

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rc2-slril

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Oscillator

To optimize the power consumption and execution time needed for a specific task, an internal, prescaler feature has been implemented between the oscillator and the CPU and peripherals.

Registers

Table 13. CKRL Register

CKRL - Clock Reload Register (97h)

7		6	5	4	3	2	1	0
CKRL7	С	KRL6 CKRL		CKRL4	CKRL3	CKRL2	CKRL1	CKRL0
Bit Numb	er	Mne	emonic	Description	-			
7:0		C	CKRL	Clock Reload Register Prescaler value				

Reset Value = 1111 1111b

Not bit addressable

Table 14. PCON Register

PCON - Power Control Register (87h)

7	6	i	5	4	3	2	1	0	
SMOD1	SMC	DD0	-	POF	GF1	GF0	PD	IDL	
Bit Numb	er	Bit M	nemonic	Description					
7 SMOD1		Serial Port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.							
6		SMOD0		Serial Port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.					
5			-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4			POF	Power-off Flag Cleared to recognize next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.					
3			GF1	General-purp Cleared by sof Set by software	ose Flag tware for gene e for general-p	eral-purpose u purpose usage	sage. e.		
2			GF0	General-purp Cleared by sof Set by software	ose Flag tware for gene e for general-p	eral-purpose u ourpose usage	sage. e.		
1			PD	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0			IDL	Idle Mode bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.					

Reset Value = 00X1 0000b Not bit addressable

Table 16. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SPIX2
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	SPIX2	SPI (This con this bit has no Clear to select Set to select	ntrol bit is valie o effect). ct 6 clock peri 12 clock peric	dated when th ods per periph ods per periph	e CPU clock >	X2 is set; when cle. le.	n X2 is low,

Reset Value = XXXX XXX0b Not bit addressable

Dual Data Pointer Register (DPTR)

The additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 17) that allows the program code to switch between them (see Figure 7).

Figure 7. Use of Dual Pointer

INC is a short (2 Bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Interrupt System

The AT89C51RB2/RC2 has a total of 9 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 22.

Figure 22. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 45 and Table 47). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 48) and in the Interrupt Priority High register (Table 46 and Table 47) shows the bit values and priority levels associated with each combination.

Table 44. IENO Register

IEN0 - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0		
EA	EC	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic	Description							
7	EA	Enable All In Cleared to di Set to enable	nable All Interrupt Bit Cleared to disable all interrupts. Set to enable all interrupts.						
6	EC	PCA Interru Cleared to di Set to enable	pt Enable Bi isable. e.	t					
5	ET2	Timer 2 Ove Cleared to di Set to enable	Timer 2 Overflow Interrupt Enable Bit Cleared to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.						
4	ES	Serial Port I Cleared to di Set to enable	Enable Bit isable serial p e serial port in	ort interrupt. terrupt.					
3	ET1	Timer 1 Ove Cleared to di Set to enable	erflow Interru isable timer 1 e timer 1 over	pt Enable Bit overflow inter flow interrupt.	rupt.				
2	EX1	External Internation Cleared to di Set to enable	External Interrupt 1 Enable Bit Cleared to disable external interrupt 1. Set to enable external interrupt 1.						
1	ET0	Timer 0 Ove Cleared to di Set to enable	Timer 0 Overflow Interrupt Enable Bit Cleared to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	External Internation Cleared to display to enable	errupt 0 Enal sable externa e external inte	ble Bit al interrupt 0. errupt 0.					

Reset Value = 0000 0000b Bit addressable

Table 47. IEN1 Register

IEN1 - Interrupt Enable Register (B1h)

7	6	5	4	3	2	1	0			
-	-	-	-	-	ESPI	-	KBD			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved								
6	-	Reserved								
5	-	Reserved	Reserved							
4	-	Reserved								
3	-	Reserved								
2	ESPI	SPI Interrup Cleared to di Set to enable	SPI Interrupt Enable Bit Cleared to disable SPI interrupt. Set to enable SPI interrupt.							
1	-	Reserved	Reserved							
0	KBD	Keyboard Ir Cleared to di Set to enable	nterrupt Enak isable keyboa e keyboard in	ble Bit ard interrupt. terrupt.						

