

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at89c51rb2-slrul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Num	ıber		
Mnemonic	DIL	LCC	VQFP44 1.4	Туре	Name and Function
V _{SS}	20	22	16	I	Ground: 0V reference
V _{cc}	40	44	38	I	Power Supply : This is the power supply voltage for normal, idle and power-down operation
P0.0 - P0.7	39 - 32	43 - 36	37 - 30	I/O	Port 0 : Port 0 is an open-drain, bi-directional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 must be polarized to V_{CC} or V_{SS} in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code Bytes during Flash programming. External pull-ups are required during program verification during which P0 outputs the code Bytes.
P1.0 - P1.7	1 - 8	2 - 9	40 - 44 1 - 3	I/O	Port 1 : Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address Byte during memory programming and verification. Alternate functions for AT89C51RB2/RC2 Port 1 include:
	1	2	40	I/O	P1.0: Input/Output
				I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I/O	P1.1: Input/Output
				I	T2EX: Timer/Counter 2 Reload/Capture/Direction Control
				I	SS: SPI Slave Select
	3	4	42	I/O	P1.2: Input/Output
				I	ECI: External Clock for the PCA
	4	5	43	I/O	P1.3: Input/Output
				I/O	CEX0: Capture/Compare External I/O for PCA Module 0
	5	6	44	I/O	P1.4: Input/Output
				I/O	CEX1: Capture/Compare External I/O for PCA Module 1
	6	7	1	I/O	P1.5: Input/Output
				I/O	CEX2: Capture/Compare External I/O for PCA Module 2
				I/O	MISO: SPI Master Input Slave Output line
					When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.
	7	8	2	I/O	P1.6: Input/Output
				I/O	CEX3: Capture/Compare External I/O for PCA Module 3
				I/O	SCK: SPI Serial Clock
					SCK outputs clock to the slave peripheral
	8	9	3	I/O	P1.7: Input/Output:

Table 12. Pin Description for 40 - 44 Pin Packages

- **Table 24.** CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 – PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	4	3	2	1	0			
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value re	ad from this b	it is indetermir	nate. Do not s	et this bit.				
6	ECOMn	Enable Comparator Cleared to disable the comparator function. Set to enable the comparator function.								
5	CAPPn	Capture Pos Cleared to di Set to enable	Capture Positive Cleared to disable positive edge capture. Set to enable positive edge capture.							
4	CAPNn	Capture Neg Cleared to di Set to enable	Capture Negative Cleared to disable negative edge capture. Set to enable negative edge capture.							
3	MATn	Match When MATn compare/cap interrupt.	= 1, a match oture register o	of the PCA co causes the CC	unter with this Fn bit in CCC	; Module's)N to be set, f	lagging an			
2	TOGn	Toggle When TOGn compare/cap	= 1, a match oture register o	of the PCA co causes theCE	ounter with this Xn pin to togg	s Module's le.				
1	PWMn	Pulse Width Cleared to di Set to enable	Modulation sable the CE2 the CEXn pi	Mode Xn pin to be us n to be used a	sed as a pulse is a pulse wid	e width modulated	ated output. output.			
0	CCF0	Enable CCF Cleared to di an interrupt. Set to enable interrupt.	Interrupt sable compar e compare/cap	e/capture flag pture flag CCF	CCFn in the C	CCON register N register to g	r to generate jenerate an			

Reset Value = X000 0000b Not bit addressable

1

Λ

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High-speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (Module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA Modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a Module is used in the PWM mode these registers are used to control the duty cycle of the output (see Table 26 and Table 27).

