

Welcome to E-XFL.COM

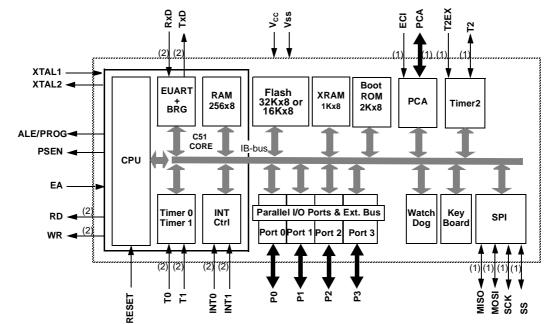
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rb2-rlril

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Figure 1. Block Diagram

- Notes: 1. Alternate function of Port 1.
 - 2. Alternate function of Port 3.

Table 2. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator								
В	F0h	B Register								
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer								
DPL	82h	Data Pointer Low Byte								
DPH	83h	Data Pointer High Byte								

Table 3. System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	-	MO	XRS2	XRS1	XRS0	EXTRAM	AO
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	-	GF3	0	-	DPS
CKRL	97h	Clock Reload Register	CKRL7	CKRL6	CKRL5	CKRL4	CKRL3	CKRL2	CKRL1	CKRL0
CKCKON0	8Fh	Clock Control Register 0	-	WDTX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCKON1	AFh	Clock Control Register 1	-	-	-	-	-	-	-	SPIX2

Table 4. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	B1h	Interrupt Enable Control 1	-	-	-	-	-	ESPI	EI2C	KBD
IPH0	B7h	Interrupt Priority Control High 0	-	PPCH	PT2H	PHS	PT1H	PX1H	PT0H	PX0H
IPL0	B8h	Interrupt Priority Control Low 0	-	PPCL	PT2L	PLS	PT1L	PX1L	PTOL	PX0L
IPH1	B3h	Interrupt Priority Control High 1	-	-	-	-	-	SPIH	IE2CH	KBDH
IPL1	B2h	Interrupt Priority Control Low 1	-	-	-	-	-	SPIL	IE2CL	KBDL

Table 5. Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	8-bit Port 0								
P1	90h	8-bit Port 1								
P2	A0h	8-bit Port 2								
P3	B0h	8-bit Port 3								

Table 16. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SPIX2
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	SPIX2	this bit has no Clear to seled	o effect). ct 6 clock peri	dated when th ods per periph ods per periph	neral clock cyc	cle.	n X2 is low,

Reset Value = XXXX XXX0b Not bit addressable

Table 17. AUXR1 register

AUXR1- Auxiliary Register 1(0A2h)

7	6	5	4	3	2	1	0		
-	-	ENBOOT	-	GF3	0	-	DPS		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.			
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.			
5	ENBOOT	Enable Boot Cleared to dis Set to map th	sable boot RC	DM. between F800	h - 0FFFFh.				
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.			
3	GF3	This bit is a	general-pur	oose user flag	j . ⁽¹⁾				
2	0	Always Clea	red						
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	DPS	Data Pointer Cleared to se Set to select	elect DPTR0.						

Reset Value = XXXX XX0X0b

Not bit addressable

Note: 1. Bit 2 stuck at 0; this allows using INC AUXR1 to toggle DPS without changing GF3.

ASSEMBLY LANGUAGE

- ; Block move using dual data pointers
- ; Modifies DPTR0, DPTR1, A and PSW
- ; note: DPS exits opposite of entry state
- ; unless an extra INC AUXR1 is added

00A2 AUXR1 EQU 0A2H

0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A, @DPTR ; get a Byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX @DPTR,A ; write the Byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

- Instructions that use indirect addressing access the Upper 128 Bytes of data RAM. For example: MOV @R0, # data where R0 contains 0A0h, accesses the data Byte at address 0A0h, rather than P2 (whose address is 0A0h).
- The XRAM Bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory that is physically located on-chip, logically occupies the first Bytes of external data memory. The bits XRS0 and XRS1 are used to hide a part of the available XRAM as explained in Table 18. This can be useful if external peripherals are mapped at addresses already used by the internal XRAM.
- With <u>EXTRAM = 0</u>, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations higher than the accessible size of the XRAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Accesses to XRAM above 0FFH can only be done by the use of DPTR.
- With <u>EXTRAM = 1</u>, MOVX @RI and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ RI and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 Bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

The M0 bit allows to stretch the XRAM timings; if M0 is set, the read and write pulses are extended from 6 to 30 clock periods. This is useful to access external slow peripherals.