Reset Value = XXXX X000b Bit addressable

Table 49. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	SPIH	-	KBDH	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
6	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
З	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
2	SPIH	SPI Interrup SPIHSPIL 0 0 0 1 1 0 1 1	t Priority Hig <u>Priority Lev</u> Lowest Highest	ıh Bit <u>/el</u>				
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
0	KBDH	Keyboard Ir KB DHKBDL 0 0 0 1 1 0 1 1	hterrupt Prior Priority Lev Lowest Highest	ity High Bit ∕el				

Reset Value = XXXX X000b Not bit addressable

Interrupt Sources and Vector Addresses

Table 50. Interrupt Sources and Vector Addresses

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	IE0	0003h
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	SPI	SPIIT	004Bh

Table 53. KBLS Register

KBLS - Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0	
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0	
Bit Number	Bit Mnemonic	Description						
7	KBLS7	Keyboard Li Cleared to en Set to enable	Xeyboard Line 7 Level Selection Bit Cleared to enable a low level detection on Port line 7. Set to enable a high level detection on Port line 7.					
6	KBLS6	Keyboard Li Cleared to en Set to enable	ine 6 Level S nable a low le e a high level	election Bit vel detection c detection on F	on Port line 6. Port line 6.			
5	KBLS5	Keyboard Li Cleared to en Set to enable	Keyboard Line 5 Level Selection Bit Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5.					
4	KBLS4	Keyboard Li Cleared to en Set to enable	ine 4 Level S nable a low le e a high level	election Bit vel detection c detection on F	on Port line 4. Port line 4.			
3	KBLS3	Keyboard Li Cleared to en Set to enable	ine 3 Level S nable a low le e a high level	election Bit vel detection c detection on F	on Port line 3. Port line 3.			
2	KBLS2	Keyboard Li Cleared to en Set to enable	Keyboard Line 2 Level Selection Bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2.					
1	KBLS1	Keyboard Li Cleared to en Set to enable	Keyboard Line 1 Level Selection Bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.					
0	KBLS0	Keyboard Li Cleared to en Set to enable	ine 0 Level S nable a low le e a high level	election Bit vel detection of detection on F	on Port line 0. Port line 0.			

Reset Value = 0000 0000b

drive the network. The Master may select each Slave device by software through port
pins (Figure 26). To prevent bus conflicts on the MISO line, only one slave should be
selected at a time by the Master for a transmission.

In a Master configuration, the \overline{SS} line can be used in conjunction with the MODF flag in the SPI Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see Error conditions).

A high level on the \overline{SS} pin puts the MISO line of a Slave SPI in a high-impedance state.

The SS pin could be used as a general-purpose if the following conditions are met:

- The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can be found when only one Master is driving the network and there is no way that the SS pin could be pulled low. Therefore, the MODF flag in the SPSTA will never be set⁽¹⁾.
- The Device is configured as a Slave with CPHA and SSDIS control bits set⁽²⁾. This kind of configuration can happen when the system comprises one Master and one Slave only. Therefore, the device should always be selected and there is no reason that the Master uses the SS pin to select the communicating Slave device.
- Note: 1. Clearing SSDIS control bit does not clear MODF.
 - 2. Special care should be taken not to set SSDIS control bit when CPHA = '0' because in this mode, the \overline{SS} is used to start the transmission.

Baud Rate In Master mode, the baud rate can be selected from a baud rate generator which is controlled by three bits in the SPCON register: SPR2, SPR1 and SPR0.The Master clock is selected from one of seven clock rates resulting from the division of the internal clock by 2, 4, 8, 16, 32, 64 or 128.

Table 54 gives the different clock rates selected by SPR2:SPR1:SPR0.

SPR2	SPR1	SPR0	Clock Rate	Baud Rate Divisor (BD)
0	0	0	F _{CLK PERIPH} /2	2
0	0	1	F _{CLK PERIPH} /4	4
0	1	0	F _{CLK PERIPH} /8	8
0	1	1	F _{CLK PERIPH} /16	16
1	0	0	F _{CLK PERIPH} /32	32
1	0	1	F _{CLK PERIPH} /64	64
1	1	0	F _{CLK PERIPH} /128	128
1	1	1	Don't Use	No BRG

Table 54. SPI Master Baud Rate Selection

Bit Number	Bit Mnemonic	Descri	ption		
		SPR2	<u>SPR1</u>	<u>SPR0</u>	Serial Peripheral Rate
1	SPR1	0	0	0	F _{CLK PERIPH} /2
1		0	0	1	F _{CLK PERIPH} /4
		0	1	0	F _{CLK PERIPH} /8
		0	1	1	F _{CLK PERIPH} /16
		1	0	0	F _{CLK PERIPH} /32
0	SPR0	1	0	1	F _{CLK PERIPH} /64
		1	1	0	F _{CLK PERIPH} /128
		1	1	1	Invalid

Reset Value = 0001 0100b

Not bit addressable

Serial Peripheral Status Register The Serial Peripheral Status Register contains flags to signal the following conditions:

(SPSTA)

- Data transfer complete
- Write collision
- Inconsistent logic level on SS pin (mode fault error)

Table 57 describes the SPSTA register and explains the use of every bit in the register.