Table 26. CCAPnH Registers (n = 0-4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H – PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H – PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H – PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H – PCA Module 4 Compare/Capture Control Register High (0FEh) ۸

5

-	•	•	-	•	-	-	•
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val	e n Compare/ ue	Capture Con	trol		

2

2

Reset Value = 0000 0000b Not bit addressable

7

- **Table 27.** CCAPnL Registers (n = 0-4)
- CCAP0L PCA Module 0 Compare/Capture Control Register Low (0EAh)
- CCAP1L PCA Module 1 Compare/Capture Control Register Low (0EBh)
- CCAP2L PCA Module 2 Compare/Capture Control Register Low (0ECh)
- CCAP3L PCA Module 3 Compare/Capture Control Register Low (0EDh)

CCAP4L – PCA Module 4 Compare/Capture Control Register Low (0EEh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnL Val	e n Compare/ ue	Capture Con	trol		

Reset Value = 0000 0000b Not bit addressable

Table 28. CH Register

CH – PCA Counter Register High (0F9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CH Value	er				

Reset Value = 0000 0000b Not bit addressable

Table 29. CL Register

CL – PCA Counter Register Low (0E9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CL Value	r				

Reset Value = 0000 0000b Not bit addressable

PCA Capture Mode

To use one of the PCA Modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that Module must be set. The external CEX input for the Module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the Module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the Module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (see Figure 13).

Registers

Table 30. SADEN Register

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 31. SADDR Register

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Baud Rate Selection for UART for Mode 1 and 3

The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON registers.

Figure 20. Baud Rate Selection

Interrupt System

The AT89C51RB2/RC2 has a total of 9 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 22.

Figure 22. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 45 and Table 47). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 48) and in the Interrupt Priority High register (Table 46 and Table 47) shows the bit values and priority levels associated with each combination.

Table 49. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0			
-	-	-	-	-	SPIH	-	KBDH			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
З	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
2	SPIH	SPI Interrup SPIHSPIL 0 0 0 1 1 0 1 1	t Priority Hig <u>Priority Lev</u> Lowest Highest	ıh Bit /el						
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
0	KBDH	Keyboard Ir KB DHKBDL 0 0 0 1 1 0 1 1	hterrupt Prior Priority Lev Lowest Highest	ity High Bit ∕el						

Reset Value = XXXX X000b Not bit addressable

Table 52. KBE Register

KBE - Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0			
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0			
Bit Number	Bit Mnemonic	Description								
7	KBE7	Keyboard Li Cleared to en Set to enable	Seyboard Line 7 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 7 bit in KBF register to generate an interrupt request.							
6	KBE6	Keyboard Li Cleared to en Set to enable	Ceyboard Line 6 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 6 bit in KBF register to generate an interrupt request.							
5	KBE5	Keyboard Li Cleared to en Set to enable	Keyboard Line 5 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 5 bit in KBF register to generate an interrupt request.							
4	KBE4	Keyboard Li Cleared to en Set to enable	Keyboard Line 4 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 4 bit in KBF register to generate an interrupt request.							
3	KBE3	Keyboard Li Cleared to en Set to enable	i ne 3 Enable nable standar e KBF. 3 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.			
2	KBE2	Keyboard Li Cleared to en Set to enable	i ne 2 Enable nable standar e KBF. 2 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.			
1	KBE1	Keyboard Li Cleared to en Set to enable	Keyboard Line 1 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 1 bit in KBF register to generate an interrupt request.							
0	KBE0	Keyboard L Cleared to en Set to enable	i ne 0 Enable nable standar e KBF. 0 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.			

Reset Value = 0000 0000b

Serial Port Interface The Serial communication

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

Features

Features of the SPI Module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Eight programmable Master clock rates
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection

Signal DescriptionFigure 25 shows a typical SPI bus configuration using one Master controller and many
Slave peripherals. The bus is made of three wires connecting all the devices.

Figure 25. SPI Master/Slaves Interconnection

The Master device selects the individual Slave devices by using four pins of a parallel port to control the four \overline{SS} pins of the Slave devices.

Master Output Slave Input
(MOSI)This 1-bit signal is directly connected between the Master Device and a Slave Device.
The MOSI line is used to transfer data in series from the Master to the Slave. Therefore,
it is an output signal from the Master, and an input signal to a Slave. A Byte (8-bit word)
is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

Master Input Slave Output
(MISO)This 1-bit signal is directly connected between the Slave Device and a Master Device.
The MISO line is used to transfer data in series from the Slave to the Master. Therefore,
it is an output signal from the Slave, and an input signal to the Master. A Byte (8-bit
word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

SPI Serial Clock (SCK) This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one Byte on the serial lines.

