

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rb2-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								
BDRCON	9Bh	Baud Rate Control				BRR	TBCK	RBCK	SPD	SRC
BRL	9Ah	Baud Rate Reload								

Table 9. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF	-	-	-	-
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table 10. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

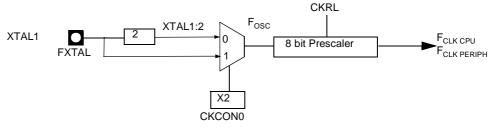
Enhanced Features In comparison to

In comparison to the original 80C52, the AT89C51RB2/RC2 implements some new features, which are:

- X2 option
- Dual Data Pointer
- Extended RAM
- Programmable Counter Array (PCA)
- Hardware Watchdog
- SPI interface
- 4-level interrupt priority system
- power-off flag
- ONCE mode
- ALE disabling
- Some enhanced features are also located in the UART and the timer 2

X2 Feature The AT89C51RB2/RC2 core needs only 6 clock periods per machine cycle. This feature called 'X2' provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.


In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description The clock for the whole circuit and peripherals is first divided by 2 before being used by the CPU core and the peripherals.

This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%.

Figure 5 shows the clock generation block diagram. X2 bit is validated on the rising edge of the XTAL1+2 to avoid glitches when switching from X2 to X1 mode. Figure 6 shows the switching mode waveforms.

Figure 5. Clock Generation Diagram

Table 15. CKCON0 Register

CKCON0 - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0	
-	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2	
Bit Number	Bit Mnemonic	Description						
7	Reserved							
6	WDX2	(This control has no effect Cleared to se	Vatchdog Clock This control bit is validated when the CPU clock X2 is set; when X2 is low, th as no effect). Ileared to select 6 clock periods per peripheral clock cycle. Net to select 12 clock periods per peripheral clock cycle.					
5	PCAX2	(This control has no effect Cleared to se	rogrammable Counter Array Clock his control bit is validated when the CPU clock X2 is set; when X2 is low, this bi as no effect). leared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.					
4	SIX2	(This control has no effect	bit is validate). lect 6 clock p	Mode 0 and 2 d when the CP eriods per peri ck cycle.	U clock X2 is	,	,	
3	T2X2	(This control has no effect Cleared to se	Timer 2 Clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, thi has no effect). Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.					
2	T1X2	has no effect	bit is validate). lect 6 clock p	d when the CP eriods per peri ck cycle.				
1	T0X2	has no effect	bit is validate). lect 6 clock p	d when the CP eriods per peri ck cycle.				
0	X2	and all the pe mode) and to	eripherals. Se enable the in er Power-up r	periods per m t to select 6 cl ndividual perip regarding Hard	ock periods periods periods periods periods between the second second second second second second second second	er machine cy . Programme	cle (X2 d by	

Reset Value = 0000 000'HSB. X2'b (see Table 65 "Hardware Security Byte") Not bit addressable

Table 21. T2MOD Register

T2MOD – Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.	
1	T2OE		ogram P1.0/1		out or I/O port.		
0	DCEN		sable Timer 2	t as up/down c p/down count			

Reset Value = XXXX XX00b Not bit addressable

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture Modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 6
- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 2
- Timer 0 overflow
- External input on ECI (P1.2)

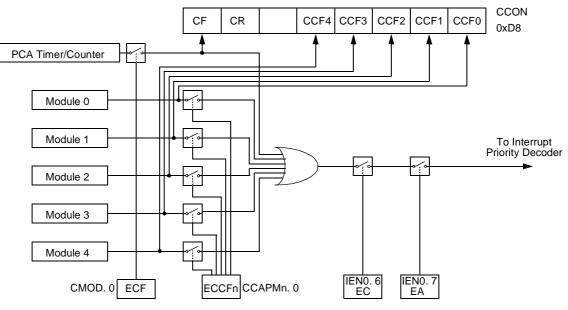
Each compare/capture Modules can be programmed in any one of the following modes:

- Rising and/or falling edge capture
- Software timer
- High-speed output
- Pulse width modulator

Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer", page 42).

When the compare/capture Modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the Module executes its function. All five Modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If one or several bits in the port are not used for the PCA, they can still be used for standard I/O.


PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEX0
16-bit Module 1	P1.4/CEX1
16-bit Module 2	P1.5/CEX2
16-bit Module 3	P1.6/CEX3

The PCA timer is a common time base for all five Modules (see Figure 11). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 22) and can be programmed to run at:

- 1/6 the peripheral clock frequency (F_{CLK PERIPH})
- 1/2 the peripheral clock frequency (F_{CLK PERIPH})
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

Figure 12. PCA Interrupt System

PCA Modules: each one of the five compare/capture Modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High-speed Output
- 8-bit Pulse Width Modulator

In addition, Module 4 can be used as a Watchdog Timer.

