

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	I ² C, SIO, UART/USART, USB
Peripherals	POR, WDT
Number of I/O	45
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f337pmc-ge1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-bit Microcontroller

CMOS

F²MC-16LX MB90335 Series MB90337/F337/V330A

DESCRIPTION

The MB90335 series are 16-bit microcontrollers designed for applications, such as personal computer peripheral devices, that require USB communications. The USB feature supports not only 12-Mbps Function operation but also HOST operation. It is equipped with functions that are suitable for personal computer peripheral devices such as displays and audio devices, and control of mobile devices that support USB communications. While inheriting the AT architecture of the F²MC* family, the instruction set supports the C language and extended addressing modes and contains enhanced signed multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, long word processing is now available by introducing a 32-bit accumulator.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

Clock

- Built-in oscillation circuit and PLL clock frequency multiplication circuit
- Oscillation clock
- The main clock is the oscillation clock divided into 2 (for oscillation 6 MHz : 3 MHz)
- Clock for USB is 48 MHz
- Machine clock frequency of 6 MHz, 12 MHz or 24 MHz selectable
- Minimum execution time of instruction : 41.7 ns (6 MHz oscillation clock, 4-time multiplied : machine clock 24 MHz and at operating $V_{CC} = 3.3 \text{ V}$)
- The maximum memory space: 16 Mbytes
- 24-bit addressing
- Bank addressing

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

■ PRODUCT LINEUP

Part number	MB90V330A	MB90F337	MB90337				
Туре	For evaluation	Built-in Flash Memory Built-in MASK F					
ROM capacity	No	64 Kbytes					
RAM capacity	28 Kbytes	4 Kb	ytes				
Emulator-specific power supply *	Used bit		-				
CPU functions	Number of basic instructions Minimum instruction execution time Addressing type Program Patch Function Maximum memory space	 351 instructions 41.7 ns / at oscillation of 6 MHz (When 4 times are used : Machine clock of 24 MH 23 types For 2 address pointers 16 Mbytes 					
Ports	I/O Ports(CMOS) Max 45 por	ts					
UART	Equipped with full-duplex dou Clock synchronous or asynch It can also be used for I/O se Built-in special baud-rate ger Built-in 2 channels	nronous operation selectable rial.	9.				
16-bit reload timer	16-bit reload timer operation Built-in 1 channel						
Multi-functional timer	8/16-bit PPG timer (8-bit mod 16-bit PWC timer \times 1 channe		e × 2 channels)				
DTP/External interrupt	8 channels Interrupt factor : "L"→"H" edg	le /"H"→"L" edge /"L" level /'	'H" level selectable				
l ² C	1 channel						
Extended I/O serial interface	1 channel						
USB	1 channel USB function (supports USB Full Speed) USB HOST function						
Withstand voltage of 5 V	8 ports (Excluding UTEST ar	nd I/O for I ² C)					
Low Power Consumption Mode	Sleep mode/Timebase timer	eep mode/Timebase timer mode/Stop mode/CPU intermittent mode					
Process	CMOS						
Operating voltage Vcc	3.3 V \pm 0.3 V (at maximum machine clock 24 MHz)						

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.

■ PACKAGES AND PRODUCT MODELS

Package	MB90337	MB90F337	MB90V330A		
FPT-64P-M23 (LQFP)	0	0	Х		
PGA-299C-A01 (PGA)	×	X	0		

 \bigcirc : Yes \times : No

Note : See "■ PACKAGE DIMENSIONS" for details.

(Continu		
Туре	Circuit	Remarks
н	P-ch P-ch P-ch Pout N-ch N-ch N-ch Nout CMOS hysteresis input Standby control signal	 CMOS output CMOS hysteresis input (With input interception function at standby) With open drain control signal
Ι	CMOS input Standby control signal	 CMOS output CMOS input (With input interception function at standby) Programmable input pull-up resistor
J	D+ input D - input Differential input Full D + output Full D - output Low D + output Low D - output Direction Speed	USB I/O pin
К	P-ch Pout N-ch Nout 777 CMOS input Standby control signal	 CMOS output CMOS input (With input interception function at standby)

7. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the V_{CC} supply voltage operating range. For stabilization reference, the supply voltage should be stabilized so that V_{CC} ripple variations (peak-to-peak value) at commercial frequencies (50 MHz to 60 MHz) fall below 10% of the standard V_{CC} supply voltage and the transient regulation does not exceed 0.1 V/ms at temporary changes such as power supply switching.

