

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rb2-slrum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 6. Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
TCON	88h	Timer/Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00
TL0	8Ah	Timer/Counter 0 Low Byte								
TH0	8Ch	Timer/Counter 0 High Byte								
TL1	8Bh	Timer/Counter 1 Low Byte								
TH1	8Dh	Timer/Counter 1 High Byte								
WDTRST	A6h	Watchdog Timer Reset								
WDTPRG	A7h	Watchdog Timer Program	-	-	-	-	-	WTO2	WTO1	WTO0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode	-	-	-	-	-	-	T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High Byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low Byte								
TH2	CDh	Timer/Counter 2 High Byte								
TL2	CCh	Timer/Counter 2 Low Byte								

Table 7. PCA SFRs

Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low Byte								
СН	F9h	PCA Timer/Counter High Byte								
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
CCAP0H	FAh	PCA Compare Capture Module 0 H	CCAP0H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA Compare Capture Module 1 H	CCAP1H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA Compare Capture Module 2 H	CCAP2H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA Compare Capture Module 3 H	CCAP3H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA Compare Capture Module 0 L	CCAP0L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA Compare Capture Module 1 L	CCAP1L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA Compare Capture Module 2 L	CCAP2L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA Compare Capture Module 3 L	CCAP3L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

6

Table 12. Pin Description for 40 - 44 Pin Packages (Continued)

		Pin Num	nber				
Mnemonic	DIL	LCC	VQFP44 1.4	Туре	Name and Function		
				I/O	CEX4: Capture/Compare External I/O for PCA Module 4		
P1.0 - P1.7				I/O	MOSI: SPI Master Output Slave Input line		
					When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.		
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.		
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier		
P2.0 - P2.7	21 - 28	24 - 31	18 - 25	Ι/Ο	Port 2 : Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high - order address Byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.5 for 16 KB devices		
P3.0 - P3.7	10 - 17	11, 13 - 19	5, 7 - 13	I/O	Port 3: Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.		
	10	11	5	I	RXD (P3.0): Serial input port		
	11	13	7	0	TXD (P3.1): Serial output port		
	12	14	8	I	INTO (P3.2): External interrupt 0		
	13	15	9	I	INT1 (P3.3): External interrupt 1		
	14	16	10	I	T0 (P3.4): Timer 0 external input		
	15	17	11	I	T1 (P3.5): Timer 1 external input		
	16	18	12	0	WR (P3.6): External data memory write strobe		
	17	19	13	0	RD (P3.7): External data memory read strobe		
RST	9	10	4	I/O	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} . This pin is an output when the hardware watchdog forces a system reset.		
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low Byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during Flash programming. ALE can be disabled by setting SFR's AUXR. 0 bit. With this bit set, ALE will be inactive during internal fetches.		

Port Types

AT89C51RB2/RC2 I/O ports (P1, P2, P3) implement the guasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes. One of these pull-ups, called the "weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. A second pull-up, called the "medium" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again.

The DPU bit (bit 7 in AUXR register) allows to disable the permanent weak pull up of all ports when latch data is logical 0.

The quasi-bidirectional port configuration is shown in Figure 3.

Table 17. AUXR1 register

AUXR1- Auxiliary Register 1(0A2h)

7	6	5	4	3	2	1	0			
-	-	ENBOOT	-	GF3	0	-	DPS			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value rea	t eserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	ENBOOT	Enable Boot Cleared to dis Set to map th	Enable Boot Flash Cleared to disable boot ROM. Set to map the boot ROM between F800h - 0FFFFh.							
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.				
3	GF3	This bit is a	general-pur	oose user flag	g. ⁽¹⁾					
2	0	Always Clea	red							
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
0	DPS	Data Pointer Cleared to se Set to select	Data Pointer Selection Cleared to select DPTR0. Set to select DPTR1.							

Reset Value = XXXX XX0X0b

Not bit addressable

Note: 1. Bit 2 stuck at 0; this allows using INC AUXR1 to toggle DPS without changing GF3.

ASSEMBLY LANGUAGE

- ; Block move using dual data pointers
- ; Modifies DPTR0, DPTR1, A and PSW
- ; note: DPS exits opposite of entry state
- ; unless an extra INC AUXR1 is added

00A2 AUXR1 EQU 0A2H

0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A, @DPTR ; get a Byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX @DPTR,A ; write the Byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