Each Module in the PCA has a special function register associated with it. These registers are: CCAPM0 for Module 0, CCAPM1 for Module 1, etc. (see Table 24). The registers contain the bits that control the mode that each Module will operate in.

- The ECCF bit (CCAPMn. 0 where n = 0, 1, 2, 3, or 4 depending on the Module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated Module.
- PWM (CCAPMn. 1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn. 2) when set causes the CEX output associated with the Module to toggle when there is a match between the PCA counter and the Module's capture/compare register.
- The match bit MAT (CCAPMn. 3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the Module's capture/compare register.
- The next two bits CAPN (CCAPMn. 4) and CAPP (CCAPMn. 5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.
- The last bit in the register ECOM (CCAPMn. 6) when set enables the comparator function.

Table 24 shows the CCAPMn settings for the various PCA functions.

Table 33. SCON Register

SCON - Serial Control Register (98h)

7	6	ŧ	5	4	3	2	1	0
FE/SM0	SM1	SI	M2	REN	TB8	RB8	ТІ	RI
Bit Number	Bit Mnemo	onic	Descri					
7	FE		Clear t Set by	o reset the e hardware w	hen an invalio	t cleared by a v I stop bit is dete ccess to the FE	ected.	
	SM)	Refert		erial port mod	e selection. ble access to th	e SM0 bit.	
6	SM	1	Serial <u>SM0</u> 0 1 1	0 S 1 8 0 9	<u>lode</u>	Baud Rate $F_{XTAL}/12$ (or F_{y} Variable $F_{XTAL}/64$ or F_{X} Variable		• X2)
5	SM2	2	Clear t Set to	o disable mu enable multi	ultiprocessor o	ocessor Com communication nmunication fea d be cleared in	feature. ature in mode :	
4	REN	N	Clear t	tion Enable to disable se enable seria	rial reception.			
3	ТВ8	3	Clear t	o transmit a	Ninth bit to logic 0 in the gic 1 in the 9		odes 2 and 3	
2	RB	3	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 used.) RB8 is not	
1	ті	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the of the stop bit in the other modes.				ne beginning		
0	RI		Clear t Set by	hardware at	lge interrupt.	e 8th bit time in es.	mode 0, see	Figure 18.

Reset Value = 0000 0000b Bit addressable

Table 40. T2CON Register

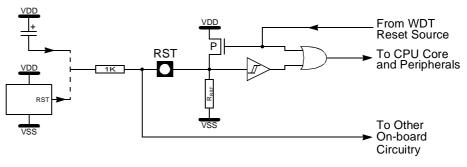
T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0	
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	
Bit Number	Bit Mnemonic		Description					
7	TF2	Must be clea	mer 2 overflow Flag ust be cleared by software. et by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.					
6	EXF2	Set when a EXEN2=1. When set, c interrupt is e Must be clea	mer 2 External Flag It when a capture or a reload is caused by a negative transition on T2EX (EN2=1. Then set, causes the CPU to vector to timer 2 interrupt routine when timer errupt is enabled. Ist be cleared by software. EXF2 doesn't cause an interrupt in Up/down unter mode (DCEN = 1)					
5	RCLK	Cleared to u	Receive Clock bit for UART Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.					
4	TCLK	Cleared to u	Transmit Clock bit for UART Cleared to use timer 1 overflow as transmit clock for serial port in mode 1 of Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.					
3	EXEN2	Cleared to ig Set to cause	e a capture or	e bit on T2EX pin fo reload when a used to clock	a negative trar	nsition on T2E	X pin is	
2	TR2		n control bit urn off timer 2 on timer 2.).				
1	C/T2#	Cleared for	ter operation	bit in (input from i (input from T2	nternal clock s input pin, fall	system: F _{CLK} ing edge trigg	_{PERIPH}). er). Must be	
0	CP/RL2#	If RCLK=1 of timer 2 over Cleared to a if EXEN2=1	flow. luto-reload on	bit P/RL2# is igno timer 2 overfl e transitions o	ows or negativ	ve transitions		

Reset Value = 0000 0000b Bit addressable

Oscillator		VDD Rise Time	
Start-Up Time	1 ms	10 ms	100 ms
5 ms	820 nF	1.2 µF	12 µF
20 ms	2.7 µF	3.9 µF	12 µF