Slave Select (SS)Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay
low for any message for a Slave. It is obvious that only one Master (SS high level) can

68 AT89C51RB2/RC2

Figure 27. Full-Duplex Master-Slave Interconnection

MISO

MISC

Figure 31. SPI Interrupt Requests Generation

Registers

There are three registers in the Module that provide control, status and data storage functions. These registers are describes in the following paragraphs.

Serial Peripheral Control Register (SPCON) • The Serial Peripheral Control Register does the following:

- Selects one of the Master clock rates
- Configure the SPI Module as Master or Slave
- Selects serial clock polarity and phase
- Enables the SPI Module
- Frees the SS pin for a general-purpose

Table 56 describes this register and explains the use of each bit

Table 56. SPCON Register

SPCON - Serial Peripheral Control Register (0C3H)

7	6	5	4	3	2	1	0			
SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0			
Bit Number	Bit Mne	emonic [Description							
7	SPR2		Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate.							
6	SPEN		Serial Peripheral Enable Cleared to disable the SPI interface. Set to enable the SPI interface.							
5	SS	DIS s t	SS DisableCleared to enable \overline{SS} in both Master and Slave modes.Set to disable \overline{SS} in both Master and Slave modes. In Slave mode, this bit has no effect if CPHA ='0'. When SSDIS is set, no MODF interrupt request is generated.							
4	MS	STR C	Serial Peripheral Master Cleared to configure the SPI as a Slave. Set to configure the SPI as a Master.							
3	CF	CPOL Cleared to have the SCK set to '0' in idle state. Set to have the SCK set to '1' in idle low.								
2	Clock Phase Cleared to have the data sampled when the SCK leaves the id state (see CPOL). Set to have the data sampled when the SCK returns to idle stat CPOL).									

Bit Number	Bit Mnemonic	Descri	Description						
		SPR2	<u>SPR1</u>	<u>SPR0</u>	Serial Peripheral Rate				
1	SPR1	0	0	0	F _{CLK PERIPH} /2				
1		0	0	1	F _{CLK PERIPH} /4				
		0	1	0	F _{CLK PERIPH} /8				
		0	1	1	F _{CLK PERIPH} /16				
0		1	0	0	F _{CLK PERIPH} /32				
	SPR0	1	0	1	F _{CLK PERIPH} /64				
		1	1	0	F _{CLK PERIPH} /128				
		1	1	1	Invalid				

Reset Value = 0001 0100b

Not bit addressable

Serial Peripheral Status Register The Serial Peripheral Status Register contains flags to signal the following conditions:

(SPSTA)

- Data transfer complete
- Write collision
- Inconsistent logic level on SS pin (mode fault error)

Table 57 describes the SPSTA register and explains the use of every bit in the register.

Table 57. SPSTA Register

SPSTA - Serial Peripheral Status and Control register (0C4H)

7	6	5	4	3	2	1	0					
SPIF	WCOL	SSERR	MODF	-	-	-	-					
Bit Number	Bit Mnemonic	Description										
7	SPIF	Serial Periph Cleared by ha approved by Set by hardw	Serial Peripheral Data Transfer Flag Cleared by hardware to indicate data transfer is in progress or has been approved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed.									
6	WCOL	Write Collision Cleared by hat approved by a Set by hardw	Write Collision Flag Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected.									
5	SSERR	Synchronou Set by hardw Cleared by di	Synchronous Serial Slave Error Flag Set by hardware when SS is deasserted before the end of a received data. Cleared by disabling the SPI (clearing SPEN bit in SPCON).									
4	MODF	Mode Fault Cleared by hardware to indicate that the \overline{SS} pin is at appropriate logic level, or has been approved by a clearing sequence. Set by hardware to indicate that the \overline{SS} pin is at inappropriate logic level.										
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit										
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.									

Power Management

Two power reduction modes are implemented in the AT89C51RB2/RC2: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "X2 Feature".

