

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rc2-3csim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The AT89C51RB2/RC2 retains all features of the 80C52 with 256 Bytes of internal RAM, a 9-source 4-level interrupt controller and three timer/counters.

In addition, the AT89C51RB2/RC2 has a Programmable Counter Array, an XRAM of 1024 Bytes, a Hardware Watchdog Timer, a Keyboard Interface, an SPI Interface, a more versatile serial channel that facilitates multiprocessor communication (EUART) and a speed improvement mechanism (X2 mode).

The Pinout is the standard 40/44 pins of the C52.

The fully static design reduces system power consumption of the AT89C51RB2/RC2 by allowing it to bring the clock frequency down to any value, even DC, without loss of data.

The AT89C51RB2/RC2 has 2 software-selectable modes of reduced activity and 8-bit clock prescaler for further reduction in power consumption. In Idle mode, the CPU is frozen while the peripherals and the interrupt system are still operating. In power-down mode, the RAM is saved and all other functions are inoperative.

The added features of the AT89C51RB2/RC2 make it more powerful for applications that need pulse width modulation, high speed I/O and counting capabilities such as alarms, motor control, corded phones, and smart card readers.

Part Number	Flash (Bytes)	XRAM (Bytes)	TOTAL RAM (Bytes)	I/O
AT89C51RB2	16K	1024	1280	32
AT89C51RC2	32K	1024	1280	32
AT89C51IC2	32K	1024	1280	32

Table 1. Memory Size

SFR Mapping

The Special Function Registers (SFRs) of the AT89C51RB2/RC2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4)
- Power and clock control registers: PCON
- Hardware Watchdog Timer registers: WDTRST, WDTPRG
- Interrupt system registers: IEN0, IPL0, IPH0, IEN1, IPL1, IPH1
- Keyboard Interface registers: KBE, KBF, KBLS
- SPI registers: SPCON, SPSTR, SPDAT
- BRG (Baud Rate Generator) registers: BRL, BDRCON
- Flash register: FCON
- Clock Prescaler register: CKRL
- Others: AUXR, AUXR1, CKCON0, CKCON1

Table 6. Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
TCON	88h	Timer/Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89h	Timer/Counter 0 and 1 Modes	GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00
TL0	8Ah	Timer/Counter 0 Low Byte								
TH0	8Ch	Timer/Counter 0 High Byte								
TL1	8Bh	Timer/Counter 1 Low Byte								
TH1	8Dh	Timer/Counter 1 High Byte								
WDTRST	A6h	Watchdog Timer Reset								
WDTPRG	A7h	Watchdog Timer Program	-	-	-	-	-	WTO2	WTO1	WTO0
T2CON	C8h	Timer/Counter 2 control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
T2MOD	C9h	Timer/Counter 2 Mode	-	-	-	-	-	-	T2OE	DCEN
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High Byte								
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low Byte								
TH2	CDh	Timer/Counter 2 High Byte								
TL2	CCh	Timer/Counter 2 Low Byte								

Table 7. PCA SFRs

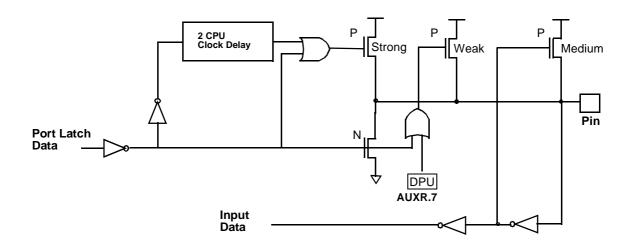
Mnemo- nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low Byte								
СН	F9h	PCA Timer/Counter High Byte								
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
CCAP0H	FAh	PCA Compare Capture Module 0 H	CCAP0H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA Compare Capture Module 1 H	CCAP1H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA Compare Capture Module 2 H	CCAP2H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA Compare Capture Module 3 H	CCAP3H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA Compare Capture Module 0 L	CCAP0L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA Compare Capture Module 1 L	CCAP1L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA Compare Capture Module 2 L	CCAP2L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA Compare Capture Module 3 L	CCAP3L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

6

Table 12. Pin Description for 40 - 44 Pin Packages (Continued)

	Pin Number					
Mnemonic	DIL	LCC	VQFP44 1.4	Туре	Name and Function	
PSEN	29	32	26	0	Program Strobe Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.	
EA	31	35	29	I	External Access Enable: $\overrightarrow{\text{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000H to FFFFH (RD). If security level 1 is programmed, $\overrightarrow{\text{EA}}$ will be internally latched on Reset.	