Table 1. Minimum Reset Capacitor Value for a 50 k Ω Pull-down Resistor⁽¹⁾

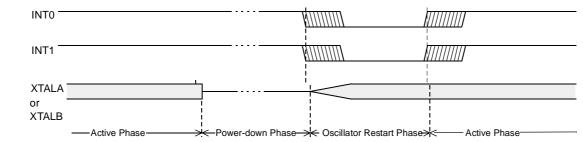

Note: These values assume V_{DD} starts from 0V to the nominal value. If the time between 2 on/off sequences is too fast, the power-supply de-coupling capacitors may not be fully discharged, leading to a bad reset sequence.

Warm Reset

To achieve a valid reset, the reset signal must be maintained for at least 2 machine cycles (24 oscillator clock periods) while the oscillator is running. The number of clock periods is mode independent (X2 or X1).

Watchdog ResetAs detailed in Section "Hardware Watchdog Timer", page 77, the WDT generates a 96-
clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of
the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω
resistor must be added as shown Figure 33.

Figure 33. Reset Circuitry for WDT Reset-out Usage



MEL

Reset Recommendation to Prevent Flash Corruption	An example of bad initialization situation may occur in an instance where the bit ENBOOT in AUXR1 register is initialized from the hardware bit BLJB upon reset. Since this bit allows mapping of the bootloader in the code area, a reset failure can be critical.
	If one wants the ENBOOT cleared in order to unmap the boot from the code area (yet due to a bad reset) the bit ENBOOT in SFRs may be set. If the value of Program Counter is accidently in the range of the boot memory addresses then a Flash access (write or erase) may corrupt the Flash on-chip memory.
	It is recommended to use an external reset circuitry featuring power supply monitoring to prevent system malfunction during periods of insufficient power supply voltage (power supply failure, power supply switched off).
Idle Mode	An instruction that sets PCON.0 indicates that it is the last instruction to be executed before going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre- served in its entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high level.
	There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred dur- ing normal operation or during idle. For example, an instruction that activates idle can also set one or both flag bits. When idle is terminated by an interrupt, the interrupt ser- vice routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power-down Mode	To save maximum power, a Power-down mode can be invoked by software (see Table 14, PCON register).
	In Power-down mode, the oscillator is stopped and the instruction that invoked Power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the Power-down mode is terminated. V _{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from Power- down. To properly terminate Power-down, the reset or external interrupt should not be executed before V _{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INTO, INT1 and Keyboard Interrupts are useful to exit from Power-down. For that, interrupt must be enabled and configured as level or edge sensi- tive interrupt input. When Keyboard Interrupt occurs after a power down mode, 1024 clocks are necessary to exit to power down mode and enter in operating mode.
	Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 34. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will

be the one following the instruction that puts the AT89C51RB2/RC2 into Power-down mode.

Figure 34. Power-down Exit Waveform

Exit from Power-down by reset redefines all the SFRs, exit from Power-down by external interrupt does no affect the SFRs.

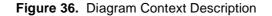
Exit from Power-down by either reset or external interrupt or keyboard interrupt does not affect the internal RAM content.

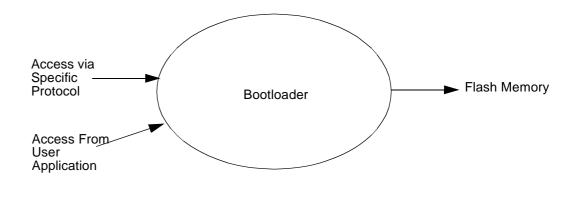
Note: If idle mode is activated with Power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 62 shows the state of ports during idle and power-down modes.

Table 62. State of Ports

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

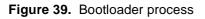

Port 0 can force a 0 level. A "one" will leave port floating.