Table 57. SPSTA Register

SPSTA - Serial Peripheral Status and Control register (0C4H)

7	6	5	4	3	2	1	0			
SPIF	WCOL	SSERR	MODF	-	-	-	-			
Bit Number	Bit Mnemonic	Description	Description							
7	SPIF	Serial Periph Cleared by ha approved by Set by hardw	Serial Peripheral Data Transfer Flag Cleared by hardware to indicate data transfer is in progress or has been approved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed.							
6	WCOL	Write Collision Cleared by hat approved by a Set by hardw	Write Collision Flag Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected.							
5	SSERR	Synchronous Serial Slave Error Flag Set by hardware when SS is deasserted before the end of a received data. Cleared by disabling the SPI (clearing SPEN bit in SPCON).								
4	MODF	Mode Fault Cleared by hardware to indicate that the \overline{SS} pin is at appropriate logic level, or has been approved by a clearing sequence. Set by hardware to indicate that the \overline{SS} pin is at inappropriate logic level.								
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit								
2	-	Reserved The value rea	d from this bi	t is indetermin	ate. Do not se	et this bit.				

Power Management

Two power reduction modes are implemented in the AT89C51RB2/RC2: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "X2 Feature".

Reset

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, an high level has to be applied on the RST pin. A bad level leads to a wrong initialization of the internal registers like SFRs, Program Counter... and to unpredictable behavior of the microcontroller. A proper device reset initializes the AT89C51RB2/RC2 and vectors the CPU to address 0000h. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{DD} as shown in Figure 32. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as the watchdog timer. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51RB2/RC2 datasheet.

Figure 32. Reset Circuitry and Power-On Reset

Cold Reset

2 conditions are required before enabling a CPU start-up:

- V_{DD} must reach the specified V_{DD} range
- The level on X1 input pin must be outside the specification (V_{IH}, V_{IL})

If one of these 2 conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained till both of the above conditions are met. A reset is active when the level V_{IH1} is reached and when the pulse width covers the period of time where V_{DD} and the oscillator are not stabilized. 2 parameters have to be taken into account to determine the reset pulse width:

- V_{DD} rise time,
- Oscillator startup time.

To determine the capacitor value to implement, the highest value of these 2 parameters has to be chosen. Table 1 gives some capacitor values examples for a minimum R_{RST} of 50 K Ω and different oscillator startup and V_{DD} rise times.

be the one following the instruction that puts the AT89C51RB2/RC2 into Power-down mode.

Figure 34. Power-down Exit Waveform

Exit from Power-down by reset redefines all the SFRs, exit from Power-down by external interrupt does no affect the SFRs.

Exit from Power-down by either reset or external interrupt or keyboard interrupt does not affect the internal RAM content.

Note: If idle mode is activated with Power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 62 shows the state of ports during idle and power-down modes.

Table 62. State of Ports

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Port 0 can force a 0 level. A "one" will leave port floating.

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
HSB	Hardware security Byte	101x 1011b	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	ATMEL
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: memories	F7h	AT89C51RB2/RC2 32KB
	size and type	FBh	AT89C51RB2/RC2 16 KB
	Copy of the Device ID #3: name and revision	EFh	AT89C51RB2/RC2 32KB, Revision 0
		FFh	AT89C51RB2/RC2 16 KB, Revision 0

Table 67.	Default	Values
-----------	---------	--------

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 67 and Table 69.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 68.	Software	Security	Bvte
	Continuito	Coounty	2,10

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	LB1	LB0		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved Do not clear t	e served o not clear this bit.						
6	-	Reserved Do not clear t	Reserved Do not clear this bit.						
5	-	Reserved Do not clear t	Reserved Do not clear this bit.						
4	-	Reserved Do not clear t	Reserved Do not clear this bit.						
3	-	Reserved Do not clear t	Reserved Do not clear this bit.						
2	-	Reserved Do not clear t	Reserved Do not clear this bit.						
1-0	LB1-0	User Memor see Table 69	y Lock Bits						

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 69.