8. Writing to flash memory

For serial writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.13 V and 3.6 V. For normal writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.0 V and 3.6 V.

9. Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example, apply a checksum to detect an error. If an error is detected, retransmit the data.

■ I/O MAP

Address	Register abbreviation	Register	Register Read/ Write		Initial Value
00000н	PDR0	Port 0 Data Register	Port 0	XXXXXXXXB	
000001н	PDR1	Port 1 Data Register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 Data Register	R/W	Port 2	XXXXXXXXB
00003н		Prohibite	d		
000004н	PDR4	Port 4 Data Register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 Data Register	R/W	Port 5	XXXXXв
00006н	PDR6	Port 6 Data Register	R/W	Port 6	XXXXXXXXB
000007н to 00000Fн		Prohibite	ed		
000010н	DDR0	Port 0 Direction Register	R/W	Port 0	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ B
000011н	DDR1	Port 1 Direction Register	R/W	Port 1	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_B$
000012н	DDR2	Port 2 Direction Register	R/W	Port 2	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0_B$
000013н		Prohibite	d		
000014н	DDR4	Port 4 Direction Register	R/W	Port 4	00000000 _B
000015н	DDR5	Port 5 Direction Register	R/W	Port 5	00000 _В
000016н	DDR6	Port 6 Direction Register	Port 6	00000000 _B	
000017н to 00001Ан		Prohibite	ed		
00001Bн	ODR4	Port 4 Output Pin Register	R/W	Port 4 (Open-drain control)	000000000
00001Сн	RDR0	Port 0 Pull-up Resistance Register	R/W	Port 0 (PULL-UP)	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{B}$
00001Dн	RDR1	Port 1 Pull-up Resistance Register	R/W	Port 1 (PULL-UP)	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{B}$
00001Eн		Drobibito			
00001Fн		Prohibite	ea		
000020н	SMR0	Serial Mode Register 0	R/W		$0\ 0\ 1\ 0\ 0\ 0\ 0_B$
000021н	SCR0	Serial Control Register 0	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0_B$
000022н	SIDR0	Serial Input Data Register 0	R	UART0	XXXXXXXXB
000022H	SODR0	Serial Output Data Register 0	W		ллллллв
000023н	SSR0	Serial Status Register 0	R/W		0000100 _B
000024н	UTRLR0	UART Prescaler Reload Register 0	R/W	Communication	00000000 _B
000025н	UTCR0	UART Prescaler Control Register 0	R/W	Prescaler (UART0)	0000-000в
000026н	SMR1	Serial Mode Register 1	R/W		$0\ 0\ 1\ 0\ 0\ 0\ 0_B$
000027н	5		R/W	1	00000100 _B
000000	SIDR1	Serial Input Data Register 1	R	UART1	~~~~~
000028н	SODR1	Serial Output Data Register 1	W	1	XXXXXXXXB
000029н	SSR1	Serial Status Register 1	R/W	1	0000100 _B