Registers

Table 20. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0					
TF2	EXF2	RCLK	RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#									
Bit Number	Bit Mnemonic	Description	Description									
7	TF2		red by softwa	re. 2 overflow, if I	RCLK = 0 and	I TCLK = 0.						
6	EXF2	EXEN2 = 1. When set, ca interrupt is en Must be clear	capture or a re auses the CPI nabled.	eload is cause J to vector to ⁻ ire. EXF2 does	Fimer 2 interru	upt routine wh	en Timer 2					
5	RCLK		se timer 1 ove	erflow as recei w as receive c		•						
4	TCLK		se timer 1 ove	erflow as trans w as transmit o								
3	EXEN2	Cleared to ig Set to cause	a capture or	Bit on T2EX pin fo reload when a used to clock t	negative tran	sition on T2E	X pin is					
2	TR2		Control Bit Irn off Timer 2 n Timer 2.									
1	C/T2#	Cleared for the Set for count	Fimer/Counter 2 Select Bit Cleared for timer operation (input from internal clock system: F _{CLK PERIPH}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 or clock out mode.									
0	CP/RL2#	If RCLK = 1 on Timer 2 o Cleared to a if EXEN2 = 1	Timer 2 Capture/Reload Bit If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to auto-reload on Timer 2 overflow. Cleared to auto-reload on Timer 2 overflows or negative transitions on T2EX pin if EXEN2 = 1. Set to capture on negative transitions on T2EX pin if EXEN2 = 1.									

Reset Value = 0000 0000b Bit addressable

1

Λ

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High-speed Output
1	0	0	0	0	1	0 8-bit PWM	
1	0	0	1	Х	0	Х	Watchdog Timer (Module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA Modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a Module is used in the PWM mode these registers are used to control the duty cycle of the output (see Table 26 and Table 27).

Table 26. CCAPnH Registers (n = 0-4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H – PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H – PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H – PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H – PCA Module 4 Compare/Capture Control Register High (0FEh) ۸

5

'	0	5	-	5	2	•	Ū
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val		Capture Con	trol		

2

2

Reset Value = 0000 0000b Not bit addressable

7

- Table 27. CCAPnL Registers (n = 0-4)
- CCAP0L PCA Module 0 Compare/Capture Control Register Low (0EAh)
- CCAP1L PCA Module 1 Compare/Capture Control Register Low (0EBh)
- CCAP2L PCA Module 2 Compare/Capture Control Register Low (0ECh)
- CCAP3L PCA Module 3 Compare/Capture Control Register Low (0EDh)

CCAP4L – PCA Module 4 Compare/Capture Control Register Low (0EEh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnL Val		/Capture Con	trol		

Reset Value = 0000 0000b Not bit addressable

Table 28. CH Register

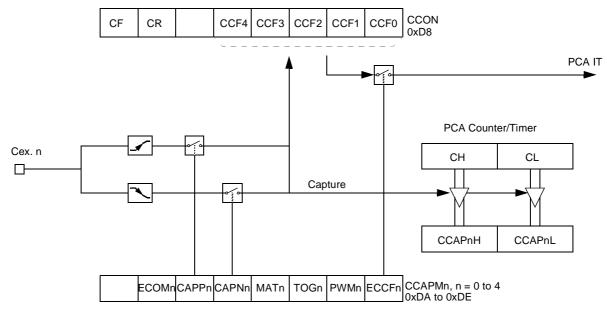
CH – PCA Counter Register High (0F9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CH Value	er				

Reset Value = 0000 0000b Not bit addressable

Table 29. CL Register

CL – PCA Counter Register Low (0E9h)


7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CL Value	r				

Reset Value = 0000 0000b Not bit addressable

PCA Capture Mode

To use one of the PCA Modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that Module must be set. The external CEX input for the Module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the Module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the Module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (see Figure 13).

Table 33. SCON Register

SCON - Serial Control Register (98h)

7	6	ŧ	5	4	3	2	1	0
FE/SM0	SM1	SI	M2	REN	TB8	RB8	ТІ	RI
Bit Number	Bit Mnemo	onic	Descri	iption				
7	FE		Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit.					
	SM)	Refert		erial port mod	e selection. ble access to th	e SM0 bit.	
6	SM	1	Serial <u>SM0</u> 0 1 1	0 S 1 8 0 9	<u>lode</u>	Baud Rate $F_{XTAL}/12$ (or F_{y} Variable $F_{XTAL}/64$ or F_{X} Variable		• X2)
5	SM2	2	Clear t Set to	o disable mu enable multi	ultiprocessor o	ocessor Com communication nmunication fea d be cleared in	feature. ature in mode :	
4	REN	N	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.					
3	ТВ8	3	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.					
2	RB	3	Receiver Bit 8 / Ninth b Cleared by hardware if 9 Set by hardware if 9th bit In mode 1, if SM2 = 0, RI used.		re if 9th bit re 9th bit receive	ceived is a logied is a logic 1.	c 0.) RB8 is not
1	ті	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or a of the stop bit in the other modes.			mode 0 or at th	ne beginning		
0	RI		Clear t Set by	hardware at	lge interrupt.	e 8th bit time in es.	mode 0, see	Figure 18.