Reset

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, an high level has to be applied on the RST pin. A bad level leads to a wrong initialization of the internal registers like SFRs, Program Counter... and to unpredictable behavior of the microcontroller. A proper device reset initializes the AT89C51RB2/RC2 and vectors the CPU to address 0000h. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{DD} as shown in Figure 32. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as the watchdog timer. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51RB2/RC2 datasheet.

Figure 32. Reset Circuitry and Power-On Reset

Cold Reset

2 conditions are required before enabling a CPU start-up:

- V_{DD} must reach the specified V_{DD} range
- The level on X1 input pin must be outside the specification (V_{IH}, V_{IL})

If one of these 2 conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained till both of the above conditions are met. A reset is active when the level V_{IH1} is reached and when the pulse width covers the period of time where V_{DD} and the oscillator are not stabilized. 2 parameters have to be taken into account to determine the reset pulse width:

- V_{DD} rise time,
- Oscillator startup time.

To determine the capacitor value to implement, the highest value of these 2 parameters has to be chosen. Table 1 gives some capacitor values examples for a minimum R_{RST} of 50 K Ω and different oscillator startup and V_{DD} rise times.

Oscillator	VDD Rise Time						
Start-Up Time	1 ms	10 ms	100 ms				
5 ms	820 nF	1.2 µF	12 µF				
20 ms	2.7 µF	3.9 µF	12 µF				

Table 1. Minimum Reset Capacitor Value for a 50 k Ω Pull-down Resistor⁽¹⁾

Note: These values assume V_{DD} starts from 0V to the nominal value. If the time between 2 on/off sequences is too fast, the power-supply de-coupling capacitors may not be fully discharged, leading to a bad reset sequence.

Warm Reset

To achieve a valid reset, the reset signal must be maintained for at least 2 machine cycles (24 oscillator clock periods) while the oscillator is running. The number of clock periods is mode independent (X2 or X1).

Watchdog ResetAs detailed in Section "Hardware Watchdog Timer", page 77, the WDT generates a 96-
clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of
the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω
resistor must be added as shown Figure 33.

Figure 33. Reset Circuitry for WDT Reset-out Usage

Table 69. Program Lock Bits of the SSB

Program Lock Bits						
Security level	LB0	LB1	Protection Description			
1	U	U	No program lock features enabled.			
2	Р	U	ISP programming of the Flash is disabled.			
3	3 X P		Same as 2, also verify through ISP programming interface is disabled.			

Note: U: unprogrammed or "one" level.

P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51RB2/RC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 35.

Figure 35. Flash Memory Possible Contents

Memory Organization In the AT89C51RB2/RC2, the lowest 16K or 32K of the 64 KB program memory address space is filled by internal Flash.

When the EA pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16K or 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory.

Functional Description

Figure 37. Bootloader Functional Description

On the above diagram, the on-chip bootloader processes are:

ISP Communication Management

The purpose of this process is to manage the communication and its protocol between the on-chip bootloader and a external device. The on-chip ROM implement a serial protocol (see section Bootloader Protocol). This process translate serial communication frame (UART) into Flash memory acess (read, write, erase ...).

User Call Management

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface (API calls), included in the ROM bootloader. The programming functions are selected by setting up the microcontroller's registers before making a call to a common entry point (0xFFF0). Results are returned in the registers. The purpose on this process is to translate the registers values into internal Flash Memory Management.

Flash Memory Management

This process manages low level access to Flash memory (performs read and write access).

API Call Description

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at FFF0h. Results are returned in the registers.

When several Bytes have to be programmed, it is highly recommended to use the Atmel API "PROGRAM DATA PAGE" call. Indeed, this API call writes up to 128 Bytes in a single command.

All routines for software access are provided in the C Flash driver available at Atmel's web site.

The API calls description and arguments are shown in Table 74.

