

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l031g6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction		9					
2	Desc	ription .		. 10					
	2.1	Device of	overview	11					
	2.2	Ultra-lov	v-power device continuum	. 14					
3	Func	tional ov	verview	. 15					
	3.1	Low-pov	ver modes	. 15					
	3.2	Intercon	nterconnect matrix						
	3.3	ARM® C	Cortex®-M0+ core	. 20					
	3.4	Reset ar	nd supply management	. 21					
		3.4.1	Power supply schemes	21					
		3.4.2	Power supply supervisor	21					
		3.4.3	Voltage regulator	22					
		3.4.4	Boot modes	22					
	3.5	Clock m	anagement	. 23					
	3.6	Low-pov	ver real-time clock and backup registers	. 25					
	3.7	General	-purpose inputs/outputs (GPIOs)	. 25					
	3.8	Memorie	es	. 26					
	3.9	Direct m	emory access (DMA)	. 26					
	3.10	Analog-t	o-digital converter (ADC)	. 26					
	3.11	Tempera	ature sensor	. 27					
		3.11.1	Internal voltage reference (V _{REFINT})						
	3.12	Ultra-lov	v-power comparators and reference voltage						
	3.13	System	configuration controller	. 28					
	3.14	•	and watchdogs						
		3.14.1	General-purpose timers (TIM2, TIM21 and TIM22)						
		3.14.2	Low-power Timer (LPTIM)						
		3.14.3	SysTick timer						
		3.14.4	Independent watchdog (IWDG)						
		3.14.5	Window watchdog (WWDG)	30					
	3.15	Commu	nication interfaces	. 30					

Peripheral	STM32 L031F4	STM32 L031E4	STM32 L031G4	STM32 L031K4	STM32 L031C4	STM32 L031F6	STM32 L031E6	STM32 L031G6	STM32 L031K6	STM32 L031C6
Operating temperatures					nt temperatu n temperatu					
Packages	TSSOP WICSP LIEGERN LQFP32, TSSOP WICSP LIEGERN LQFP32					LQFP32, UFQFPN 32	LQFP48			

Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts (continued)

1. 1 SPI interface is a USART operating in SPI master mode.

2. LQFP32 has two GPIOs, less than UFQFPN32 (27).

3. 23 GPIOs are available only on STM32L031GxUxS part number.

4. HSE external quartz connexion available only on LQFP48.

Description

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.4.4 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1 (PA4, PA5, PA6, PA7), USART2 (PA2, PA3) or USART2 (PA9, PA10). See STM32[™] microcontroller system memory boot mode AN2606 for details.

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

• System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
- Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC clock sources

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

DocID027063 Rev 4

3.8 Memories

The STM32L031x4/6 devices have the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 16 or 32 Kbytes of embedded Flash program memory
 - 1 Kbytes of data EEPROM
 - Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no protection
- Level 1: memory readout protected.

The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected

• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, LPUART, general-purpose timers, and ADC.

3.10 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L031x4/6 devices. It has up to 10 external channels and 3 internal channels (temperature sensor, voltage reference). Three channel are fast channel, PA0, PA4 and PA5, while the others are standard channels.

It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~200 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

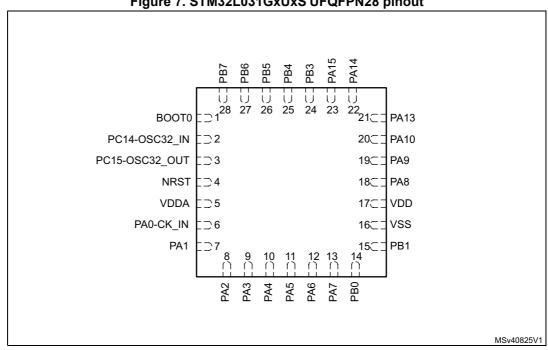
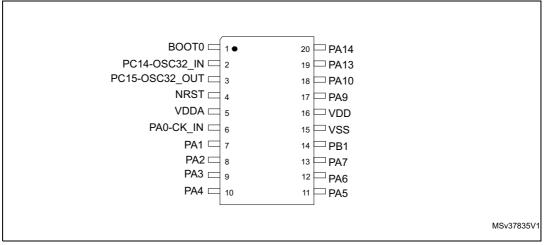