Port Types


AT89C51RB2/RC2 I/O ports (P1, P2, P3) implement the guasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes. One of these pull-ups, called the "weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. A second pull-up, called the "medium" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again.

The DPU bit (bit 7 in AUXR register) allows to disable the permanent weak pull up of all ports when latch data is logical 0.

The quasi-bidirectional port configuration is shown in Figure 3.

Oscillator

To optimize the power consumption and execution time needed for a specific task, an internal, prescaler feature has been implemented between the oscillator and the CPU and peripherals.

Registers

Table 13. CKRL Register

CKRL - Clock Reload Register (97h)

7		6	5	4	3	2	1	0
CKRL7	C	KRL6	CKRL5	CKRL4	CKRL3	CKRL2	CKRL1	CKRL0
Bit Numb	er	Mne	emonic	Description				
7:0		(CKRL	Clock Reload Prescaler valu	•			

Reset Value = 1111 1111b

Not bit addressable

Table 14. PCON Register

PCON - Power Control Register (87h)

7	6		5	4	3	2	1	0	
SMOD1	SMO	D0	-	POF	GF1	GF0	PD	IDL	
Bit Numb	er	Bit M	nemonic	Description					
7		S	MOD1	Serial Port Mo Set to select d		te in mode 1,	2 or 3.		
			Mode bit 0 elect SM0 bit in SCON register. FE bit in SCON register.						
5			-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4			POF	Power-off FlagCleared to recognize next reset type.Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.					
3			GF1	General-purp Cleared by sof Set by software	tware for gene		0		
2			GF0	General-purpose Flag Cleared by software for general-purpose usage. Set by software for general-purpose usage.					
1			PD	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0			IDL	Idle Mode bit Cleared by har Set to enter idle		nterrupt or res	et occurs.		

Reset Value = 00X1 0000b Not bit addressable

Timer 2	The Timer 2 in the AT89C51RB2/RC2 is the standard C52 Timer 2.					
	It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 are cascaded. It is controlled by T2CON (Table 20) and T2MOD (Table 21) registers. Timer 2 operation is similar to Timer 0 and Timer 1C/T2 selects F_{OSC} /12 (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to increment by the selected input.					
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).					
	see the Atmel 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.					
	Timer 2 includes the following enhancements:Auto-reload mode with up or down counterProgrammable clock-output					
Auto-reload Mode	The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (see the Atmel C51 Microcontroller Hardware description). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 9. In this mode the T2EX pin controls the direction of count.					
	When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.					
	When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.					
	The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.					

- Table 27. CCAPnL Registers (n = 0-4)
- CCAP0L PCA Module 0 Compare/Capture Control Register Low (0EAh)
- CCAP1L PCA Module 1 Compare/Capture Control Register Low (0EBh)
- CCAP2L PCA Module 2 Compare/Capture Control Register Low (0ECh)
- CCAP3L PCA Module 3 Compare/Capture Control Register Low (0EDh)

CCAP4L – PCA Module 4 Compare/Capture Control Register Low (0EEh)

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7 - 0	-	PCA Module CCAPnL Val		/Capture Con	trol				

Reset Value = 0000 0000b Not bit addressable

Table 28. CH Register

CH – PCA Counter Register High (0F9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CH Value	er				

Reset Value = 0000 0000b Not bit addressable

Table 29. CL Register

CL – PCA Counter Register Low (0E9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Counte CL Value	r				

Reset Value = 0000 0000b Not bit addressable

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	BRL Error (%)		Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

 Table 34.
 Example of Computed Value When X2=1, SMOD1=1, SPD=1

 Table 35.
 Example of Computed Value When X2=0, SMOD1=0, SPD=0

Baud Rates	F _{osc} = 16	. 384 MHz	F _{osc} = 24MHz		
	BRL	Error (%)	BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 20.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 42.)

