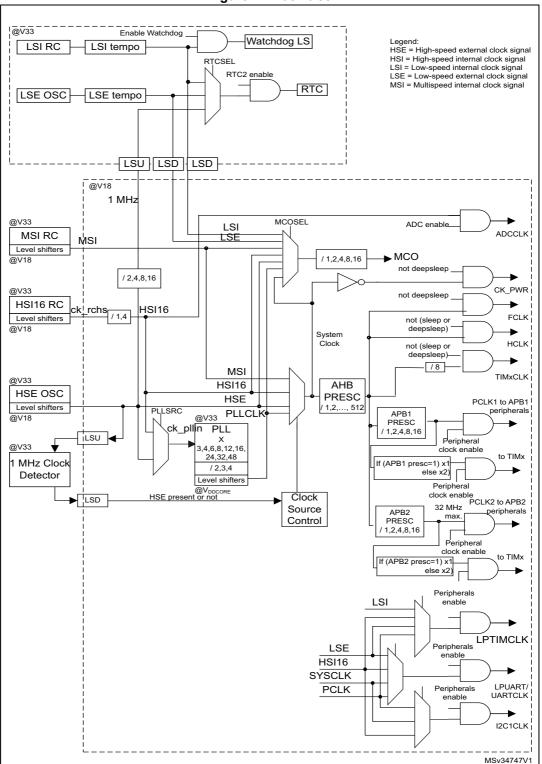


Figure 2. Clock tree

DocID027063 Rev 4

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.15 Communication interfaces

3.15.1 I²C bus

One I²C interface (I2C1) can operate in multimaster or slave modes. The I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

The I²C interface supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 10.	Comparison	of I2C analog	and digital filters
	Companison		and digital inters

In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C interface can be served by the DMA controller.

Refer to *Table 11* for the supported modes and features of I2C interface.

2. This mode allows using the USART as an SPI master.

3.15.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.15.4 Serial peripheral interface (SPI)

The SPI is able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

The SPI can be served by the DMA controller.

Refer to *Table 13* for the supported modes and features of SPI interface.

SPI features ⁽¹⁾	
SPI features."	SPI1
Hardware CRC calculation	Х
I2S mode	-
TI mode	Х
	•

Table 13. SPI implementation

1. X = supported.

3.16 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

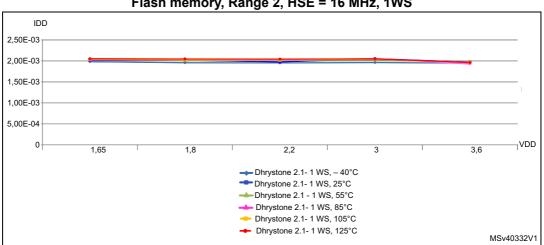
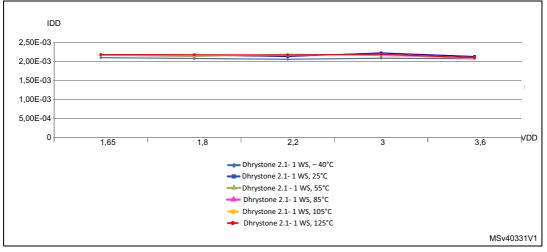
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of

		Pin	Num	ber								
TSSOP20	WLCSP25 ⁽¹⁾	UFQFPN28	UFQFPN28 (STM32L031GxUxS only)	LQFP32	UFQFPN32 ⁽²⁾	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
1	A5	27	1	31	31	44	BOOT0	Ι	-	-	-	-
-	-	-	-	-	32	45	PB8	I/O	FTf	-	I2C1_SCL	-
-	-	-	-	-	-	46	PB9	I/O	FTf	-	EVENTOUT, I2C1_SDA	-
-	-	28	-	32	-	47	VSS	S	-	-	-	-
-	-	1	-	1	1	48	VDD	S	-	-	-	-

Table 15. Pin definitions (continued)