Registers

Table 19. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0	
DPU	-	MO	-	XRS1	XRS0	EXTRAM	AO	
Bit Number	Bit Mnemonic	Description						
7	DPU	Disable Wea Cleared to ac Set to disacti	Disable Weak Pull-up Cleared to activate the permanent weak pull up when latch data is logical 1 Set to disactive the weak pull-up (reduce power consumption)					
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.					
5	MO	Pulse Lengt Cleared to str periods (defa Set to stretch periods.	Pulse Length Cleared to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 6 clock periods (default). Set to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 30 clock periods.					
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	XRS1	XRAM Size						
2	XRS0	XRS1 XRS 0 0 0 1 1 0 1 1	XRS0 XRAM size 0 0 256 Bytes (default) 0 1 512 Bytes 1 0 768 Bytes 1 1 1024 Bytes					
1	EXTRAM	EXTRAM Bit Cleared to ac Set to access Programmed (HSB), defau	EXTRAM Bit Cleared to access internal XRAM using movx @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected.					
0	AO	ALE Output Cleared, ALE X2 mode is u instruction is	Bit is emitted at sed). (default used.	a constant rate) Set, ALE is a	e of 1/6 the os active only du	cillator freque ring a MOVX c	ncy (or 1/3 if or MOVC	

Reset Value = XX0X 00'HSB. XRAM'0b (see Table 65) Not bit addressable

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture Modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 6
- Peripheral clock frequency (F_{CLK PERIPH}) ÷ 2
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture Modules can be programmed in any one of the following modes:

- Rising and/or falling edge capture
- Software timer
- High-speed output
- Pulse width modulator

Module 4 can also be programmed as a watchdog timer (see Section "PCA Watchdog Timer", page 42).

When the compare/capture Modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the Module executes its function. All five Modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If one or several bits in the port are not used for the PCA, they can still be used for standard I/O.

PCA Component	External I/O Pin				
16-bit Counter	P1.2/ECI				
16-bit Module 0	P1.3/CEX0				
16-bit Module 1	P1.4/CEX1				
16-bit Module 2	P1.5/CEX2				
16-bit Module 3	P1.6/CEX3				

The PCA timer is a common time base for all five Modules (see Figure 11). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 22) and can be programmed to run at:

- 1/6 the peripheral clock frequency (F_{CLK PERIPH})
- 1/2 the peripheral clock frequency (F_{CLK PERIPH})
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

changing the time base for other Modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

	Figure 19. UART Timings in N	lodes 2 and 3					
		<u> </u>					
	Start	Data byte	Ninth Stop				
	bit		bit bit				
	RI SMOD0=0						
	SMOD0=1]				
	FE		·····				
	SMOD0=1		<i>.</i>				
Automatic Address Recognition	The automatic address recogn nication feature is enabled (SM Implemented in hardware, auto communication feature by al	ition feature is enabled w 12 bit in SCON register is omatic address recognitio lowing the serial port to	hen the multiprocessor comm set). on enhances the multiprocess examine the address of eac	u- or ch			
	incoming command frame. Or receiver sets RI bit in SCON re is not interrupted by command	nly when the serial port r gister to generate an inte frames addressed to othe	ecognizes its own address, th rrupt. This ensures that the CP er devices.	וe יU			
	If desired, the user may enable	e the automatic address	recognition feature in mode 1.	.In			
	the received command frame address matches the device's address and is terminated						
	by a valid stop bit.						
	a broadcast address.						
	Note: The multiprocessor comr be enabled in mode 0 (i.	munication and automatic a e. setting SM2 bit in SCON	ddress recognition features cann register in mode 0 has no effect).	ıot			
Given Address	Each device has an individual register is a mask byte that o device's given address. The do slaves at a time. The following To address a device by its ind	address that is specified contains don't-care bits on't-care bits provide the f example illustrates how a dividual address, the SA	in SADDR register; the SADE (defined by zeros) to form th lexibility to address one or mo a given address is formed. .DEN mask byte must be 113	:N ne re			
	For example:						
	SADDR0101 0110b SADEN1111 1100b						
	Given0101 01XXb						
	The following is an example of Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u>	how to use given addres	ses to address different slaves	3:			
	Given1111 0X0Xb						
	Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u>						
	Given1111 0XX1b						
	Slave C:SADDR1111 0010b <u>SADEN1111 1101b</u>						
	Given1111 00X1b						

Table 44. IENO Register

IEN0 - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0		
EA	EC	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic	Description	escription						
7	EA	Enable All In Cleared to di Set to enable	nable All Interrupt Bit leared to disable all interrupts. et to enable all interrupts.						
6	EC	PCA Interru Cleared to di Set to enable	CA Interrupt Enable Bit eared to disable. et to enable.						
5	ET2	Timer 2 Ove Cleared to di Set to enable	Fimer 2 Overflow Interrupt Enable Bit Cleared to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.						
4	ES	Serial Port I Cleared to di Set to enable	Enable Bit isable serial p e serial port in	ort interrupt. terrupt.					
3	ET1	Timer 1 Over Cleared to di Set to enable	erflow Interru isable timer 1 e timer 1 over	pt Enable Bit overflow inter flow interrupt.	rupt.				
2	EX1	External Internation Cleared to display to enable	External Interrupt 1 Enable Bit Cleared to disable external interrupt 1. Set to enable external interrupt 1.						
1	ET0	Timer 0 Ove Cleared to di Set to enable	Timer 0 Overflow Interrupt Enable Bit Cleared to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	External Internation Cleared to display to enable	errupt 0 Enal sable externa e external inte	ble Bit al interrupt 0. errupt 0.					