Figure 7. STM32L031GxUxS UFQFPN28 pinout

1. The above figure shows the package top view.

2. This pinout applies only to STM32L031GxUxS part number.

Figure 8. STM32L031x4/6 TSSOP20 pinout

1. The above figure shows the package top view.

Memory mapping 5

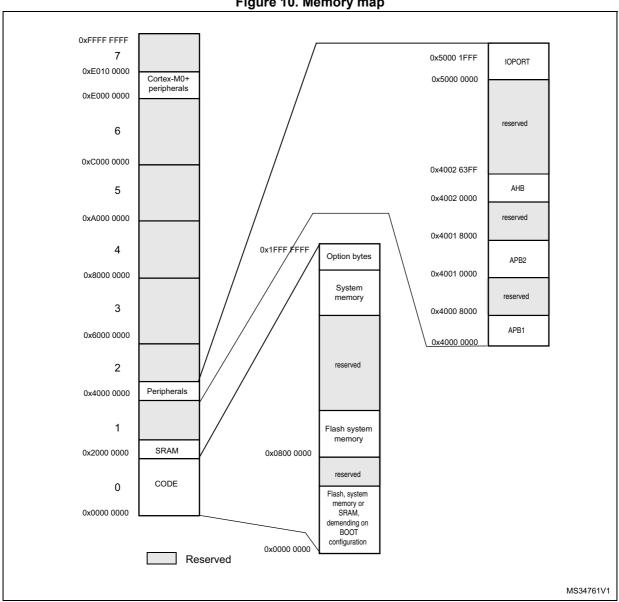


Figure 10. Memory map

1. Refer to the STM32L031x4/6 reference manual for details on the Flash memory organization for each memory size.

i	71	•	-		
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Supply current in Stop mode	$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.38	0.99	
		T _A = 55°C	0.54	1.9	μA
I _{DD} (Stop)		T _A = 85°C	1.35	4.2	
		T _A = 105°C	3.1	9	
		T _A = 125°C	7.55	19	

Table 31. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 $^\circ\text{C},$ unless otherwise specified.

Figure 18. I_{DD} vs V_{DD}, at T_A= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive

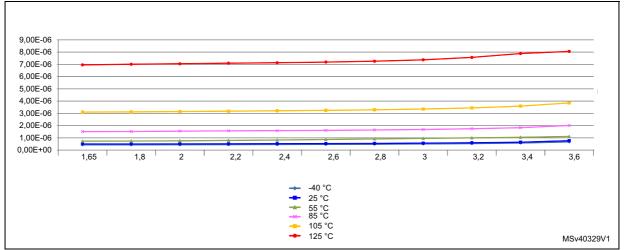
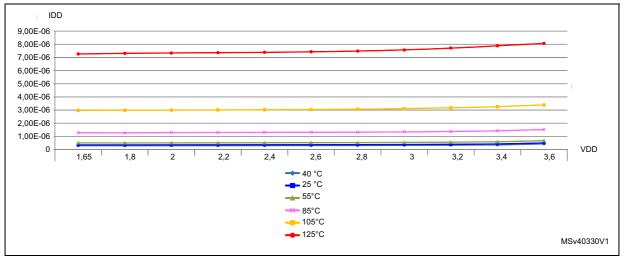



Figure 19. I_{DD} vs V_{DD}, at T_A= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz			
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v			
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v			
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns			
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115			
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF			
DuCy _(LSE)	Duty cycle	-	45	-	55	%			
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA			

Table 38. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

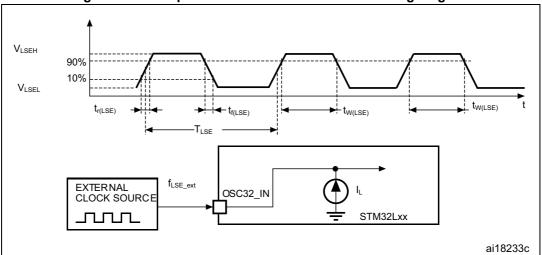


Figure 21. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator (LQFP48 package only). All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz		
R _F	Feedback resistor	-	-	200	-	kΩ		
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V		
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	2	-	ms		

