

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rb2-rltum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 6. Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
TCON	88h	Timer/Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00
TL0	8Ah	Timer/Counter 0 Low Byte								
TH0	8Ch	Timer/Counter 0 High Byte								
TL1	8Bh	Timer/Counter 1 Low Byte								
TH1	8Dh	Timer/Counter 1 High Byte								
WDTRST	A6h	Watchdog Timer Reset								
WDTPRG	A7h	Watchdog Timer Program	-	-	-	-	-	WTO2	WTO1	WTO0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode	-	-	-	-	-	-	T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High Byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low Byte								
TH2	CDh	Timer/Counter 2 High Byte								
TL2	CCh	Timer/Counter 2 Low Byte								

Table 7. PCA SFRs

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low Byte								
СН	F9h	PCA Timer/Counter High Byte								
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
CCAP0H	FAh	PCA Compare Capture Module 0 H	CCAP0H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA Compare Capture Module 1 H	CCAP1H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA Compare Capture Module 2 H	CCAP2H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA Compare Capture Module 3 H	CCAP3H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA Compare Capture Module 0 L	CCAP0L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA Compare Capture Module 1 L	CCAP1L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA Compare Capture Module 2 L	CCAP2L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA Compare Capture Module 3 L	CCAP3L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

6

Table 8. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								
BDRCON	9Bh	Baud Rate Control				BRR	ТВСК	RBCK	SPD	SRC
BRL	9Ah	Baud Rate Reload								

Table 9. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF	-	-	-	-
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table 10. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

Pin Configurations

Figure 2. Pin Configurations

*NIC: No Internal Connection

		Pin Num	ıber		
Mnemonic	DIL	LCC	VQFP44 1.4	Туре	Name and Function
V _{SS}	20	22	16	I	Ground: 0V reference
V _{cc}	40	44	38	I	Power Supply : This is the power supply voltage for normal, idle and power-down operation
P0.0 - P0.7	39 - 32	43 - 36	37 - 30	I/O	Port 0 : Port 0 is an open-drain, bi-directional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 must be polarized to V_{CC} or V_{SS} in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code Bytes during Flash programming. External pull-ups are required during program verification during which P0 outputs the code Bytes.
P1.0 - P1.7	1 - 8	2 - 9	40 - 44 1 - 3	I/O	Port 1 : Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address Byte during memory programming and verification. Alternate functions for AT89C51RB2/RC2 Port 1 include:
	1	2	40	I/O	P1.0: Input/Output
				I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I/O	P1.1: Input/Output
				I	T2EX: Timer/Counter 2 Reload/Capture/Direction Control
				I	SS: SPI Slave Select
	3	4	42	I/O	P1.2: Input/Output
				I	ECI: External Clock for the PCA
	4	5	43	I/O	P1.3: Input/Output
				I/O	CEX0: Capture/Compare External I/O for PCA Module 0
	5	6	44	I/O	P1.4: Input/Output
				I/O	CEX1: Capture/Compare External I/O for PCA Module 1
	6	7	1	I/O	P1.5: Input/Output
				I/O	CEX2: Capture/Compare External I/O for PCA Module 2
				I/O	MISO: SPI Master Input Slave Output line
					When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.
	7	8	2	I/O	P1.6: Input/Output
				I/O	CEX3: Capture/Compare External I/O for PCA Module 3
				I/O	SCK: SPI Serial Clock
					SCK outputs clock to the slave peripheral
	8	9	3	I/O	P1.7: Input/Output:

Table 12. Pin Description for 40 - 44 Pin Packages

Table 12. Pin Description for 40 - 44 Pin Packages (Continued)

		Pin Num	nber		
Mnemonic	DIL	LCC	VQFP44 1.4	Туре	Name and Function
PSEN	29	32	26	0	Program Strobe Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA	31	35	29	I	External Access Enable: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H to FFFFH (RD). If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.

Figure 6. Mode Switching Waveforms

The X2 bit in the CKCON0 register (see Table 15) allows a switch from 12 clock periods per instruction to 6 clock periods and vice versa. At reset, the speed is set according to X2 bit of Hardware Security Byte (HSB). By default, Standard mode is active. Setting the X2 bit activates the X2 feature (X2 mode).