1. WLCSP25 package is in development. Its ballout is subject to change.

2. VSS pins are connected to the exposed pad (see Figure 40: UFQFPN32, 5 x 5 mm, 32-pin package outline).

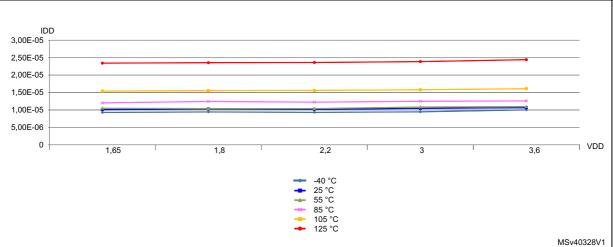

Figure 15. I_{DD} vs V_{DD} , at T_A = 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE = 16 MHz, 1WS

Figure 16. I_{DD} vs V_{DD}, at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash memory OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	3.2 ⁽²⁾	-	
				T_A = -40 °C to 25 °C	13	19	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	16	21	
			Flash memory ON	T _A = 105 °C	18.5	24	
				T _A = 125 °C	23.5	32	
	Supply		MSI clock, 65 kHz f _{HCLK} = 65 kHz, Flash memory ON	T_A = -40 °C to 25 °C	13.5	19	
I _{DD} (LP Sleep)	current in Low-power			T _A = 85 °C	16.5	21	μA
	sleep mode			T _A = 105 °C	18.5	24	
				T _A = 125 °C	24	33	
				T_A = -40 °C to 25 °C	15.5	21	
			MSI clock, 131 kHz	T _A = 55 °C	17.5	22	-
			$f_{HCLK} = 131 \text{ kHz},$ Flash memory ON	T _A = 85 °C	18.5	23	
				T _A = 105 °C	21	26	
				T _A = 125 °C	26	35	

Table 30. Current consumption in Low-power Sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

 As the CPU is in Sleep mode, the difference between the current consumption with Flash memory ON and OFF (nearly 12 μA) is the same whatever the clock frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Table 34. Peripheral current consumption in Run or Sleep mode⁽¹⁾

		Туріс				
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	WWDG	3	2	2	2	
	LPUART1	8	6.5	5.5	6	
APB1	I2C1	11	9.5	7.5	9	µA/MHz (f _{HCLK})
AFDI	LPTIM1	10	8.5	6.5	8	μΑλινίτιζ (I _{HCLK})
	TIM2	10.5	8.5	7	9	
	USART2	14.5	12	9.5	11	
	ADC1 ⁽²⁾	5.5	5	3.5	4	
	SPI1	4	3	3	2.5	
4002	TIM21	7.5	6	5	5.5	
APB2	TIM22	7	6	5	6	µA/MHz (f _{HCLK})
	DBGMCU	1.5	1	1	0.5	
	SYSCFG	2.5	2	2	1.5	
	GPIOA	3.5	3	2.5	2.5	
Cortex-	GPIOB	3.5	2.5	2	2.5	
M0+ core I/O port	GPIOC	8.5	6.5	5.5	7	µA/MHz (f _{HCLK})
	GPIOH	1.5	1	1	0.5	
	CRC	1.5	1	1	1	
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	1
AHB	DMA1	10	8	6.5	8.5	µA/MHz (f _{HCLK})
All enabled		101	83	66	85	1
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})

Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 μ A.

Sumhal	Devinheral	Typical consum	ption, T _A = 25 °C	llnit
Symbol	Peripheral	V _{DD} =1.8 V	V _{DD} =3.0 V	Unit
I _{DD(PVD / BOR)}	-	0.7	1.2	
I _{REFINT}	-	1.3	1.4	
-	LSE Low drive ⁽²⁾	0.1	0.1	
-	LSI	0.27	0.31	
-	IWDG	0.2	0.3	
-	LPTIM1, Input 100 Hz	0.01	0.01	μΑ
-	LPTIM1, Input 1 MHz	6	6	
-	LPUART1	0.2	0.2	
-	RTC (LSE in Bypass mode)	0.2	0.2]

1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode

2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.-

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4.
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \le T_A \le 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	65.5	-	
		MSI range 1	131	-	kHz
		MSI range 2	262	-	КПZ
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T_A = 25 °C	MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C \leq T _A \leq 85 °C	-	±3	-	%
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V \leq V _{DD} \leq 3.6 V, T _A = 25 °C	-	-	2.5	%/V
		MSI range 0	0.75	-	
		MSI range 1	1	-	
		MSI range 2	1.5	-	
I _{DD(MSI)} ⁽²⁾	MSI oscillator power consumption	MSI range 3	2.5	-	μA
		MSI range 4	4.5	-	
		MSI range 5	8	-	
		MSI range 6	15	-	