Table 39. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

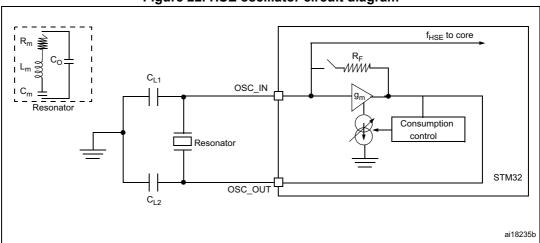


Figure 22. HSE oscillator circuit diagram

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Symbol	Parameter	Condition	Тур	Мах	Unit
f _{MSI}		MSI range 0	65.5	-	
		MSI range 1	131	-	kU-
		MSI range 2	262	-	kHz
	Frequency after factory calibration, done at V_{DD} = 3.3 V and T_A = 25 °C	MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C \leq T _A \leq 85 °C	-	±3	-	%
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V \leq V _{DD} \leq 3.6 V, T _A = 25 °C	-	-	2.5	%/V
		MSI range 0	0.75	-	
		MSI range 1	1	-	
		MSI range 2	1.5	-	
I _{DD(MSI)} ⁽²⁾	MSI oscillator power consumption	MSI range 3	2.5	-	μA
		MSI range 4	4.5	-	
		MSI range 5	8	-	
		MSI range 6	15	-	

Table 43. MSI oscillator characteristics

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	30	-	
		MSI range 1	20	-	
		MSI range 2	15	-	
		MSI range 3	10	-	
touron	MSI oscillator startup time	MSI range 4	6	-	
t _{SU(MSI)}		MSI range 5	5	-	μs
		MSI range 6, Voltage range 1 and 2	3.5	-	
		MSI range 6, Voltage range 3	5	-	
	MSI oscillator stabilization time	MSI range 0	-	40	
		MSI range 1	-	20	μs
		MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾		MSI range 4	-	2.5	
STAB(MSI)		MSI range 5	-	2	μυ
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f	MSL oscillator fraguency oversheet	Any range to range 5	-	4	MHz
f _{OVER(MSI)}	MSI oscillator frequency overshoot	Any range to range 6	-	6	

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

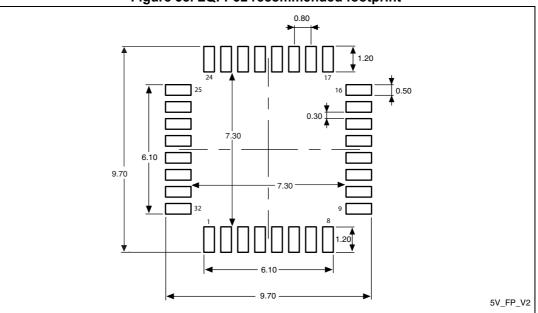
The parameters given in *Table 44* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Valu Parameter				Unit
Symbol	Falanetei	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
^T PLL_IN	PLL input clock duty cycle	45	-	55	%

USART/LPUART characteristics

The parameters given in the following table are guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit	
		Stop mode with main regulator in Run mode, Range 2 or 3	-	8.7		
^t wuusart	t _{WUUSART} calculate the maximum USART/LPUART baudrate allowing to wake up from Stop mode	calculate the maximum Run mode, Range 1		-	8.1	μs
		Stop mode with main regulator in low-power mode, Range 2 or 3	-	12		
		Stop mode with main regulator in low-power mode, Range 1	-	11.4		


Table 66.	USART/LPUART	characteristics
10.010 001		

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.100	-	-	0.0039
А	-	-	1.600	-	-	0.0630

Table 71. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 38. LQFP32 recommended footprint

1. Dimensions are expressed in millimeters.

DocID027063 Rev 4

7.4 UFQFPN28 package information

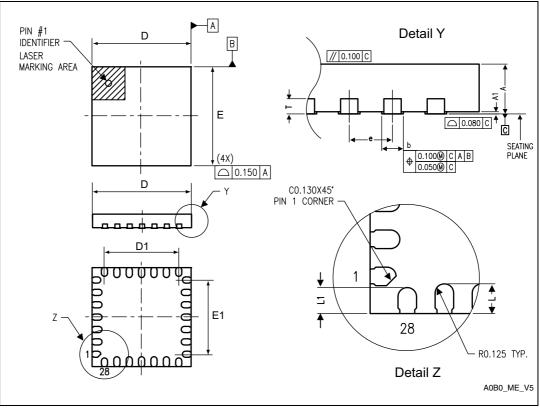
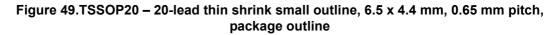
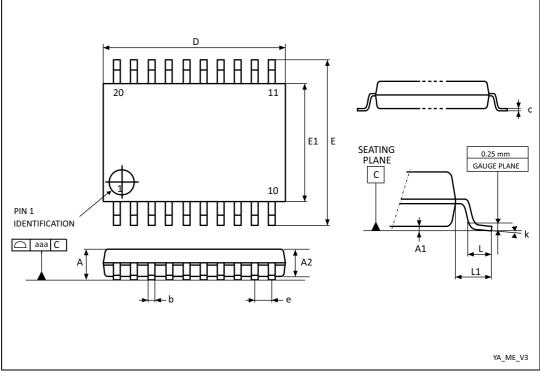


