

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rc2-slrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Figure 1. Block Diagram

- Notes: 1. Alternate function of Port 1.
 - 2. Alternate function of Port 3.

Table 11 shows all SFRs with their address and their reset value.

Table 11. SFR Mapping

	Bit addressable		Non Bit addressable						
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX	CCAP1H XXXX	CCAPL2H XXXX	CCAPL3H XXXX	CCAPL4H XXXX		FFh
F0h	B 0000 0000								F7h
E8h		CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000	FCON ⁽¹⁾ XXXX 0000							D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h				SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX			C7h
B8h	IPL0 X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111	IEN1 XXXXX 000	IPL1 XXXXX000	IPH1 XXXX X000				IPH0 X000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 XXXX XXX0	AFh
A0h	P2 1111 1111		AUXR1 XXXXX0X0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh
90h	P1 1111 1111							CKRL 1111 1111	97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX0X 0000	CKCON0 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

1. FCON access is reserved for the Flash API and ISP software.

Reserved

8 AT89C51RB2/RC2

Port Types

AT89C51RB2/RC2 I/O ports (P1, P2, P3) implement the guasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes. One of these pull-ups, called the "weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. A second pull-up, called the "medium" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again.

The DPU bit (bit 7 in AUXR register) allows to disable the permanent weak pull up of all ports when latch data is logical 0.

The quasi-bidirectional port configuration is shown in Figure 3.

Figure 11. PCA Timer/Counter

- **Table 24.** CCAPMn Registers (n = 0-4)
- CCAPM0 PCA Module 0 Compare/Capture Control Register (0DAh)
- CCAPM1 PCA Module 1 Compare/Capture Control Register (0DBh)
- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 – PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	5 4 3 2 1 0					
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Bit Number	Bit Mnemonic	Description	Description					
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	ECOMn	Enable Com Cleared to di Set to enable	Enable Comparator Cleared to disable the comparator function. Set to enable the comparator function.					
5	CAPPn	Capture Pos Cleared to di Set to enable	Capture Positive Cleared to disable positive edge capture. Set to enable positive edge capture.					
4	CAPNn	Capture Neg Cleared to di Set to enable	Capture Negative Cleared to disable negative edge capture. Set to enable negative edge capture.					
3	MATn	Match When MATn compare/cap interrupt.	= 1, a match oture register o	of the PCA co causes the CC	unter with this Fn bit in CCC	; Module's)N to be set, f	lagging an	
2	TOGn	Toggle When TOGn compare/cap	= 1, a match oture register o	of the PCA co causes theCE	ounter with this Xn pin to togg	s Module's le.		
1	PWMn	Pulse Width Modulation Mode Cleared to disable the CEXn pin to be used as a pulse width modulated outpur Set to enable the CEXn pin to be used as a pulse width modulated output.					ated output. output.	
0	CCF0	Enable CCF Cleared to di an interrupt. Set to enable interrupt.	Interrupt sable compar e compare/cap	e/capture flag pture flag CCF	CCFn in the C	CCON register N register to g	r to generate jenerate an	

Reset Value = X000 0000b Not bit addressable

1

Λ

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0 0 X 16-bit capture by a trigger on CEXn		16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High-speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (Module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA Modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a Module is used in the PWM mode these registers are used to control the duty cycle of the output (see Table 26 and Table 27).

Table 26. CCAPnH Registers (n = 0-4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H – PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H – PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H – PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H – PCA Module 4 Compare/Capture Control Register High (0FEh) ۸

5

-	•	•	-	•	-	-	•
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val	e n Compare/ ue	Capture Con	trol		

2

2

Reset Value = 0000 0000b Not bit addressable

7

Table 42. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0	
-	-	-	BRR	ТВСК	RBCK	SPD	SRC	
Bit Number	Bit Mnemonic	Descriptior	Description					
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit					
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not s	set this bit		
5	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit.					
4	BRR	Baud Rate Cleared to s Set to start t	Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator.					
3	ТВСК	Transmissi Cleared to s Set to selec	on Baud rate elect Timer 1 t internal Baue	e Generator S or Timer 2 for d Rate Genera	election bit for the Baud Rate ttor.	or UART e Generator.		
2	RBCK	Reception Cleared to s Set to selec	Baud Rate G elect Timer 1 t internal Baud	enerator Sele or Timer 2 for d Rate Genera	ection bit for the Baud Rate itor.	JART e Generator.		
1	SPD	Baud Rate Cleared to s Set to selec	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.					
0	SRC	Baud Rate Cleared to s mode). Set to selec	Source selec elect F _{osc} /12 t the internal	et bit in Mode as the Baud F Baud Rate Ge	0 for UART Rate Generato	or (F _{CLK PERIPH} /	6 in X2 0.	