UART Registers

Table 36. SADEN Register

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 37. SADDR Register

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 45. IPL0 Register

IPL0 - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0		
-	PPCL	PT2L	PSL	PT1L	PX1L	PTOL	PX0L		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	ad from this t	oit is indetermi	nate. Do not s	et this bit.			
6	PPCL		pt Priority B or priority leve						
5	PT2L		rflow Interru	ipt Priority Bi	t				
4	PSL	Serial Port I see PSH for	Priority Bit priority level.						
3	PT1L		rflow Interru	ipt Priority Bi	t				
2	PX1L		errupt 1 Prio r priority leve	-					
1	PTOL	Timer 0 Overflow Interrupt Priority Bit see PT0H for priority level.							
0	PX0L		errupt 0 Prio r priority leve	-					

Reset Value = X000 0000b Bit addressable

Interrupt Sources and Vector Addresses

Table 50. Interrupt Sources and Vector Addresses

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	IE0	0003h
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	SPI	SPIIT	004Bh

Bit Number	Bit Mnemonic	Description
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.

Reset Value = 00X0 XXXXb

Not Bit addressable

Serial Peripheral DATa Register (SPDAT) The Serial Peripheral Data Register (Table 58) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 58. SPDAT Register

SPDAT - Serial Peripheral Data Register (0C5H)

7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0

Reset Value = Indeterminate

R7:R0: Receive data bits

SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.

Table 60. WDTPRG Register

WDTPRG - Watchdog Timer Out Register (0A7h)

7	6	5	4	3	2	1	0
-	-	-	-	-	S2	S1	S0
Bit Number	Bit Mnemonic	Description					
7	-						
6	-						
5	-	Reserved The value rea	ad from this bi	t is undetermi	ned. Do not try	/ to set this bit	t.
4	-						
3	-						
2	S2	WDT Time-o	ut Select Bit	2			
1	S1	WDT Time-o	ut Select Bit	1			
0	S0	WDT Time-o	ut Select Bit	0			
		S2 S1 0 0 0 1 0 1 1 0 1 1 1 1	$\begin{array}{c} 1(2^{15} - 1) \text{ m} \\ 0 (2^{16} - 1) \text{ m} \\ 1(2^{17} - 1) \text{ m} \\ 0(2^{18} - 1) \text{ m} \\ 1 (2^{19} - 1) \text{ m} \\ 0(2^{20} - 1) \text{ m} \end{array}$	d Time-out hachine cycles hachine cycles hachine cycles hachine cycles hachine cycles hachine cycles hachine cycles hachine cycles	, 32.7 ms @ F s, 65. 5 ms @ , 131 ms @ F , 262 ms @ F s, 542 ms @ F , 1.05 s @ F _O	$F_{OSCA} = 12 \text{ MH}$ $F_{OSCA} = 12 \text{ MH}$ OSCA = 12 MH OSCA = 12 MH $F_{OSCA} = 12 \text{ MH}$ SCA = 12 MHz	Hz IHz z z Hz

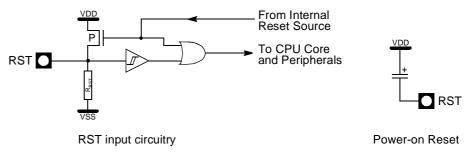
Reset Value = XXXX X000

WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT89C51RB2/RC2 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of power-down, it is better to reset the WDT just before entering power-down.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT89C51RB2/RC2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.


Power Management

Two power reduction modes are implemented in the AT89C51RB2/RC2: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "X2 Feature".

Reset

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, an high level has to be applied on the RST pin. A bad level leads to a wrong initialization of the internal registers like SFRs, Program Counter... and to unpredictable behavior of the microcontroller. A proper device reset initializes the AT89C51RB2/RC2 and vectors the CPU to address 0000h. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{DD} as shown in Figure 32. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as the watchdog timer. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51RB2/RC2 datasheet.