Reset Value = 0000 0000b Bit addressable

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

 Table 34.
 Example of Computed Value When X2=1, SMOD1=1, SPD=1

 Table 35.
 Example of Computed Value When X2=0, SMOD1=0, SPD=0

Baud Rates	F _{osc} = 16	. 384 MHz	F _{osc} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 20.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 42.)

UART Registers

Table 36. SADEN Register

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 37. SADDR Register

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 44. IENO Register

IEN0 - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0
EA	EC	ET2	ES	ET1	EX1	ET0	EX0
Bit Number	Bit Mnemonic	Description					
7	EA		nterrupt Bit isable all inter e all interrupts				
6	EC		A Interrupt Enable Bit eared to disable. t to enable.				
5	ET2	Cleared to d	sable timer 2	pt Enable Bit overflow inter flow interrupt.			
4	ES		Enable Bit isable serial p e serial port ir				
3	ET1	Cleared to d	sable timer 1	pt Enable Bit overflow inter flow interrupt.			
2	EX1	Cleared to d	errupt 1 Enal sable externa e external inte	al interrupt 1.			
1	ET0	Cleared to d	sable timer 0	pt Enable Bit overflow inter flow interrupt.			
0	EX0	Cleared to d	errupt 0 Enal isable externa e external inte	al interrupt 0.			

Reset Value = 0000 0000b Bit addressable

Table 45. IPL0 Register

IPL0 - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	ad from this t	oit is indetermi	nate. Do not s	et this bit.	
6	PPCL		pt Priority B or priority leve				
5	PT2L		rflow Interru	ipt Priority Bi	t		
4	PSL	Serial Port I see PSH for	Priority Bit priority level.				
3	PT1L		rflow Interru	ipt Priority Bi	t		
2	PX1L		errupt 1 Prio r priority leve	-			
1	PTOL		rflow Interru	pt Priority Bi	t		
0	PX0L		errupt 0 Prio r priority leve	-			

Reset Value = X000 0000b Bit addressable

Registers

Table 51. KBF Register

KBF - Keyboard Flag Register (9Eh)

7	6	5	4	3	2	1	0
KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0
Bit Number	Bit Mnemonic	Description					
7	KBF7	Keyboard int	are when the	Port line 7 det t if the KBKBII re.			
6	KBF6	Keyboard int	are when the	Port line 6 det t if the KBIE. 6 re.			generates a
5	KBF5	Keyboard int	are when the	Port line 5 det t if the KBIE. 5 re.			generates a
4	KBF4	Keyboard int	are when the	Port line 4 det t if the KBIE. 4 re.			generates a
3	KBF3	Keyboard int	are when the	Port line 3 det t if the KBIE. 3 re.			generates a
2	KBF2	Keyboard int	are when the	Port line 2 det t if the KBIE. 2 re.			generates a
1	KBF1	Keyboard int	are when the	Port line 1 det t if the KBIE. 1 re.			generates a
0	KBF0	Keyboard int	are when the	Port line 0 det t if the KBIE. (re.			generates a

Reset Value = 0000 0000b

This register is read only access, all flags are automatically cleared by reading the register.

Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the Watchdog Timer Reset (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

Using the WDT To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{CLK PERIPH}, where T_{CLK PERIPH} 1/F_{CLK PERIPH}. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16 ms to 2 s @ F_{OSCA} = 12 MHz. To manage this feature, see WDTPRG register description, Table 59.

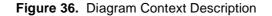
 Table 59.
 WDTRST Register

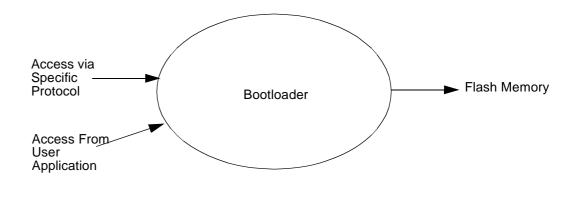
WDTRST - Watchdog Reset Register (0A6h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.