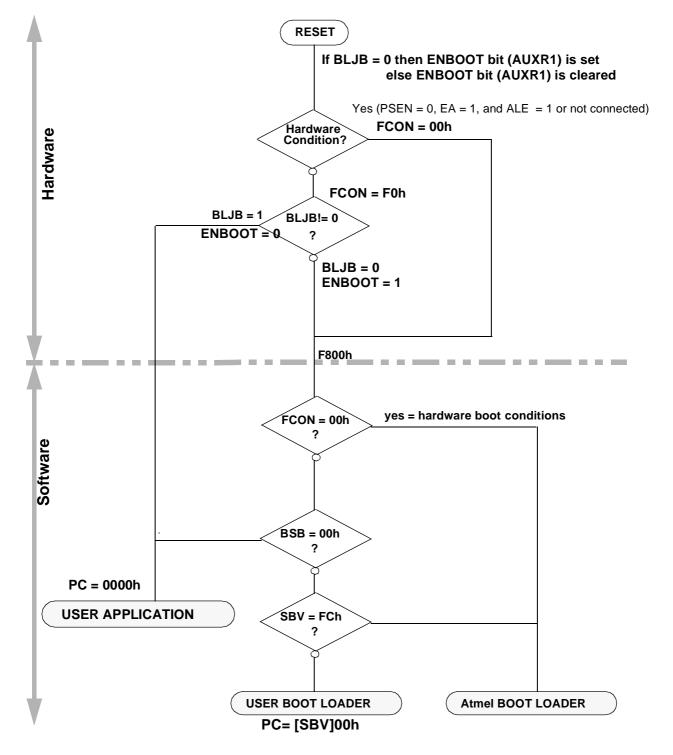


Bootloader Architecture

Introduction

The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.


Acronyms


ISP: In-system Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Bit HW : Hardware Byte

Boot Process

Functional Description

Software Security Bits (SSB) The SSB protects any Flash access from ISP command. The command "Program Software Security bit" can only write a higher priority level.

There are three levels of security:

• level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory. The Bootloader returns 'L' on read or write access.

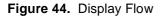
Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

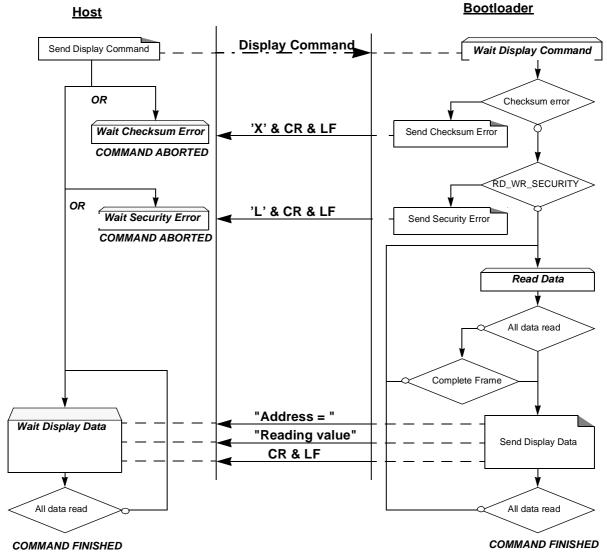
From level 2, one cannot read and write anything.

	Level 0	Level 1	Level 2
Flash/EEPROM	Any access allowed	Read only access allowed	Any access not allowed
Fuse Bit	Any access allowed	Read only access allowed	Any access not allowed
BSB & SBV	Any access allowed	Read only access allowed	Any access not allowed
SSB	Any access allowed	Write level 2 allowed	Read only access allowed
Manufacturer Info	Read only access allowed	Read only access allowed	Read only access allowed
Bootloader Info	Read only access allowed	Read only access allowed	Read only access allowed
Erase Block	Allowed	Not allowed	Not allowed
Full-chip Erase	Allowed	Allowed	Allowed
Blank Check	Allowed	Allowed	Allowed

Table 71. Software Security Byte Behavior

Example


Programming Data (write 55h at address 0010h in the Flash)


HOST	: 01 0010 00 55 9A	
BOOTLOADER	: 01 0010 00 55 9A . CR LF	
Programming A	tmel function (write SSB to level 2)	_
HOST	: 02 0000 03 05 01 F5	
BOOTLOADER	: 02 0000 03 05 01 F5. CR LF	
Writing Frame	(write BSB to 55h)	
HOST	: 03 0000 03 06 00 55 9F	
BOOTLOADER	: 03 0000 03 06 00 55 9F . CR LF	

Display Data

Description

Note: The maximum size of block is 400h. To read more than 400h Bytes, the Host must send a new command.