Reset Value = 0000 0000b Bit addressable

Table 52. KBE Register

KBE - Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0			
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0			
Bit Number	Bit Mnemonic	Description	Description							
7	KBE7	Keyboard Li Cleared to en Set to enable	Eeyboard Line 7 Enable Bit Eleared to enable standard I/O pin. Let to enable KBF. 7 bit in KBF register to generate an interrupt request.							
6	KBE6	Keyboard Li Cleared to en Set to enable	eyboard Line 6 Enable Bit leared to enable standard I/O pin. et to enable KBF. 6 bit in KBF register to generate an interrupt request.							
5	KBE5	Keyboard Li Cleared to en Set to enable	Keyboard Line 5 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 5 bit in KBF register to generate an interrupt request.							
4	KBE4	Keyboard Li Cleared to en Set to enable	Keyboard Line 4 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 4 bit in KBF register to generate an interrupt request.							
3	KBE3	Keyboard Li Cleared to en Set to enable	i ne 3 Enable nable standar e KBF. 3 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.			
2	KBE2	Keyboard Li Cleared to en Set to enable	Keyboard Line 2 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 2 bit in KBF register to generate an interrupt request.							
1	KBE1	Keyboard Li Cleared to en Set to enable	Keyboard Line 1 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 1 bit in KBF register to generate an interrupt request.							
0	KBE0	Keyboard L Cleared to en Set to enable	i ne 0 Enable nable standar e KBF. 0 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.			

Reset Value = 0000 0000b

Bit Number	Bit Mnemonic	Description
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.

Reset Value = 00X0 XXXXb

Not Bit addressable

Serial Peripheral DATa Register (SPDAT) The Serial Peripheral Data Register (Table 58) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 58. SPDAT Register

SPDAT - Serial Peripheral Data Register (0C5H)

7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0

Reset Value = Indeterminate

R7:R0: Receive data bits

SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.

ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using AT89C51RB2/RC2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the AT89C51RB2/RC2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the AT89C51RB2/RC2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit. Table 61 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 61.	External	Pin Status	during	ONCE	Mode
-----------	----------	------------	--------	------	------

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

Power-off Flag

The Power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated by an exit from Power-down.

The Power-off flag (POF) is located in PCON register (Table 63). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 63. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic	Description					
7	SMOD1	Serial port N Set to select	lode Bit 1 double baud	rate in mode 1	I, 2 or 3.		
6	SMOD0	Serial port M Cleared to se Set to select	Serial port Mode Bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.				
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.				
4	POF	Power-off Flag Cleared to recognize next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.					Ilso be set by
3	GF1	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.					
2	GF0	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.					
1	PD	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle Mode B Cleared by h Set to enter in	Idle Mode Bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.				

Reset Value = 00X1 0000b Not bit addressable

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
HSB	Hardware security Byte	101x 1011b	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	ATMEL
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: memories	F7h	AT89C51RB2/RC2 32KB
	size and type	FBh	AT89C51RB2/RC2 16 KB
	Copy of the Device ID #3: name and revision	EFh	AT89C51RB2/RC2 32KB, Revision 0
		FFh	AT89C51RB2/RC2 16 KB, Revision 0

Table 67.	Default	Values
-----------	---------	--------

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 67 and Table 69.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 68.	Software	Security	Bvte
	Continuito	Coounty	2,10

7	6	5	4	3	2	1	0
-	-	-	-	-	-	LB1	LB0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved Do not clear t	his bit.				
6	-	Reserved Do not clear t	Reserved Do not clear this bit.				
5	-	Reserved Do not clear t	Reserved Do not clear this bit.				
4	-	Reserved Do not clear t	Reserved Do not clear this bit.				
3	-	Reserved Do not clear t	Reserved Do not clear this bit.				
2	-	Reserved Do not clear t	Reserved Do not clear this bit.				
1-0	LB1-0	User Memor see Table 69	y Lock Bits				

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 69.

Table 69. Program Lock Bits of the SSB

Program	n Lock I	Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.

Note: U: unprogrammed or "one" level.

P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51RB2/RC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 35.

Figure 35. Flash Memory Possible Contents

Memory Organization In the AT89C51RB2/RC2, the lowest 16K or 32K of the 64 KB program memory address space is filled by internal Flash.

When the EA pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16K or 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory.