Reset Value = XXX0 0000b Not bit addressablef

Table 46. IPH0 Register

IPH0 - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
6	РРСН	PCA Interru PPCHPPCL 0 0 1 0 1 1	pt Priority Hi <u>Priority Lev</u> Lowest Highest	gh Bit <u>/el</u>			
5	PT2H	Timer 2 Ove PT2HPT2L 0 0 0 1 1 0 1 1	erflow Interru <u>Priority Lev</u> Lowest Highest	pt Priority Hi <u>/el</u>	gh Bit		
4	PSH	Serial Port F PSH PSL 0 0 0 1 1 0 1 1	Priority High <u>Priority Lev</u> Lowest Highest	Bit /el			
3	PT1H	Timer 1 Ove PT1HPT1L 0 0 0 1 1 0 1 1	e rflow Interru <u>Priority Lev</u> Lowest Highest	pt Priority Hi <u>/el</u>	gh Bit		
2	PX1H	External Inte <u>PX1HPX1L</u> 0 0 0 1 1 0 1 1	errupt 1 Prio Priority Lev Lowest Highest	rity High Bit /el			
1	РТОН	Timer 0 Ove PT0HPT0L 0 0 0 1 1 0 1 1	rflow Interru <u>Priority Lev</u> Lowest Highest	pt Priority Hi <u>/el</u>	gh Bit		
0	PX0H	External Internation PX0H PX0L 0 0 0 1 1 0 1 1	errupt 0 Prior Priority Lev Lowest Highest	rity High Bit /el			

Reset Value = X000 0000b Not bit addressable

Table 52. KBE Register

KBE - Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0		
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0		
Bit Number	Bit Mnemonic	Description	Description						
7	KBE7	Keyboard Li Cleared to en Set to enable	Keyboard Line 7 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 7 bit in KBF register to generate an interrupt request.						
6	KBE6	Keyboard Li Cleared to en Set to enable	Keyboard Line 6 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 6 bit in KBF register to generate an interrupt request.						
5	KBE5	Keyboard Line 5 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 5 bit in KBF register to generate an interrupt request.					uest.		
4	KBE4	Keyboard Line 4 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 4 bit in KBF register to generate an interrupt request.					uest.		
3	KBE3	Keyboard Li Cleared to en Set to enable	i ne 3 Enable nable standar e KBF. 3 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.		
2	KBE2	Keyboard Li Cleared to en Set to enable	i ne 2 Enable nable standar e KBF. 2 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.		
1	KBE1	Keyboard Line 1 Enable Bit Cleared to enable standard I/O pin. Set to enable KBF. 1 bit in KBF register to generate an interrupt request.					uest.		
0	KBE0	Keyboard L Cleared to en Set to enable	i ne 0 Enable nable standar e KBF. 0 bit in	Bit d I/O pin. KBF register t	to generate ar	n interrupt req	uest.		

Reset Value = 0000 0000b

Power Management

Two power reduction modes are implemented in the AT89C51RB2/RC2: the Idle mode and the Power-down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "X2 Feature".

Reset

In order to start-up (cold reset) or to restart (warm reset) properly the microcontroller, an high level has to be applied on the RST pin. A bad level leads to a wrong initialization of the internal registers like SFRs, Program Counter... and to unpredictable behavior of the microcontroller. A proper device reset initializes the AT89C51RB2/RC2 and vectors the CPU to address 0000h. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to V_{DD} as shown in Figure 32. A warm reset can be applied either directly on the RST pin or indirectly by an internal reset source such as the watchdog timer. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51RB2/RC2 datasheet.

Figure 32. Reset Circuitry and Power-On Reset

Cold Reset

2 conditions are required before enabling a CPU start-up:

- V_{DD} must reach the specified V_{DD} range
- The level on X1 input pin must be outside the specification (V_{IH}, V_{IL})

If one of these 2 conditions are not met, the microcontroller does not start correctly and can execute an instruction fetch from anywhere in the program space. An active level applied on the RST pin must be maintained till both of the above conditions are met. A reset is active when the level V_{IH1} is reached and when the pulse width covers the period of time where V_{DD} and the oscillator are not stabilized. 2 parameters have to be taken into account to determine the reset pulse width:

- V_{DD} rise time,
- Oscillator startup time.

To determine the capacitor value to implement, the highest value of these 2 parameters has to be chosen. Table 1 gives some capacitor values examples for a minimum R_{RST} of 50 K Ω and different oscillator startup and V_{DD} rise times.