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000В0н	ICR00	Interrupt Control Register 00	R/W		00000111в
0000B1 н	ICR01	Interrupt Control Register 01	R/W		00000111в
0000В2н	ICR02	Interrupt Control Register 02	R/W		00000111в
0000ВЗн	ICR03	Interrupt Control Register 03	R/W		00000111в
0000В4н	ICR04	Interrupt Control Register 04	R/W	-	00000111в
0000В5н	ICR05	Interrupt Control Register 05	R/W		00000111в
0000В6н	ICR06	Interrupt Control Register 06	R/W		00000111в
0000В7 н	ICR07	Interrupt Control Register 07	R/W	Interrupt	00000111в
0000B8н	ICR08	Interrupt Control Register 08	R/W	Controller	00000111в
0000В9н	ICR09	Interrupt Control Register 09	R/W		00000111в
0000ВАн	ICR10	Interrupt Control Register 10	R/W		00000111в
0000BBH	ICR11	Interrupt Control Register 11	R/W		00000111в
0000BCH	ICR12	Interrupt Control Register 12	R/W	-	00000111в
0000BDH	ICR13	Interrupt Control Register 13	R/W	-	00000111в
0000BEH	ICR14	Interrupt Control Register 14	R/W		00000111в
0000BFн	ICR15	Interrupt Control Register 15	R/W	-	00000111в
0000С0н	HCNT0	Host Control Register 0	R/W		00000000
0000С1 н	HCNT1	Host Control Register 1	R/W		0000001в
0000С2н	HIRQ	Host Interruption Register	R/W		00000000 _B
0000СЗн	HERR	Host Error Status Register	R/W		0000011в
0000C4н	HSTATE	Host State Status Register	R/W		XX 0 1 0 0 1 0 _B
0000C5н	HFCOMP	SOF Interrupt FRAME Compare Reg- ister	R/W		000000000
0000С6н			R/W		00000000 _B
0000С7 н	HRTIMER	Retry Timer Setting Register	R/W	USB HOST	00000000 _B
0000С8н			R/W		XXXXXX 0 0B
0000С9н	HADR	Host Address Register	R/W		ХООООООВ
0000САн		FOF Setting Desistor	R/W		0 0 0 0 0 0 0 0 0 _B
0000CBH	HEOF	EOF Setting Register	R/W	-	XX 0 0 0 0 0 0 _B
0000ССн			R/W		0 0 0 0 0 0 0 0 0 _B
0000CDH	HFRAME	E FRAME Setting Register			XXXXX 0 0 0 _B
0000CEH	HTOKEN	Host Token End Point Register	R/W	-	00000000
0000CFH		Prohibited	1	1	<u>'</u>
0000D0н			R/W		1010000 _B
0000D1 н	UDCC	UDC Control Register	R/W	USB Function	0 0 0 0 0 0 0 0 _B
		1			(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000D2н	EP0C	EPO Control Degister	R/W		0100000в
0000D3н	EPUC	EP0 Control Register	R/W		XXXX 0 0 0 0 _B
0000D4н	EP1C	ED1 Control Degister	R/W		00000000
0000D5н	EPIC	EP1 Control Register	R/W		01100001в
0000D6н	EP2C	EP2 Control Pogiator	R/W		0100000
0000D7н	EF20	EP2 Control Register	R/W		01100000в
0000D8H	EP3C	EP3 Control Register	R/W		0100000в
0000D9н	EI 30		R/W		01100000в
0000DAн	EP4C	EP4 Control Register	R/W		0100000
0000DBH	LI 40		R/W		01100000в
0000DCH	EP5C	EP5 Control Register	R/W		0100000
0000DDн	EI 50		R/W		01100000в
0000DEH	TMSP	Time Stamp Register	R		00000000 _B
0000DFн	TMOT	Time Stamp Register	R		XXXXX0 0 0 _B
0000E0н	UDCS	UDC Status Register	R/W		ХХО О О О О О О В
0000E1н	UDCIE	UDC Interrupt Enable Register	R/W		00000000 _B
0000E2н	EP0IS	EP0I Status Register	R/W		XXXXXXXXB
0000E3H		LI OI Status negister	R/W		1 0 XXX 1 XX _в
0000E4H	EP0OS	EP0O Status Register	R/W, R	USB Function	0 XXXXXXXB
0000E5н	LI 003		R/W		1 0 0 XX 0 0 0 _B
0000E6н	EP1S	EP1 Status Register	R		XXXXXXXXB
0000E7н	LI IO		R/W		100000XB
0000E8H	EP2S	EP2 Status Register	R		XXXXXXXXB
0000E9н	21 20		R/W		10000000 _B
0000EAн	EP3S	EP3 Status Begister	R		XXXXXXXXB
0000ЕВн	El 00	EP3S EP3 Status Register R/W	R/W		10000000 _B
0000ECн	EP4S	EP4 Status Register	R		XXXXXXXXB
0000EDн			R/W		10000000 _B
0000EEH	EP5S	EP5 Status Register	R		XXXXXXXXB
0000EFн	LI 55		R/W		10000000
0000F0н	EP0DT	EP0 Data Register	R/W		XXXXXXXXB
0000F1н	LIODI		R/W		XXXXXXXXB
0000F2н	EP1DT	EP1 Data Register	R/W		XXXXXXXXB
0000F3н			R/W]	XXXXXXXXB
0000F4н	EP2DT	EP2 Data Register	R/W]	XXXXXXXXB
0000F5н			R/W		XXXXXXXXB
0000F6н	EP3DT	EP3 Data Register	R/W		XXXXXXXXB
0000F7н			R/W]	XXXXXXXXB
0000F8н	EP4DT	EP4 Data Register	R/W]	XXXXXXXXB
0000F9н			R/W		XXXXXXXXB