$T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only) (Continued)

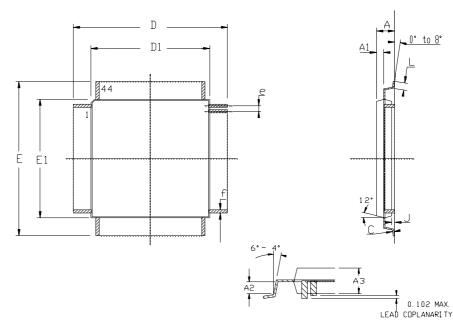
Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
		0.9 V _{CC}			V	VCC = 2.7V to 5.5V I_{OH} = -10 μ A
R _{RST}	RST Pulldown Resistor	50	200 ⁽⁵⁾	250	kΩ	
I	Logical 0 Input Current ports 1, 2, 3, 4 and 5			-50	μΑ	V _{IN} = 0.45V
ILI	Input Leakage Current for P0 only			±10	μΑ	$0.45 \mathrm{V} < \mathrm{V_{IN}} < \mathrm{V_{CC}}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4			-650	μΑ	V _{IN} = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 3 MHz TA = 25°C
I _{PD}	Power Down Current		100	150	μΑ	$4.5V < V_{CC <} 5.5V^{(3)}$
I _{CCOP}	Power Supply Current on normal mode			0.4 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
ICCIDLE	Power Supply Current on idle mode			0.3 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CCProg}	Power Supply Current during flash Write / Erase		0.4 x Frequency (MHz) + 20		mA	V _{CC} = 5.5V ⁽⁸⁾

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 49.), $V_{IL} = V_{SS} + 0.5V$,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used (see Figure 46).

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; Port 0 = V_{CC}; EA = RST = V_{SS} (see Figure 47).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 48).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typical are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA

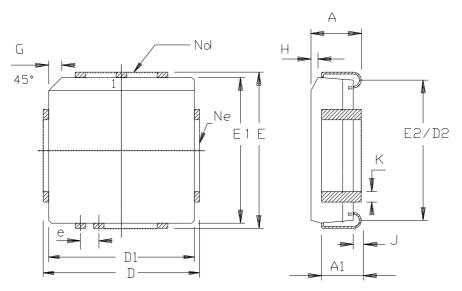

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Icc Flash Write operation current while an on-chip flash page write is on going.
- 9. Flash Retention is guaranteed with the same formula for V_{cc} Min down to 0.

108 **AT89C51RB2/RC2**

VQFP44



	м	М	I NCH		
	Min	Max	Min	Max	
A	_	1.60	-	. 063	
A1	Ο.	64 REF	.025 REF		
A2	Ο.	64 REF	.025 REF		
A3	1.35	1.45	. 053	. 057	
D	11.90	12.10	. 468	. 476	
D1	9.90	10.10	. 390	. 398	
E	11.90	12.10	. 468	. 476	
E1	9.90	10.10	. 390	. 398	
J	0.05	-	. 002	_	
L	0.45	0.75	. 018	. 030	
e	0.8	0 BSC	.0315 BSC		
f	0.35 BSC		.014 BSC		

PLC44

	M	1M ·	I NCH		
Α	4. 20	4. 57	. 165	. 180	
A1	2. 29	3.04	. 090	. 120	
D	17.40	17.65	. 685	. 695	
D1	16.44	16.66	. 647	. 656	
D5	14.99	16.00	. 590	. 630	
E	17.40	17.65	. 685	. 695	
E1	16.44	16.66	. 647	. 656	
E5	14.99	16.00	. 590	. 630	
e	1.27	BSC	. 050	BSC	
G	1.07	1.22	. 042	. 048	
н	1.07	1.42	. 042	. 056	
J	0.51	-	. 020	-	
К	0.33	0.53	. 013	. 021	
Nd	11		1 :	l	
Ne	11		11		
PKG STD		00			

Registers	47
Baud Rate Selection for UART for Mode 1 and 3	47
UART Registers	50
ů –	
Interrupt System	55
Registers	
Interrupt Sources and Vector Addresses	
	05
Keyboard Interface	64
Registers	65
Serial Port Interface (SPI)	68
Features	
Signal Description	
Functional Description	70
Hardware Watchdog Timer	77
Using the WDT	
WDT During Power-down and Idle	
	10
ONCE [™] Mode (ON Chip Emulation)	79
Power Management	80
Reset	
Reset Recommendation to Prevent Flash Corruption	
Idle Mode	
Power-down Mode	
	02
Power-off Flag	84
· · · · · · · · · · · · · · · · · · ·	• •
Reduced EMI Mode	85
Flash EEPROM Memory	86
Features	
Flash Programming and Erasure	
• •	
Flash Registers and Memory Map	01
Flash Registers and Memory Map Flash Memory Status	۹N
Flash Memory Status	
Flash Memory Status	90
Flash Memory Status Memory Organization Bootloader Architecture	90 91
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description	90 91 95
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description	90 91 95 96
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description	90 91 95 96 97
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description	90 91 95 96 97
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description API Call Description	90 91 95 96 97 105
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description	90 91 95 96 97 105