Figure 32. Reset Circuitry and Power-On Reset

Cold Reset

2 conditions are required before enabling a CPU start-up:

- V_{DD} must reach the specified V_{DD} range
- The level on X1 input pin must be outside the specification (V_{IH}, V_{IL})

If one of these 2 conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained till both of the above conditions are met. A reset is active when the level V_{IH1} is reached and when the pulse width covers the period of time where V_{DD} and the oscillator are not stabilized. 2 parameters have to be taken into account to determine the reset pulse width:

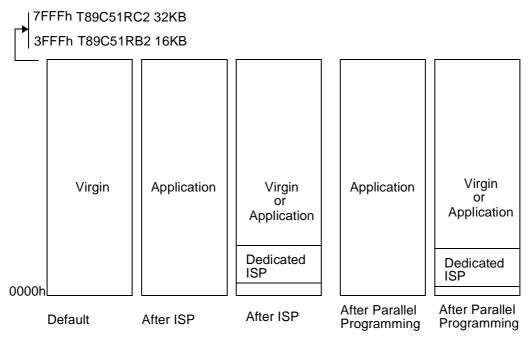
- V_{DD} rise time,
- Oscillator startup time.

To determine the capacitor value to implement, the highest value of these 2 parameters has to be chosen. Table 1 gives some capacitor values examples for a minimum R_{RST} of 50 K Ω and different oscillator startup and V_{DD} rise times.

Table 69. Program Lock Bits of the SSB

Program	n Lock I	Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.

Note: U: unprogrammed or "one" level.


P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51RB2/RC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 35.

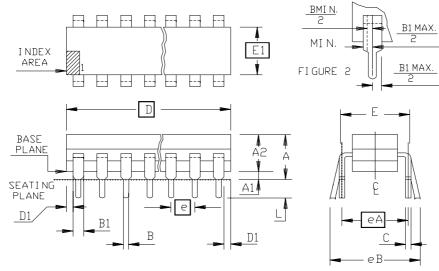
Figure 35. Flash Memory Possible Contents

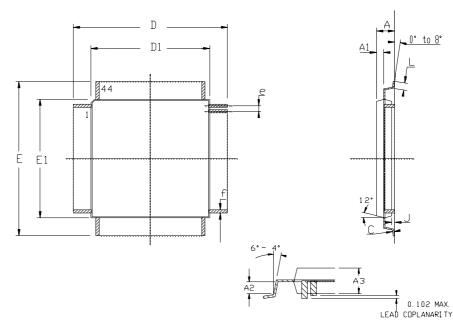
Memory Organization In the AT89C51RB2/RC2, the lowest 16K or 32K of the 64 KB program memory address space is filled by internal Flash.

When the EA pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16K or 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory.