The T0X2, T1X2, T2X2, UARTX2, PCAX2, and WDX2 bits in the CKCON0 register (Table 15) and SPIX2 bit in the CKCON1 register (see Table 16) allow a switch from standard peripheral speed (12 clock periods per peripheral clock cycle) to fast peripheral speed (6 clock periods per peripheral clock cycle). These bits are active only in X2 mode.

Registers

Table 19. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0					
DPU	-	MO	MO - XRS1 XRS0 EXTRAM AO									
Bit Number	Bit Mnemonic	Description	Description									
7	DPU	Disable Wea Cleared to ac Set to disacti	visable Weak Pull-up Cleared to activate the permanent weak pull up when latch data is logical 1 Set to disactive the weak pull-up (reduce power consumption)									
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.									
5	MO	Pulse Lengt Cleared to str periods (defa Set to stretch periods.	ulse Length leared to stretch MOVX control: the $\overline{\text{RD}}$ and the $\overline{\text{WR}}$ pulse length is 6 clock eriods (default). et to stretch MOVX control: the $\overline{\text{RD}}$ and the $\overline{\text{WR}}$ pulse length is 30 clock eriods.									
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.									
3	XRS1	XRAM Size										
2	XRS0	XRS1 XRS 0 0 0 1 1 0 1 1	0 XRAM size 256 Bytes (512 Bytes 768 Bytes 1024 Bytes	default)								
1	EXTRAM	EXTRAM Bit Cleared to ac Set to access Programmed (HSB), defau	EXTRAM Bit Cleared to access internal XRAM using movx @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected.									
0	AO	ALE Output Cleared, ALE X2 mode is u instruction is	Bit is emitted at sed). (default used.	a constant rate) Set, ALE is a	e of 1/6 the os active only du	cillator freque ring a MOVX c	ncy (or 1/3 if or MOVC					

Reset Value = XX0X 00'HSB. XRAM'0b (see Table 65) Not bit addressable

Figure 9. Auto-Reload Mode Up/Down Counter (DCEN = 1)

Programmable Clock-out Mode In the clock-out mode, Timer 2 operates as a 50% duty-cycle, programmable clock generator (see Figure 10). The input clock increments TL2 at frequency F_{CLK PERIPH}/2. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

 $Clock-OutFrequency = \frac{F_{CLKPERIPH}}{4 \times (65536 - RCAP2H/RCAP2L)}$

For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz $(F_{CLK PERIPH}/2^{16})$ to 4 MHz $(F_{CLK PERIPH}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

- **Table 24.** CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 – PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	5 4 3 2 1 0										
-	ECOMn	CAPPn	CAPPn CAPNn MATn TOGn PWMn EC										
Bit Number	Bit Mnemonic	Description	Description										
7	-	Reserved The value re	Reserved										
6	ECOMn	Enable Com Cleared to di Set to enable	Inable Comparator										
5	CAPPn	Capture Pos Cleared to di Set to enable	apture Positive leared to disable positive edge capture. et to enable positive edge capture.										
4	CAPNn	Capture Neg Cleared to di Set to enable	Capture Negative Cleared to disable negative edge capture. Set to enable negative edge capture.										
3	MATn	Match When MATn compare/cap interrupt.	= 1, a match oture register o	of the PCA co causes the CC	unter with this Fn bit in CCC	; Module's)N to be set, f	lagging an						
2	TOGn	Toggle When TOGn compare/cap	= 1, a match oture register o	of the PCA co causes theCE	ounter with this Xn pin to togg	s Module's le.							
1	PWMn	Pulse Width Cleared to di Set to enable	Pulse Width Modulation Mode Cleared to disable the CEXn pin to be used as a pulse width modulated output. Set to enable the CEXn pin to be used as a pulse width modulated output.										
0	CCF0	Enable CCF Cleared to di an interrupt. Set to enable interrupt.	Enable CCF Interrupt Cleared to disable compare/capture flag CCFn in the CCON register to generate an interrupt. Set to enable compare/capture flag CCFn in the CCON register to generate an interrupt.										