Table 74. API Call Summary

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3
			DPH = 00h		ACC = DPH	Erase block 0
ERASE BLOCK	01h	XXh	DPH = 20h	00h		Erase block 1
			DPH = 40h			Erase block 2
PROGRAM DATA BYTE	02h	Vaue to write	Address of byte to program	XXh	ACC = 0: DONE	Program up one data byte in the on-chip flash memory.
	05h		DPH = 00h DPL = 00h	- 00h	ACC = SSB value	Set SSB level 1
		XXh	DPH = 00h DPL = 01h			Set SSB level 2
PROGRAM SSB			DPH = 00h DPL = 10h			Set SSB level 0
			DPH = 00h DPL = 11h			Set SSB level 1
PROGRAM BSB	06h	New BSB value	0000h	XXh	none	Program boot status byte
PROGRAM SBV	06h	New SBV value	0001h	XXh	none	Program software boot vector
READ SSB	07h	XXh	0000h	XXh	ACC = SSB	Read Software Security Byte
READ BSB	07h	XXh	0001h	XXh	ACC = BSB	Read Boot Status Byte
READ SBV	07h	XXh	0002h	XXh	ACC = SBV	Read Software Boot Vector
PROGRAM DATA PAGE	09h	Number of byte to program	Address of the first byte to program in the Flash memory	Address in XRAM of the first data to program	ACC = 0: DONE	Program up to 128 bytes in user Flash. Remark: number of bytes to program is limited such as the Flash write remains in a single 128 bytes page. Hence, when ACC is 128, valid values of DPL are 00h, or, 80h.

Table 74. API Call Summary (Continued)

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
PROGRAM X2 FUSE	0Ah	Fuse value 00h or 01h	0008h	XXh	none	Program X2 fuse bit with ACC
PROGRAM BLJB FUSE	0Ah	Fuse value 00h or 01h	0004h	XXh	none	Program BLJB fuse bit with ACC
READ HSB	0Bh	XXh	XXXXh	XXh	ACC = HSB	Read Hardware Byte
READ BOOT ID1	0Eh	XXh	DPL = 00h	XXh	ACC = ID1	Read boot ID1
READ BOOT ID2	0Eh	XXh	DPL = 01h	XXh	ACC = ID2	Read boot ID2
READ BOOT VERSION	0Fh	XXh	XXXXh	XXh	ACC = Boot_Version	Read bootloader version

Ordering Information

Table 83. Possible Order Entries

Part Number	Memory Size	Supply Voltage	Temperature Range	Package	Packing	Product Marking
AT89C51RB2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RB2-IM
AT89C51RB2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RB2-CM
AT89C51RB2-SLSIM		5V	Industrial	PLCC44	Stick	89C51RB2-IM
AT89C51RB2-RLTCM	16 KBytes	5V	Commercial	VQFP44	Tray	89C51RB2-CM
AT89C51RB2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RB2-IM
AT89C51RB2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RB2-IL
AT89C51RB2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RB2-IL
AT89C51RC2-3CSCM		5V	Commercial	PDIL40	Stick	89C51RC2-CM
AT89C51RC2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RC2-IM
AT89C51RC2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RC2-CM
AT89C51RC2-SLSIM	- 32 KBytes	5V	Industrial	PLCC44	Stick	89C51RC2-IM
AT89C51RC2-RLTCM		5V	Commercial	VQFP44	Tray	89C51RC2-CM
AT89C51RC2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RC2-IM
AT89C51RC2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RC2-IL
AT89C51RC2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RC2-IL
AT89C51RB2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RB2-UM
AT89C51RB2-SLSUM		5V	Industrial & Green	PLCC44	Stick	89C51RB2-UM
AT89C51RB2-RLTUM	16 KButoo	5V	Industrial & Green	VQFP44	Tray	89C51RB2-UM
AT89C51RB2-SLSUL	TO NOVIES	3V	Industrial & Green	PLCC44	Stick	89C51RB2-UL
AT89C51RB2-RLTUL		3V	Industrial & Green	VQFP44	Tray	89C51RB2-UL
AT89C51RB2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RB2-UM
AT89C51RC2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RC2-UM
AT89C51RC2-SLSUM	32 KBytes	5V	Industrial & Green	PLCC44	Stick	89C51RC2-UM
AT89C51RC2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RC2-UM
AT89C51RC2-SLSUL]	3V	Industrial & Green	PLCC44	Stick	89C51RC2-UL
AT89C51RC2-RLTUL		3V	Industrial & Green	VQFP44	Tray	89C51RC2-UL