Boot Process

ISP Protocol Description

Physical Layer

The UART used to transmit information has the following configuration:

- Character: 8-bit data
- Parity: none
- Stop: 1 bit
- Flow control: none
- Baud rate: autobaud is performed by the bootloader to compute the baud rate choosen by the host.

Frame Description The Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below.

Table 70. Intel Hex Type Frame

Record Mark ':'	Reclen	Load Offset	Record Type	Data or Info	Checksum
1 byte	1 byte	2 bytes	1 bytes	n byte	1 byte

- Record Mark:
 - Record Mark is the start of frame. This field must contain ':'.
- Reclen:
 - Reclen specifies the number of Bytes of information or data which follows the Record Type field of the record.
- Load Offset:
 - Load Offset specifies the 16-bit starting load offset of the data Bytes, therefore this field is used only for
 - Data Program Record (see Section "ISP Commands Summary").
- Record Type:
 - Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types is described in Section "ISP Commands Summary".
- Data/Info:
 - Data/Info is a variable length field. It consists of zero or more Bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the Record Type.
- Checksum:
 - The two's complement of the 8-bit Bytes that result from converting each pair of ASCII hexadecimal digits to one Byte of binary, and including the Reclen field to and including the last Byte of the Data/Info field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the Reclen field to and including the Checksum field, is zero.

Ordering Information

Table 83. Possible Order Entries

Part Number	Memory Size	Supply Voltage	Temperature Range	Package	Packing	Product Marking
AT89C51RB2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RB2-IM
AT89C51RB2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RB2-CM
AT89C51RB2-SLSIM		5V	Industrial	PLCC44	Stick	89C51RB2-IM
AT89C51RB2-RLTCM	16 KBytes	5V	Commercial	VQFP44	Tray	89C51RB2-CM
AT89C51RB2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RB2-IM
AT89C51RB2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RB2-IL
AT89C51RB2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RB2-IL
AT89C51RC2-3CSCM		5V	Commercial	PDIL40	Stick	89C51RC2-CM
AT89C51RC2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RC2-IM
AT89C51RC2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RC2-CM
AT89C51RC2-SLSIM	20 KButee	5V	Industrial	PLCC44	Stick	89C51RC2-IM
AT89C51RC2-RLTCM	32 NDyles	5V	Commercial	VQFP44	Tray	89C51RC2-CM
AT89C51RC2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RC2-IM
AT89C51RC2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RC2-IL
AT89C51RC2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RC2-IL
	•					
AT89C51RB2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RB2-UM
AT89C51RB2-SLSUM		5V	Industrial & Green	PLCC44	Stick	89C51RB2-UM
AT89C51RB2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RB2-UM
AT89C51RB2-SLSUL	16 KBytes	3V	Industrial & Green	PLCC44	Stick	89C51RB2-UL
AT89C51RB2-RLTUL		3V	Industrial & Green	VQFP44	Tray	89C51RB2-UL
AT89C51RB2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RB2-UM
AT89C51RC2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RC2-UM
AT89C51RC2-SLSUM]	5V	Industrial & Green	PLCC44	Stick	89C51RC2-UM
AT89C51RC2-RLTUM	32 KBytes	5V	Industrial & Green	VQFP44	Tray	89C51RC2-UM
AT89C51RC2-SLSUL]	3V	Industrial & Green	PLCC44	Stick	89C51RC2-UL
AT89C51RC2-RLTUL]	3V	Industrial & Green	VQFP44	Tray	89C51RC2-UL

Package Information

PDIL40

		MM	I NCH		
A	-	5.08	-	. 200	
A1	0.38	-	. 015	-	
A2	3.18	4. 95	. 125	. 195	
В	0.36	0.56	. 014	. 022	
B1	0.76	1.78	. 030	. 070	
С	0.20	0.38	. 008	. 015	
D	50.29	53. 21	1, 980	2.095	
E	15.24	15.87	. 600	. 625	
E1	12.32	14.73	. 485	. 580	
e	2. 54	B. S. C	. 100	B. S. C	
еА	15.24	B. S. C	. 600	B. S. C	
еB	-	17.78	-	. 700	
L	2, 93	3. 81	. 115	. 150	
D1	0.13	-	. 005	-	
P	KG STD	02			

PLC44

	N	1M ·	IN	СН
A	4.20	4. 57	. 165	. 180
A1	2. 29	3.04	. 090	. 120
D	17.40	17.65	. 685	. 695
D1	16.44	16.66	, 647	. 656
D2	14.99	16.00	. 590	. 630
E	17.40	17.65	. 685	. 695
E1	16.44	16.66	. 647	. 656
E5	14.99	16.00	. 590	. 630
e	1.27	BSC	. 050	BSC
G	1.07	1.22	. 042	. 048
н	1.07	1.42	. 042	. 056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	11		1	1
Ne	11		1	1
P	PKG STD 00			