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000FAн	EP5DT	EB5 Data Bagistar	R/W	- USB Function	XXXXXXXXB
0000FBH	EFSDT	EP5 Data Register	R/W		XXXXXXXXB
0000FCH					
to 0000FF⊦		Prohibited	d		
000100 н					
to		RAM Area	a		
001100н				1	
001FF0н		Program Address Detection Register ch.0 Lower	R/W		XXXXXXXXB
001FF1н	PADR0	Program Address Detection Register ch.0 Middle	R/W		XXXXXXXXB
001FF2н		Program Address Detection Register ch.0 Upper	R/W	Address Match	XXXXXXXXB
001FF3н		Program Address Detection Register ch.1 Lower	R/W	Detection	XXXXXXXXB
001FF4н	PADR1	Program Address Detection Register ch.1 Middle	R/W		XXXXXXXXB
001FF5н		Program Address Detection Register ch.1 Upper	R/W		XXXXXXXXB
007900н	PRLL0	PPG Reload Register Lower ch.0	R/W		XXXXXXXXB
007901 н	PRLH0	PPG Reload Register Upper ch.0	R/W	PPG ch.0	XXXXXXXXB
007902н	PRLL1	PPG Reload Register Lower ch.1	R/W	PPG ch.1	XXXXXXXXB
007903н	PRLH1	PPG Reload Register Upper ch.1	R/W		XXXXXXXXB
007904н	PRLL2	PPG Reload Register Lower ch.2	R/W	PPG ch.2	XXXXXXXXB
007905н	PRLH2	PPG Reload Register Upper ch.2	R/W		XXXXXXXXB
007906н	PRLL3	PPG Reload Register Lower ch.3	R/W	PPG ch.3	XXXXXXXXB
007907н	PRLH3	PPG Reload Register Upper ch.3	R/W		XXXXXXXXB
007908н			_		
to 00790B⊦		Prohibited	d		
		Flash Memory Program Control	_		
00790Сн	FWR0	Register 0	R/W	Flash	00000000
00790Dн	FWR1	Flash Memory Program Control Register 1	R/W	Flash	0 0 0 0 0 0 0 0 0 _B
00790Ен	SSR0	Sector Conversion Setting Register	R/W	Flash	0 0 XXXXX0 _B
00790Fн to 00791Fн		Prohibited	d	·	