Ordering Information

Table 83. Possible Order Entries


Part Number	Memory Size	Supply Voltage	Temperature Range	Package	Packing	Product Marking
AT89C51RB2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RB2-IM
AT89C51RB2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RB2-CM
AT89C51RB2-SLSIM		5V	Industrial	PLCC44	Stick	89C51RB2-IM
AT89C51RB2-RLTCM	16 KBytes	5V	Commercial	VQFP44	Tray	89C51RB2-CM
AT89C51RB2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RB2-IM
AT89C51RB2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RB2-IL
AT89C51RB2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RB2-IL
AT89C51RC2-3CSCM		5V	Commercial	PDIL40	Stick	89C51RC2-CN
AT89C51RC2-3CSIM		5V	Industrial	PDIL40	Stick	89C51RC2-IM
AT89C51RC2-SLSCM		5V	Commercial	PLCC44	Stick	89C51RC2-CM
AT89C51RC2-SLSIM	00 //D /	5V	Industrial	PLCC44	Stick	89C51RC2-IM
AT89C51RC2-RLTCM	- 32 KBytes	5V	Commercial	VQFP44	Tray	89C51RC2-CM
AT89C51RC2-RLTIM		5V	Industrial	VQFP44	Tray	89C51RC2-IM
AT89C51RC2-SLSIL		3V	Industrial	PLCC44	Stick	89C51RC2-IL
AT89C51RC2-RLTIL		3V	Industrial	VQFP44	Tray	89C51RC2-IL
AT89C51RB2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RB2-UM
AT89C51RB2-SLSUM		5V	Industrial & Green	PLCC44	Stick	89C51RB2-UM
AT89C51RB2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RB2-UN
AT89C51RB2-SLSUL	16 KBytes	3V	Industrial & Green	PLCC44	Stick	89C51RB2-UL
AT89C51RB2-RLTUL		3V	Industrial & Green	VQFP44	Tray	89C51RB2-UL
AT89C51RB2-RLTUM		5V	Industrial & Green	VQFP44	Tray	89C51RB2-UM
AT89C51RC2-3CSUM		5V	Industrial & Green	PDIL40	Stick	89C51RC2-UM
AT89C51RC2-SLSUM		5V	Industrial & Green	PLCC44	Stick	89C51RC2-UM
AT89C51RC2-RLTUM	32 KBytes	5V	Industrial & Green	VQFP44	Tray	89C51RC2-UN
AT89C51RC2-SLSUL	1	3V	Industrial & Green	PLCC44	Stick	89C51RC2-UL
AT89C51RC2-RLTUL		3V	Industrial & Green	VQFP44	Tray	89C51RC2-UL


Package Information

PDIL40

		MM	ΙN	СН
A	-	5.08	-	. 200
A1	0, 38	-	. 015	-
A2	3.18	4. 95	. 125	. 195
В	0.36	0.56	. 014	. 022
B1	0.76	1.78	. 030	. 070
С	0.20	0.38	. 008	. 015
D	50.29	53. 21	1.980	2.095
E	15.24	15.87	. 600	. 625
E1	12.32	14.73	. 485	. 580
e	2. 54	B. S. C	. 100	B. S. C
еА	15.24	B. S. C	. 600	B. S. C
еB	-	1 7. 78	-	. 700
L	2. 93	3. 81	. 115	. 150
D1	0.13	-	. 005	-
P	KG STD	02	_	

VQFP44

	м	М	IN	СН
	Min	Max	Min	Max
A	_	1.60	_	. 063
A1	Ο.	64 REF	. 0	25 REF
A2	Ο.	64 REF	. 0	25 REF
A3	1.35	1.45	. 053	. 057
D	11.90	12.10	. 468	. 476
D1	9.90	10.10	. 390	. 398
E	11.90	12.10	. 468	. 476
E1	9.90	10.10	. 390	. 398
J	0.05	-	. 002	_
L	0.45	0.75	. 018	. 030
e	0.80 BSC		. 03	15 BSC
f	0.3	5 BSC	. 01	4 BSC

Registers	47
Baud Rate Selection for UART for Mode 1 and 3	47
UART Registers	50
ů –	
Interrupt System	55
Registers	
Interrupt Sources and Vector Addresses	
	05
Keyboard Interface	64
Registers	65
Serial Port Interface (SPI)	68
Features	
Signal Description	
Functional Description	70
Hardware Watchdog Timer	77
Using the WDT	
WDT During Power-down and Idle	
	10
ONCE [™] Mode (ON Chip Emulation)	79
Power Management	80
Reset	
Reset Recommendation to Prevent Flash Corruption	
Idle Mode	
Power-down Mode	
	02
Power-off Flag	84
· · · · · · · · · · · · · · · · · · ·	• •
Reduced EMI Mode	85
Flash EEPROM Memory	86
Features	
Flash Programming and Erasure	
• •	
Flash Registers and Memory Map	01
Flash Registers and Memory Map Flash Memory Status	۹N
Flash Memory Status	
Flash Memory Status	90
Flash Memory Status Memory Organization Bootloader Architecture	90 91
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description	90 91 95
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description	90 91 95 96
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description	90 91 95 96 97
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description	90 91 95 96 97
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description API Call Description	90 91 95 96 97 105
Flash Memory Status Memory Organization Bootloader Architecture ISP Protocol Description Functional Description Flow Description	90 91 95 96 97 105

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

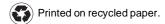
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