Table 69. Program Lock Bits of the SSB

Program	n Lock I	Bits	
Security level	LB0	LB1	Protection Description
1	U	U	No program lock features enabled.
2	Р	U	ISP programming of the Flash is disabled.
3	Х	Р	Same as 2, also verify through ISP programming interface is disabled.

Note: U: unprogrammed or "one" level.

P: programmed or "zero" level.

X: don't care

WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

Flash Memory Status AT89C51RB2/RC2 parts are delivered in standard with the ISP boot in the Flash memory. After ISP or parallel programming, the possible contents of the Flash memory are summarized on Figure 35.

Figure 35. Flash Memory Possible Contents

Memory Organization In the AT89C51RB2/RC2, the lowest 16K or 32K of the 64 KB program memory address space is filled by internal Flash.

When the EA pin is high, the processor fetches instructions from internal program Flash. Bus expansion for accessing program memory from 16K or 32K upward automatic since external instruction fetches occur automatically when the program counter exceeds 3FFFh (16K) or 7FFFh (32K). If the EA pin is tied low, all program memory fetches are from external memory.

AIMEL

Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the AT89C51RB2/RC2 to establish the baud rate. Table 72 shows the autobaud capability.

Frequency (MHz)										
Baudrate (bit/s)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728	8
2400	OK	ОК	ОК	ОК	ОК	OK	OK	ОК	ОК	OK
4800	OK	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	OK
9600	ОК	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
19200	OK	-	ОК	ОК	ОК	-	-	ОК	ОК	OK
38400	-	-	ОК		ОК	-	ОК	ОК	ОК	
57600	-	-	-	-	ОК	-	-	-	ОК	
115200	-	-	-	-	-	-	-	-	ОК	
Frequency (MHz)										
Baudrate (bit/s)	10	11.0592	12	14.318	14.746	16	20	24	26.6	
2400	OK	ок	ок	ок	ОК	ОК	ОК	ок	ОК	
4800	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
9600	ОК	ок	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
19200	OK	ок	ок	ок	ОК	ОК	ОК	ок	ОК	
38400	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	
57600	-	ОК	-	ОК	ОК	OK	ОК	ОК	ОК	
115200	-	ОК	-	OK	OK	-	-	-	-	

Table 72. Autobaud Performances

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Figure 41. Command Flow

- Flash/EEPROM Programming Data Frame
- EOF or Atmel Frame (only Programming Atmel Frame)
- Config Byte Programming Data Frame
- Baud Rate Frame

Description

Figure 42. Write/Program Flow

Example

Programming Data (write 55h at address 0010h in the Flash)

HOST	: 01	0010 00 55 9A
BOOTLOADER	: 01	0010 00 55 9A . CR LF
Programming	Atmel	function (write SSB to level 2)
HOST	: 02	0000 03 05 01 F5
BOOTLOADER	: 02	0000 03 05 01 F5. CR LF
Writing Fram	ne (wri	ite BSB to 55h)
HOST	: 03	0000 03 06 00 55 9F
BOOTLOADER	: 03	0000 03 06 00 55 9F . CR LF

$T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only) (Continued)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
		0.9 V _{CC}			V	VCC = 2.7V to 5.5V I_{OH} = -10 μ A
R _{RST}	RST Pulldown Resistor	50	200 ⁽⁵⁾	250	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4 and 5			-50	μΑ	V _{IN} = 0.45V
I _{LI}	Input Leakage Current for P0 only			±10	μΑ	$0.45 \mathrm{V} < \mathrm{V_{IN}} < \mathrm{V_{CC}}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4			-650	μΑ	V _{IN} = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 3 MHz TA = 25°C
I _{PD}	Power Down Current		100	150	μΑ	$4.5V < V_{CC <} 5.5V^{(3)}$
I _{CCOP}	Power Supply Current on normal mode			0.4 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
	Power Supply Current on idle mode			0.3 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CCProg}	Power Supply Current during flash Write / Erase		0.4 x Frequency (MHz) + 20		mA	V _{CC} = 5.5V ⁽⁸⁾

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 49.), V_{IL} = V_{SS} + 0.5V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used (see Figure 46).

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; Port 0 = V_{CC}; EA = RST = V_{SS} (see Figure 47).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 48).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typical are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Icc Flash Write operation current while an on-chip flash page write is on going.
- 9. Flash Retention is guaranteed with the same formula for V_{cc} Min down to 0.

108 **AT89C51RB2/RC2**