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	El ² OS support	μ DMAC	Int	terrupt	vector	Interru reç	Priority	
	support		Num	ber*1	Address	ICR	Address	
Reset	×	×	#08	08 н	FFFFDC H			High
INT 9 instruction	×	×	#09	09н	FFFFD8H		—	
Exceptional treatment	×	×	#10	0Ан	FFFFD4H		—	Ī
USB Function1	×	0, 1	#11	0Вн	FFFFD0H	ICR00	0000В0н	
USB Function2	×	2 to 6*2	#12	0Сн	FFFFCC H		UUUUDUH	
USB Function3	×	×	#13	0Dн	FFFFC8H	ICR01	0000B1н	
USB Function4	×	×	#14	0Ен	FFFFC4H		UUUUD IH	
USB HOST1	×	×	#15	0 F н	FFFFC0H	ICR02	0000В2н	
USB HOST2	×	×	#16	10 н	FFFFBC H	10002	0000020	
I ² C ch.0	×	×	#17	11 н	FFFFB8H	ICR03	0000ВЗн	
DTP/External interrupt ch.0/ch.1	0	×	#18	12 н	FFFFB4H	10103	UUUDSH	
No			#19	13 н	FFFFB0H	ICR04	0000B4н	
DTP/External interrupt ch.2/ch.3	0	×	#20	14 н	FFFFAC H	10R04	000064н	
No			#21	15 н	FFFFA8H	ICR05	0000B5н	
DTP/External interrupt ch.4/ch.5	0	×	#22	16 н	FFFFA4H	ICRUS	UUUUDOH	
PWC/Reload timer ch.0	\bigtriangleup	14	#23	17 н	FFFFA0H	ICR06	0000В6н	
DTP/External interrupt ch.6/ch.7	\bigtriangleup	×	#24	18 н	FFFF9CH			
No			#25	19 н	FFFF98н	ICR07	000007.	
No			#26	1А н	FFFF94н		0000B7н	
No			#27	1 Вн	FFFF90н		0000000	
No			#28	1 С н	FFFF8CH	ICR08	0000B8н	
No			#29	1Dн	FFFF88н		0000000	
PPG ch.0/ch.1	×	×	#30	1 Ен	FFFF84H	ICR09	0000В9н	
No			#31	1 F н	FFFF80H			
PPG ch.2/ch.3	×	×	#32	20н	FFFF7C _H	ICR10	0000ВАн	
No			#33	21н	FFFF78н		0000BBн	
No			#34	22н	FFFF74 _H	ICR11	0000BBH	
No			#35	23н	FFFF70н		0000000	
No			#36	24н	FFFF6CH	ICR12	0000BCн	
UART (Send completed) ch.0/ch.1	0	13	#37	25н	FFFF68 _H		000000	
Extended serial I/O	×	9	#38	26н	FFFF64 _H	ICR13	0000BDн	
UART(Reception completed) ch.0/ch.1	O	12	#39	27н	FFFF60⊦	ICR14	0000ВЕн	
Time-base timer	×	×	#40	28н	FFFF5CH			V
Flash memory status	×	×	#41	29н	FFFF58H		00000	
Delay interrupt output module	×	×	#42	2Ан	FFFF54H	ICR15	0000BFн	Low

USB

1. USB Function

The USB function is an interface supporting the USB (Universal Serial Bus) communications protocol.

Features of USB function

- Supports USB Full Speed
- Supports full speed (12 Mbps).
- The device status is auto-answer.
- Bit stripping, bit stuffing, and automatic generation and check of CRC5 and CRC16.
- Toggle check by data synchronization bit.
- Automatic response to all standard commands except Get/SetDescriptor and SynchFrame commands (these three commands can be processed the same way as the class vendor commands).
- The class vendor commands can be received as data and responded via firmware.
- Supports up to a maximum of six EndPoints (EndPoint0 is fixed to control transfer).
- Two built-in transfer data buffers for each end point (one IN buffer and one OUT buffer for end point 0).
- Supports automatic transfer mode for transfer data via DMA (except buffers for EndPoint0).

2. USB HOST

USB HOST provides minimal host operations required and is a function that enables data to be transferred between devices without PC intervention.

Features of USB HOST

- Automatic detection of Low Speed/Full Speed transfer
- Low Speed/Full Speed transfer support
- Automatic detection of connection and cutting device
- Reset sending function support to USB-bus
- Support of IN/OUT/SETUP/SOF token
- In-token handshake packet automatic transmission (excluding STALL)
- Handshake packet automatic detection at out-token
- Supports a maximum packet length of 256 bytes
- Error (CRC error/toggle error/time-out) various supports
- Wake-Up function support

USB HOST HUB support • Bulk transfer 0 Control transfer \bigcirc Transfer Interrupt transfer Isochronous transfer Х Low Speed Transfer speed Full Speed 0 PRE packet support Х SOF packet support \bigcirc CRC error Toggle error \bigcirc Error Time-out 0 Maximum packet < receive data 0 Detection of connection and cutting of device 0 Transfer speed detection 0