Table 43. MSI oscillator characteristics

	Durante				
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μA

Table 44. PLL characteristics (continued)

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Table 45. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Table 46. Flash memory and data EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
+	Programming time for	Erasing	-	3.28	3.94	ms
t _{prog}	word or half-page	Programming	-	3.28	3.94	1115
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

1. Guaranteed by design.

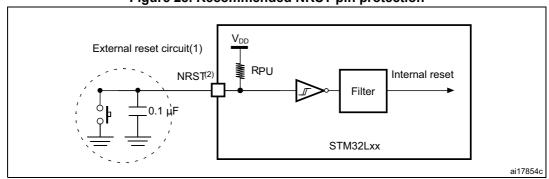


Figure 28. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56. Otherwise the reset will not be taken into account by the device.

6.3.15 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 20: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V	Analog supply voltage for	Fast channel	1.65	-	3.6	V
V _{DDA}	ADC on	Standard channel	1.75 ⁽¹⁾	-	3.6	
	Current consumption of the	1.14 Msps	-	200	-	
	ADC on V _{DDA}	10 ksps	-	40	-	
I _{DDA} (ADC)	Current consumption of the	1.14 Msps	-	70	-	- μΑ
	ADC on V _{DD} ⁽²⁾	10 ksps	-	1	-	
		Voltage scaling Range 1	0.14	-	16	
f _{ADC}	ADC clock frequency	Voltage scaling Range 2	0.14	-	8	MHz
		Voltage scaling Range 3	0.14	-	4	
f _S ⁽³⁾	Sampling rate		0.05	-	1.14	MHz
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 16 MHz	-	-	941	kHz
'TRIG` '			-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range		0	-	V _{DDA}	V
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ
R _{ADC} ⁽³⁾⁽⁴⁾	Sampling switch resistance		-	-	1	kΩ
C _{ADC} ⁽³⁾	Internal sample and hold capacitor		-	-	8	pF

Table 57. ADC characteristics

USART/LPUART characteristics

The parameters given in the following table are guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit
		Stop mode with main regulator in Run mode, Range 2 or 3		8.7	
^t wuusart	Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wake up from Stop mode	Stop mode with main regulator in Run mode, Range 1	-	8.1	μs
		Stop mode with main regulator in low-power mode, Range 2 or 3	-	12	
		Stop mode with main regulator in low-power mode, Range 1	-	11.4	

Table 66.	USART/LPUART	characteristics
10.010 001		

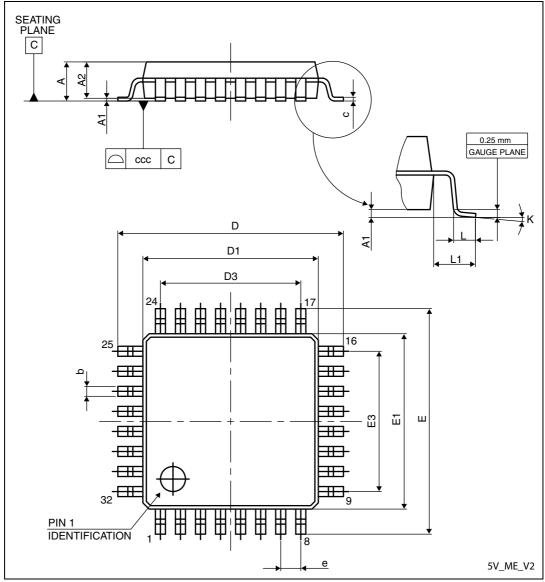
SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*.

Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Master mode			16		
		Slave mode receiver	-	-	16		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz	
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾		
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-		
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2		
t _{su(MI)}	Data input setup time	Master mode	8.5	-	-		
t _{su(SI)}	Data input setup time	Slave mode	8.5	-	-		
t _{h(MI)}	Data input hold time	Master mode	6	-	-		
t _{h(SI)}		Slave mode	1	-	-	ns	
t _{a(SO}	Data output access time	Slave mode	15	-	36		
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30		
+		Slave mode 1.71 <v<sub>DD<3.6V</v<sub>	-	29	41		
t _{v(SO)}	Data output valid time	Slave mode 2.7 <v<sub>DD<3.6V</v<sub>	-	22	28		
t _{v(MO)}		Master mode	-	10	17		
t _{h(SO)}	Data output hold time	Slave mode	9	-	-		
t _{h(MO)}		Master mode	3	-	-		

Table 67. SPI characteristics	cs in voltage Range 1 ⁽¹⁾
-------------------------------	--------------------------------------


1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{y(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

7.2 LQFP32 package information

Figure 37. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline

1. Drawing is not to scale.

7.4 UFQFPN28 package information

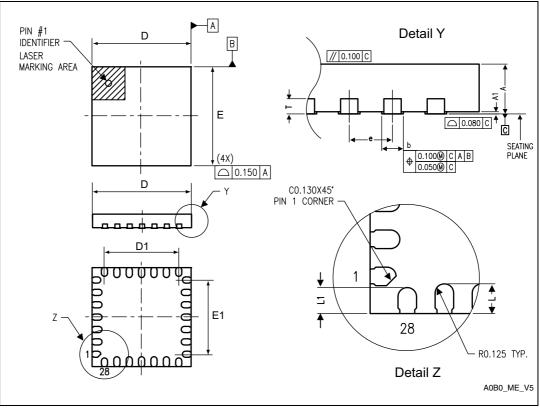
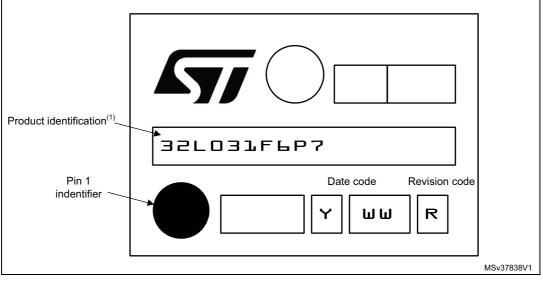


Figure 43. UFQPN28, 4 x 4 mm, 28-pin package outline

1. Drawing is not to scale.

Symbol		millimeters			inches			
Symbol	Min	Тур	Мах	Min	Тур	Мах		
A	0.500	0.550	0.600	0.0197	0.0217	0.0236		
A1	-	0.000	0.050	-	0.0000	0.0020		
D	3.900	4.000	4.100	0.1535	0.1575	0.1614		
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
E	3.900	4.000	4.100	0.1535	0.1575	0.1614		
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197		
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177		
Т	-	0.152	-	-	0.0060	-		
b	0.200	0.250	0.300	0.0079	0.0098	0.0118		
е	-	0.500	-	-	0.0197	-		


Table 73. UFQPN28,	4 x 4 mm,	28-pin	package	mechanical	data ⁽¹⁾

1. Values in inches are converted from mm and rounded to 4 decimal digits.

TSSOP20 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Part numbering

Table 78. STM32L031x4	/6 orderina	inform	ation	sche	me		
Example:	STM32 L	031	K	6	Т	6	D TR
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
L = Low power							
Device subfamily							
031 = Access line							
Dia securit							
Pin count							
C = 48 pins							
K = 32 pins							
G = 28 pins							
E = 25 pins							
F = 20 pins							
Flash memory size							
4 = 16 Kbytes							
6 = 32 Kbytes							
0 - 02 hbyt03							
Package							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
P = TSSOP							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C							
7 = Industrial temperature range, -40 to 105 °C							
3 = Industrial temperature range, -40 to 105 °C							
5 – Industrial temperature range, –40 to 125°C							
Number of UFQFPN28 power pairs							
S = one power pair ⁽¹⁾							
No character = Two power pairs							
Options							
No character = V _{DD} range: 1.8 to 3.6 V and BOR er	nabled						
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled							
Packing							
TR = tape and reel							

TR = tape and reel No character = tray or tube

1. This option is available only on STM32L031GxUxS part number. Contact your nearest ST sales office for availability.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