Oscillator		VDD Rise Time)		
Start-Up Time	1 ms	10 ms	100 ms		
5 ms	820 nF	1.2 µF	12 µF		
20 ms	2.7 µF	3.9 µF	12 µF		

Table 1. Minimum Reset Capacitor Value for a 50 k Ω Pull-down Resistor⁽¹⁾

Note: These values assume V_{DD} starts from 0V to the nominal value. If the time between 2 on/off sequences is too fast, the power-supply de-coupling capacitors may not be fully discharged, leading to a bad reset sequence.

Warm Reset

To achieve a valid reset, the reset signal must be maintained for at least 2 machine cycles (24 oscillator clock periods) while the oscillator is running. The number of clock periods is mode independent (X2 or X1).

Watchdog ResetAs detailed in Section "Hardware Watchdog Timer", page 77, the WDT generates a 96-
clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of
the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω
resistor must be added as shown Figure 33.

Figure 33. Reset Circuitry for WDT Reset-out Usage

Power-off Flag

The Power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated by an exit from Power-down.

The Power-off flag (POF) is located in PCON register (Table 63). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 63. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description	Description					
7	SMOD1	Serial port N Set to select	Serial port Mode Bit 1 Set to select double baud rate in mode 1, 2 or 3.					
6	SMOD0	Serial port M Cleared to se Set to select	Serial port Mode Bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.					
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Power-off Flag Cleared to recognize next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1	General-pur Cleared by u Set by user fo	pose Flag ser for genera or general-pui	Il-purpose usa rpose usage.	ge.			
2	GF0	General-pur Cleared by u Set by user fo	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.					
1	PD	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle Mode B Cleared by h Set to enter in	Idle Mode Bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.					

Reset Value = 00X1 0000b Not bit addressable

Table 66.	Program	Lock Bits
-----------	---------	-----------

Proç	Program Lock Bits			
Security Level	LB0	LB1	LB2	Protection Description
1	U	U	U	No program lock features enabled.
2	Ρ	U	U	MOVC instruction executed from external program memory is disabled from fetching code Bytes from internal memory, \overline{EA} is sampled and latched on reset, and further parallel programming of the Flash is disabled. ISP and software programming with API are still allowed.
3	х	Р	U	Same as 2, also verify through parallel programming interface is disabled.
4	Х	Х	Р	Same as 3, also external execution is disabled. (Default)

Note: U: unprogrammed or "one" level.

P: programmed or "zero" level.

X: don't care

WARNING: Security level '2' and '3' should only be programmed after Flash and code verification.

These security bits protect the code access through the parallel programming interface. They are set by default to level 4. The code access through the ISP is still possible and is controlled by the "software security bits" which are stored in the extra Flash memory accessed by the ISP firmware.

To load a new application with the parallel programmer, a chip erase must first be done. This will set the HSB in its inactive state and will erase the Flash memory. The part reference can always be read using Flash parallel programming modes.

The default value of the HSB provides parts ready to be programmed with ISP:

- BLJB: Programmed force ISP operation.
- X2: Unprogrammed to force X1 mode (Standard Mode).
- XRAM: Unprogrammed to valid XRAM
- LB2-0: Security level four to protect the code from a parallel access with maximum security.

Software Registers

Default Values

Several registers are used, in factory and by parallel programmers, to make copies of hardware registers contents. These values are used by Atmel ISP.

These registers are in the "Extra Flash Memory" part of the Flash memory. This block is also called "XAF" or eXtra Array Flash. They are accessed in the following ways:

- Commands issued by the parallel memory programmer.
- Commands issued by the ISP software.
- Calls of API issued by the application software.

Several software registers are described in Table 67.

Bootloader Architecture

Introduction

The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Acronyms

ISP: In-system Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Bit HW : Hardware Byte

Full Chip Erase	 The ISP command "Full Chip Erase" erases all User Flash memory (fills with FFh) and sets some Bytes used by the bootloader at their default values: BSB = FFh SBV = FCh SSB = FFh and finally erase the Software Security Bits The Full Chip Erase does not affect the bootloader. 				
Checksum Error	When a checksum error is detected send 'X' followed with CR&LF.				
Flow Description					
Overview	An initialization step must be performed after each Reset. After microcontroller reset, the bootloader waits for an autobaud sequence (see section 'autobaud performance').				
	When the communication is initialized the protocol depends on the record typ requested by the host.				
	FLIP, a software utility to implement ISP programming with a PC, is available from the Atmel the web site.				
Communication Initialization	The host initializes the communication by sending a 'U' character to help the bootloader to compute the baudrate (autobaud).				
	Figure 40. Initialization				
	Host		<u>Bootloader</u>		
	Init Communication	"U" >	Performs Autobaud		
	If (not received "U") Else Communication Opened	≺ "U"	Sends Back 'U' Character		