Figure 43. UFQPN28, 4 x 4 mm, 28-pin package outline

1. Drawing is not to scale.


Symbol		millimeters				
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-


Table 73. UFQPN28,	4 x 4 mm,	28-pin	package	mechanical	data ⁽¹⁾

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.6 TSSOP20 package information

1. Drawing is not to scale.

Table 76. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,				
package mechanical data				

Symbol	Or make a l		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	1.200	-	-	0.0472	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413	
b	0.190	-	0.300	0.0075	-	0.0118	
с	0.090	-	0.200	0.0035	-	0.0079	
D	6.400	6.500	6.600	0.2520	0.2559	0.2598	
E	6.200	6.400	6.600	0.2441	0.2520	0.2598	
E1	4.300	4.400	4.500	0.1693	0.1732	0.1772	
е	-	0.650	-	-	0.0256	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	

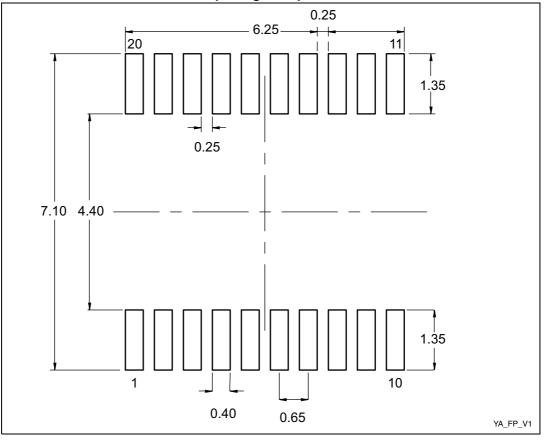


Table 76. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data (continued)

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to four decimal digits.

Figure 50. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint

1. Dimensions are expressed in millimeters.

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	57	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
0	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	39	°C/W
Θ_{JA}	Thermal resistance junction-ambient UFQFPN28 - 4 x 4 mm / 0.5 mm pitch	120	C/vv
	Thermal resistance junction-ambient WLCSP25 - 0.4 mm pitch	70	
	Thermal resistance junction-ambient TSSOP20 - 169 mils	60	

Table	77.	Thermal	characteristics
Iabio		1110111101	0110100100100

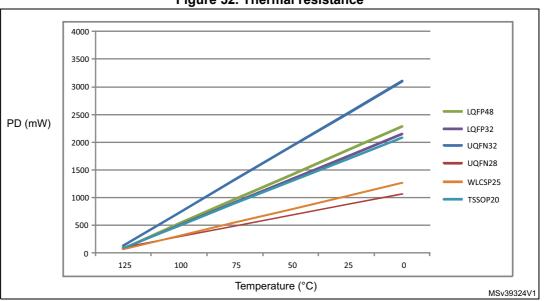


Figure 52. Thermal resistance

1. The above curves are valid for range 6. For range 7, the curves are shifted by 20 °C to the right.

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

Date Revisior	n Changes
05-Apr-2016 4	Features: - Change minimum comparator supply voltage to 1.65 V. - Updated current consumptions in Standby, Stop and Stop with RTC ON modes. Updated number of GPIOs for STM32L031GxUxS in Table 2: Ultra-low-power STM32L031x4/x6 device features and peripheral counts. Removed note related to preliminary consumption values in Table 5: Functionalities depending on the working mode (from Run/active down to standby). Added number of fast and standard channels in Section 3.10: Analog-to-digital converter (ADC). Added baudrate allowing to wake up the MCU from Stop mode in Section 3.15:2: Universal synchronous/asynchronous receiver transmitter (USART) and Section 3.15:3: Low-power universal asynchronous receiver transmitter (LPUART). Changed V _{DDA} minimum value to 1.65 V in Table 20: General operating conditions. Added I _{REFINT} value for V _{DD} =1.8 V in Table 35: Peripheral current consumption in Stop and Standby mode. Section 6.3.15: 12-bit ADC characteristics: Distinction made between V _{DDA} for fast and standard channels; added note 1. Added note 4. related to R _{ADC} . Updated t _S and t _{CONV} . Updated t _S and t _{cONV} . Updated t _S and t _{cONV} . Added Table 66: USART/LPUART characteristics.

Table 79. Document revision history