Restrictions on USB HOST

 \bigcirc : Supported

 \times $$: Not supported

* : Only supports full speed, and supports hubs up to one level.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Dexemptor	Symbol	Rat	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 4.0	V	
		Vss - 0.3	Vss + 4.0	V	*2
Input voltage*1	Vı	Vss – 0.3	Vss + 6.0	V	N-ch open-drain (Withstand voltage I/O of 5 V)*3
		- 0.5	Vss + 4.5	V	USB I/O
	Vo	V ss - 0.3	Vss + 4.0	V	*2
Output voltage*1	VO	- 0.5	Vss + 4.5	V	USB I/O
Maximum clamp current		- 2.0	+2.0	mA	*4
Total maximum clamp current	Σ		20	mA	*4
"L" level maximum output	Iol1		10	mA	Other than USB I/O*5
current	IOL2		43	mA	USB I/O*5
"L" level average output	IOLAV1		4	mA	*6
current	Iolav2		15/4.5	mA	USB-IO (Full speed/Low speed) *6
"L" level maximum total output current	ΣΙοι	_	100	mA	
"L" level average total output current	ΣΙοιαν	_	50	mA	*7
"H" level maximum output	Іон1		- 10	mA	Other than USB I/O*5
current	Іон2		- 43	mA	USB I/O*5
	Іонаν1		- 4	mA	*6
"H" level average output current	Іонау2	_	-15/-4.5	mA	USB-IO (Full speed/Low speed) *6
"H" level maximum total output current	ΣІон	—	- 100	mA	
"H" level average total output current	ΣΙοήαν	_	- 50	mA	*7
Power consumption	Pd		270	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storago tomporaturo	Tota	- 55	+ 150	°C	
Storage temperature	Tstg	- 55	+ 125	°C	USB I/O

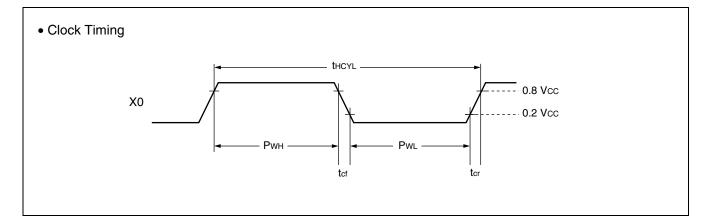
*1 : The parameter is based on $V_{\text{SS}} = 0.0 \text{ V}.$

*2 : VI and Vo must not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3 : Applicable to pins : P60 to P67, UTEST

(Continued)

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

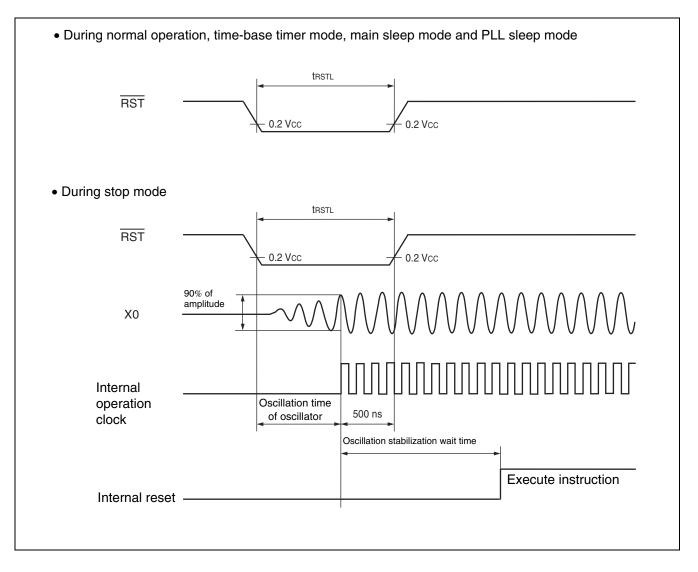

Parameter	Sym-	Pin name	ame Conditions			Value			
Farameter	bol	Fiirnaine	Conditions	Min	Тур	Max	Unit	Remarks	
Input capacitance	CIN	Other than Vcc and Vss	_		5	15	pF		
Pull-up resistor	Rup	RST	_	25	50	100	kΩ		
Pull-down resistor	Rdown	MD2	Vcc = 3.0 V At T _A = +25 °C	25	50	100	kΩ	MB90337	
USB I/O output impedance	Zusb	DVP, DVM HVP, HVM	_	3		14	Ω		

Note : P60 to P67 are N-ch open-drain pins usually used as CMOS.