MEL


Reset Recommendation to Prevent Flash Corruption	An example of bad initialization situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.
	If one wants the ENBOOT cleared in order to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFRs may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a Flash access (write or erase) may corrupt the Flash on-chip memory.
	It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage (power supply failure, power supply switched off).
Idle Mode	An instruction that sets PCON.0 indicates that it is the last instruction to be executed before going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre- served in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high level.
	There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred dur- ing normal operation or during idle. For example, an instruction that activates idle can also set one or both flag bits. When idle is terminated by an interrupt, the interrupt ser- vice routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power-down Mode	To save maximum power, a Power-down mode can be invoked by software (see Table 14, PCON register).
	In Power-down mode, the oscillator is stopped and the instruction that invoked Power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the Power-down mode is terminated. V _{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from Power- down. To properly terminate Power-down, the reset or external interrupt should not be executed before V _{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INTO, INT1 and Keyboard Interrupts are useful to exit from Power-down. For that, interrupt must be enabled and configured as level or edge sensi- tive interrupt input. When Keyboard Interrupt occurs after a power down mode, 1024 clocks are necessary to exit to power down mode and enter in operating mode.
	Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 34. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will

Bootloader Architecture

Introduction

The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

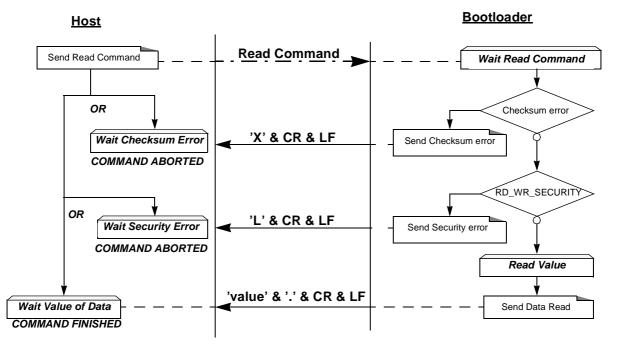
Acronyms

ISP: In-system Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Bit HW : Hardware Byte

Example

Display data from address 0000h to 0020h

HOST	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	0000=data CR LF (16 data)
BOOTLOADER	0010=data CR LF (16 data)
BOOTLOADER	0020=data CR LF (1 data)


Read Function

This flow is similar for the following frames:

- Reading Frame
- EOF Frame/Atmel Frame (only reading Atmel Frame)

Description

Figure 45. Read Flow

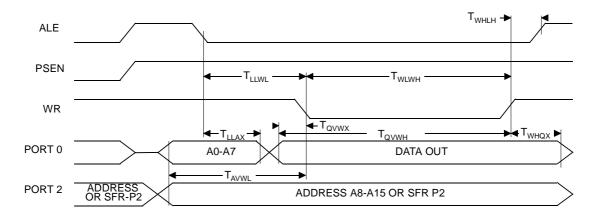
Example

Read function (read SBV)												
HOST		:	02	0000	05	07	02	FO				
BOOTLO.	ADER	:	02	0000	05	07	02	FO	Value		CR	LF
Atmel F	Read	func	tic	on (r	ead	l Bo	oot	loa	der v	er	sid	on)
HOST		:	02	0000	01	02	00	FB				
BOOTLO.	ADER	:	02	0000	01	02	00	FB	Value		CR	LF

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low. (Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other
	outputs = 80 pF.
	Table 75 Table 78, and Table 80 give the description of each AC symbols.
	Table 77, Table 79 and Table 81 give the AC parameterfor each range.
	Table 76, Table 77 and Table 82 gives the frequency derating formula of the AC param- eter for each speed range description. To calculate each AC symbols, take the x value in the correponding column (-M or -L) and use this value in the formula.
	Example: T_{LLIU} for -M and 20 MHz, Standard clock. x = 35 ns T 50 ns T_{CCIV} = 4T - x = 165 ns
External Program Memory	Table 75. Symbol Description

Characteristics


Table 75. Symbol Description

Symbol	Parameter					
Т	Oscillator clock period					
T _{LHLL}	ALE pulse width					
T _{AVLL}	Address Valid to ALE					
T _{LLAX}	Address Hold after ALE					
T _{LLIV}	ALE to Valid Instruction In					
T _{LLPL}	ALE to PSEN					
T _{PLPH}	PSEN Pulse Width					
T _{PLIV}	PSEN to Valid Instruction In					
T _{PXIX}	Input Instruction Hold after PSEN					
T _{PXIZ}	Input Instruction Float after PSEN					
T _{AVIV}	Address to Valid Instruction In					
T _{PLAZ}	PSEN Low to Address Float					

Symbol	Туре	Standard Clock	X2 Clock	X Parameter for - M Range	X Parameter for - L Range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	30	ns
T _{RHDX}	Min	х	х	0	0	ns
T _{RHDZ}	Max	2 T - x	Т - х	25	25	ns
T _{LLDV}	Max	8 T - x	4T -x	45	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	15	ns
T _{RLAZ}	Max	x	х	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	20	ns

External Data Memory Write Cycle