Reset Value = X000 0000b Not bit addressable

Table 38. SBUF Register

SBUF - Serial Buffer Register for UART (99h)

7	6	5	4	3	2	1	0

Reset Value = XXXX XXXXb

Table 39. BRL Register

BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 48. IPL1 Register

IPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0				
-	-	-	-	-	SPIL	-	KBDL				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value re	eserved ne value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value re	eserved ne value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	set this bit.					
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	set this bit.					
2	SPIL	SPI Interrup see SPIH for	t Priority Bit priority level								
1	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	set this bit.					
0	KBDL	Keyboard In see KBDH fo	nterrupt Prior or priority leve	rity Bit							

Reset Value = XXXX X000b Bit addressable

Table 49. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0			
-	-	-	-	-	SPIH	-	KBDH			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value re	eserved ne value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value re	e value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
4	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
2	SPIH	SPI Interrup SPIHSPIL 0 0 0 1 1 0 1 1	t Priority Hig <u>Priority Lev</u> Lowest Highest	ıh Bit <u>/el</u>						
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
0	KBDH	Keyboard Ir KB DHKBDL 0 0 0 1 1 0 1 1	iterrupt Prior Priority Lev Lowest Highest	ity High Bit /el						

Reset Value = XXXX X000b Not bit addressable

Table 53. KBLS Register

KBLS - Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0			
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0			
Bit Number	Bit Mnemonic	Description	escription							
7	KBLS7	Keyboard Li Cleared to en Set to enable	yboard Line 7 Level Selection Bit eared to enable a low level detection on Port line 7. It to enable a high level detection on Port line 7.							
6	KBLS6	Keyboard Li Cleared to en Set to enable	i ne 6 Level S nable a low le e a high level	election Bit vel detection c detection on P	on Port line 6. Port line 6.					
5	KBLS5	Keyboard Li Cleared to en Set to enable	Apploard Line 5 Level Selection Bit Reared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5.							
4	KBLS4	Keyboard Li Cleared to en Set to enable	i ne 4 Level S nable a low le e a high level	election Bit vel detection c detection on P	on Port line 4. Port line 4.					
3	KBLS3	Keyboard Li Cleared to en Set to enable	i ne 3 Level S nable a low le e a high level	election Bit vel detection c detection on P	on Port line 3. Port line 3.					
2	KBLS2	Keyboard Li Cleared to en Set to enable	Keyboard Line 2 Level Selection Bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2.							
1	KBLS1	Keyboard Li Cleared to en Set to enable	Ceyboard Line 1 Level Selection Bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.							
0	KBLS0	Keyboard Li Cleared to en Set to enable	i ne 0 Level S nable a low le e a high level	election Bit vel detection c detection on P	on Port line 0. Port line 0.					

Reset Value = 0000 0000b

Bit Number	Bit Mnemonic	Descri	ption		
		SPR2	<u>SPR1</u>	<u>SPR0</u>	Serial Peripheral Rate
1	SPR1	0	0	0	F _{CLK PERIPH} /2
1		0	0	1	F _{CLK PERIPH} /4
		0	1	0	F _{CLK PERIPH} /8
		0	1	1	F _{CLK PERIPH} /16
		1	0	0	F _{CLK PERIPH} /32
0	SPR0	1	0	1	F _{CLK PERIPH} /64
		1	1	0	F _{CLK PERIPH} /128
		1	1	1	Invalid

Reset Value = 0001 0100b

Not bit addressable

Serial Peripheral Status Register The Serial Peripheral Status Register contains flags to signal the following conditions:

(SPSTA)

- Data transfer complete
- Write collision
- Inconsistent logic level on SS pin (mode fault error)

Table 57 describes the SPSTA register and explains the use of every bit in the register.