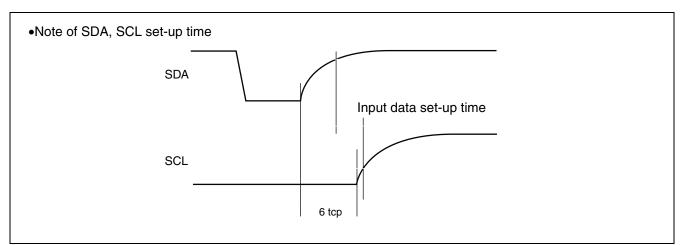
4. AC Characteristics

(1) Clock input timing

							1
Parameter	Sym-	Pin	Value			Unit	Remarks
Falameter	bol	name	Min	Тур	Max	Unit	nemarks
Clock frequency	fсн	X0, X1		6		MHz	When oscillator is used
Clock liequency	ICH	AU, AT	6		24	MHz	External clock input
Clock cycle time	tuo."	V0 V1	_	166.7		ns	When oscillator is used
	t hcyl	X0, X1	166.7	_	41.7	ns	External clock input
Input clock pulse width	Р _{wн} Рw∟	X0	10			ns	A reference duty ratio is 30% to 70%.
Input clock rise time and fall time	tcr tcf	X0			5	ns	At external clock
Internal operating clock frequency	fср		3		24	MHz	When main clock is used
Internal operating clock cycle time	tср		42		333	ns	When main clock is used

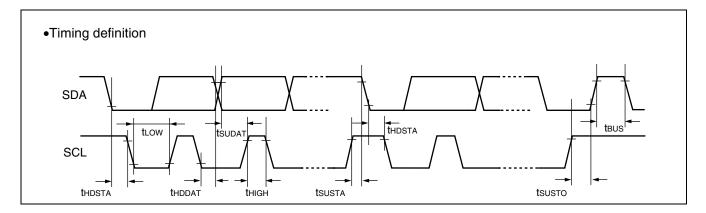

(Vcc = 3.3 V \pm 0.3 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

(2) Reset


 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym- bol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Unit	neillaiks
Reset input time	trs⊤∟	RST	_	500		ns	At normal operating, At time base timer mode, At main sleep mode, At PLL sleep mode
				Oscillation time of oscillator* + 500 ns		μs	At stop mode

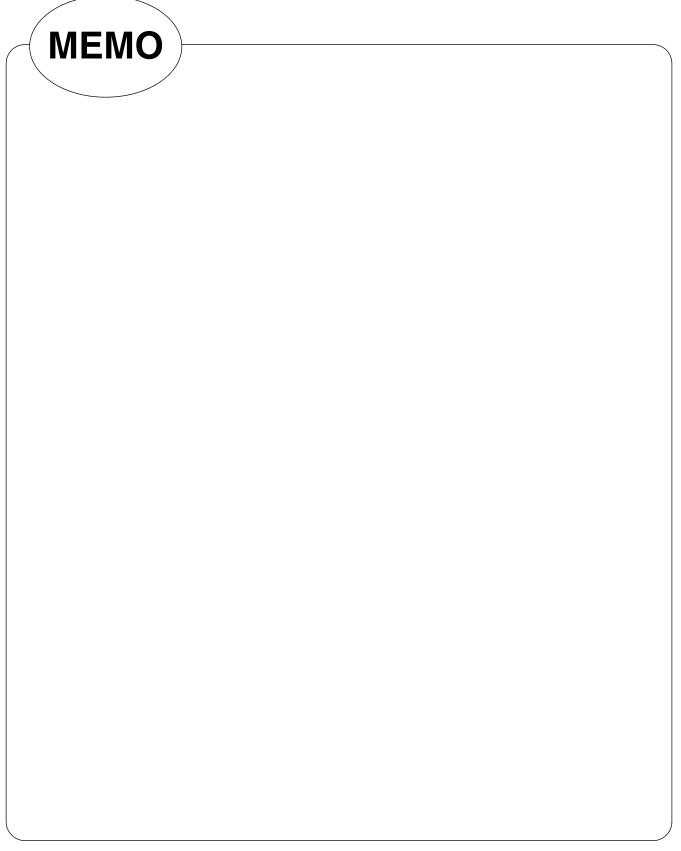
* : Oscillation time of oscillator is the time that the amplitude reaches 90 %. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a ceramic oscillator, and 0 milliseconds on an external clock.



FU

Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.


■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F337PMC MB90337PMC	64-pin plastic LQFP (FPT-64P-M23)	
MB90V330ACR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
35	 ELECTRICAL CHARACTERISTICS 4.AC Characteristics (3) Power-on reset 	Corrected as follows; Voltage of RAM data hold: 3.0 V \rightarrow 1.8 V

The vertical lines marked in the left side of the page show the changes.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 *http://jp.fujitsu.com/fsl/en/*

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.