ISP Commands Summary

 Table 73. ISP Commands Summary

Command	Command Name	Data[0]	Data[1]	Command Effect
00h	Program Data			Program Nb Data Byte. Bootloader will accept up to 128 (80h) data Bytes. The data Bytes should be 128 Byte page Flash boundary.
			00h	Erase block0 (0000h-1FFFh)
		01h	20h	Erase block1 (2000h-3FFFh)
			40h	Erase block2 (4000h-7FFFh)
			80h	Erase block3 (8000h- BFFFh)
			C0h	Erase block4 (C000h- FFFFh)
		03h	00h	Hardware Reset
		04h	00h	Erase SBV & BSB
		OEb	00h	Program SSB level 1
03h	Write Function	0011	01h	Program SSB level 2
		06b	00h	Program BSB (value to write in data[2])
		0011	01h	Program SBV (value to write in data[2])
		07h	-	Full Chip Erase (This command needs about 6 sec to be executed)
		0Ah	02h	Program Osc fuse (value to write in data[2])
			04h	Program BLJB fuse (value to write in data[2])
			08h	Program X2 fuse (value to write in data[2])
04h	Display Function Display Function Data[0:1] = start address Data[2:3] = end address Data[4] = 00h -> Display data		start address end address -> Display data -> Blank check	Display Data Note: The maximum number of data that can be read with a single command frame (difference between start and end address) is 1kbyte.
				Blank Check
			00h	Manufacturer ID
		00h	01h	Device ID #1
			02h	Device ID #2
			03h	Device ID #3
05h		07h	00h	Read SSB
	Read Function		01h	Read BSB
			02h	Read SBV
			06h	Read Extra Byte
		0Bh	00h	Read Hardware Byte
		0Eb	00h	Read Device Boot ID1
			01h	Read Device Boot ID2
		0Fh	00h	Read Bootloader Version

$T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only) (Continued)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$
		0.9 V _{CC}			V	VCC = 2.7V to 5.5V I_{OH} = -10 μ A
R _{RST}	RST Pulldown Resistor	50	200 ⁽⁵⁾	250	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4 and 5			-50	μΑ	V _{IN} = 0.45V
I _{LI}	Input Leakage Current for P0 only			±10	μΑ	$0.45 \mathrm{V} < \mathrm{V_{IN}} < \mathrm{V_{CC}}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4			-650	μΑ	V _{IN} = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 3 MHz TA = 25°C
I _{PD}	Power Down Current		100	150	μΑ	$4.5V < V_{CC <} 5.5V^{(3)}$
I _{CCOP}	Power Supply Current on normal mode			0.4 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
	Power Supply Current on idle mode			0.3 x Frequency (MHz) + 5	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CCProg}	Power Supply Current during flash Write / Erase		0.4 x Frequency (MHz) + 20		mA	V _{CC} = 5.5V ⁽⁸⁾

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 49.), V_{IL} = V_{SS} + 0.5V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used (see Figure 46).

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; Port 0 = V_{CC}; EA = RST = V_{SS} (see Figure 47).
- Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 48).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typical are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2 and 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Icc Flash Write operation current while an on-chip flash page write is on going.
- 9. Flash Retention is guaranteed with the same formula for V_{cc} Min down to 0.

108 **AT89C51RB2/RC2**

Symbol	Туре	Standard Clock	X2 Clock	X Parameter for - M Range	X Parameter for - L Range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	30	ns
T _{RHDX}	Min	х	х	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	25	25	ns
T_{LLDV}	Max	8 T - x	4T -x	45	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	15	ns
T _{RLAZ}	Max	x	x	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	20	ns

External Data Memory Write Cycle

Datasheet Change Log

Changes from 4180A- 08/02 to 4180B-04/03	1. 2.	Changed the endurance of Flash to 100, 000 Write/Erase cycles. Added note on Flash retention formula for $V_{\rm IH1}$, in Section "DC Parameters for Standard Voltage", page 107.
Changes from 4180B- 04/03 to 4180C-12/03	1.	Max frequency update for 4.5 to 5.5V range up to 60 MHz (internal code execution).
Changes from 4180C- 12/03 - 4180D - 06/05	1.	Added Green product ordering information. Page 119.
Changes from 4180D - 06/05 to 4180E - 10/06	1.	Correction to PDIL40 figure on page 9.

DC Parameters for Standard Voltage	107
DC Parameters for Low Voltage	109
AC Parameters	111
Ordering Information	119
Package Information	120
PDIL40	120
VQFP44	121
PLC44	122
Datasheet Change Log	123
Changes from 4180A-08/02 to 4180B-04/03	123
Changes from 4180B-04/03 to 4180C-12/03	123
Changes from 4180C-12/03 - 4180D - 06/05	123
Changes from 4180D - 06/05 to 4180E - 10/06	123
Table of Contents	i