Table 57. SPSTA Register

SPSTA - Serial Peripheral Status and Control register (0C4H)

7	6	5	4	3	2	1	0				
SPIF	WCOL	SSERR	MODF	-	-	-	-				
Bit Number	Bit Mnemonic	Description	Description								
7	SPIF	Serial Periph Cleared by ha approved by Set by hardw	erial Peripheral Data Transfer Flag Cleared by hardware to indicate data transfer is in progress or has been pproved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed.								
6	WCOL	Write Collisi Cleared by ha approved by Set by hardw	Write Collision Flag Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected.								
5	SSERR	Synchronou Set by hardw Cleared by di	s Serial Slav are when SS sabling the S	e Error Flag is deasserted PI (clearing SF	before the en PEN bit in SP(d of a receive CON).	d data.				
4	MODF	Mode Fault Cleared by ha has been app Set by hardw	Mode Fault Cleared by hardware to indicate that the \overline{SS} pin is at appropriate logic level, or has been approved by a clearing sequence. Set by hardware to indicate that the \overline{SS} pin is at inappropriate logic level.								
3	-	Reserved The value rea	nd from this bi	t is indetermin	ate. Do not se	et this bit					
2	-	Reserved The value rea	nd from this bi	t is indetermin	ate. Do not se	et this bit.					

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
HSB	Hardware security Byte	101x 1011b	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	ATMEL
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: memories	F7h	AT89C51RB2/RC2 32KB
	size and type	FBh	AT89C51RB2/RC2 16 KB
	Copy of the Device ID #3: name and revision	EFh	AT89C51RB2/RC2 32KB, Revision 0
		FFh	AT89C51RB2/RC2 16 KB, Revision 0

Table 67.	Default	Values
-----------	---------	--------

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 67 and Table 69.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 68.	Software	Security	Bvte
	Continuito	Coounty	2,10

7	6	5	4	3	2	1	0					
-	-	-	-	-	-	LB1	LB0					
Bit Number	Bit Mnemonic	Description	escription									
7	-	Reserved Do not clear t	eserved o not clear this bit.									
6	-	Reserved Do not clear t	eserved o not clear this bit.									
5	-	Reserved Do not clear t	Reserved Do not clear this bit.									
4	-	Reserved Do not clear t	his bit.									
3	-	Reserved Do not clear t	his bit.									
2	-	Reserved Do not clear t	his bit.									
1-0	LB1-0	User Memor see Table 69	y Lock Bits									

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 69.

Table 69. Program Lock Bits of the SSB

Program	n Lock I	Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.

Note: U: unprogrammed or "one" level.

P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51RB2/RC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 35.

Figure 35. Flash Memory Possible Contents

Memory Organization In the AT89C51RB2/RC2, the lowest 16K or 32K of the 64 KB program memory address space is filled by internal Flash.

When the EA pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16K or 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory.

AIMEL

Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the AT89C51RB2/RC2 to establish the baud rate. Table 72 shows the autobaud capability.

Frequency (MHz)										
Baudrate (bit/s)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728	8
2400	OK	ОК	ОК	ОК	ОК	OK	OK	ОК	ОК	OK
4800	OK	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	OK
9600	ОК	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	OK
19200	OK	-	ОК	ОК	ОК	-	-	ОК	ОК	OK
38400	-	-	ОК		ОК	-	ОК	ОК	ОК	
57600	-	-	-	-	ОК	-	-	-	ОК	
115200	-	-	-	-	-	-	-	-	ОК	
Frequency (MHz)										
Baudrate (bit/s)	10	11.0592	12	14.318	14.746	16	20	24	26.6	
2400	OK	ок	ок	ок	ОК	ОК	ОК	ок	ОК	
4800	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
9600	ОК	ок	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
19200	ОК	ок	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
38400	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
57600	-	ОК	-	ОК	ОК	ОК	ОК	ОК	ОК	
115200	-	ОК	-	OK	OK	-	-	-	-	

Table 72. Autobaud Performances

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Figure 41. Command Flow

- Flash/EEPROM Programming Data Frame
- EOF or Atmel Frame (only Programming Atmel Frame)
- Config Byte Programming Data Frame
- Baud Rate Frame

Description

Figure 42. Write/Program Flow

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Icc Flash Write operation current while an on-chip flash page write is on going.

All other pins are disconnected.

All other pins are disconnected.

All other pins are disconnected.

Figure 49. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

110 AT89C51RB2/RC2