

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, EBI/EMI, HDLC, I ² C, SmartCard, SPI, UART/USART, USB
Peripherals	PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8 + 16K)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str710fz1h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

STR71xFxx STR710RZ

5	Package characteristics
	5.1 Package mechanical data
	5.2 Thermal characteristics
6	Product history
7	Ordering information
8	Known limitations
9	Revision history

3.3 Pin description for 144-pin packages

Figure 2. STR710 LQFP pinout

Table 4.	STR710 pin	description
----------	------------	-------------

Pir	ו n°			(1)	Inp	out	Οι	utpu	t	dby	Main	
LQFP144	BGA144	Pin name	Type	Reset stat	Input level	interrupt	Capability	ОD	РР	Active in St	function (after reset)	Alternate function
13	E3	P2.4/A.20	I/O	pd 3)	CT		8mA	х	х		Port 2.4	
14	E4	P2.5/A.21	I/O	pd 3)	CT		8mA	х	х		Port 2.5	External Memory Interface: address bus
15	F1	P2.6/A.22	I/O	pd 3)	CT		8mA	х	х		Port 2.6	
16	G1	BOOTEN	I		CT						Boot contr BOOT[1:0]	ol input. Enables sampling of] pins
17	E5	P2.7/A.23	I/O	pd 3)	CT		8mA	х	х		Port 2.7	External Memory Interface: address bus
18	F2	P2.8	I/O	pu	CT	Х	4mA	Х	х		Port 2.8	External interrupt INT2
19	F3	N.C.									Not conne	cted (not bonded)
20	F4	N.C.									Not conne	cted (not bonded)
21	F5	V _{SS}	S								Ground voltage for digital I/Os ⁴⁾	
22	F6	V ₃₃	S								Supply vol	tage for digital I/Os ⁴⁾
23	G2	P2.9	I/O	pu	CT	Х	4mA	Х	х		Port 2.9	External interrupt INT3
24	G3	P2.10	I/O	pu	CT	Х	4mA	Х	х		Port 2.10	External interrupt INT4
25	G4	P2.11	I/O	pu	CT	Х	4mA	Х	х		Port 2.11	External interrupt INT5
26	H1	P2.12	I/O	pu	CT		4mA	Х	х		Port 2.12	
27	J1	P2.13	I/O	pu	CT		4mA	Х	х		Port 2.13	
28	G5	P2.14	I/O	pu	CT		4mA	х	х		Port 2.14	
29	K1	P2.15	I/O	pu	CT		4mA	х	х		Port 2.15	
30	L1	JTDI	Ι		Τ _Τ						JTAG Data	a input. External pull-up required.
31	H2	JTMS	I		TT						JTAG Mod required.	e Selection Input. External pull-up
32	НЗ	ЈТСК	I		С						JTAG Cloc required.	k Input. External pull-up or pull-down
33	H4	JTDO	0				8mA		х		JTAG Data	a output. Note: Reset state = HiZ.
34	J2	JTRST	Ι		Τ _Τ						JTAG Reset Input. External pull-up required.	
35	J3	NU			1	1					Reserved,	must be forced to ground.
36	K2	TEST			1	1					Reserved,	must be forced to ground.
37	M1	N.C.									Not conne	cted (not bonded)
38	L2	TEST									Reserved,	must be forced to ground.
39	L3	N.C.	1	1	l				1	1	Not conne	cted (not bonded)

Pir	ו n°			e ¹⁾	Inp	ut	Output		Output		Output		Output		Main		
LQFP144	BGA144	Pin name	Type	Reset stat	Input level	interrupt	Capability	ОD	ЬР	Active in St	function (after reset)	Alternate function					
											Port 0.8	UART0: Receive Data input	UART0: Transmit data output.				
143	C4	U0.TX	I/O	pd	CT	х	4mA	4mA T			Note: This (half duple Output. Th UART tran	pin may be used x) if programmed pin will be tri-s smission is in pro	d for single wire UART as Alternate Function tated except when ogress				
144	B3	P0.9/U0.TX/ BOOT.0	I/O	pd	CT		4mA	х	х		Port 0.9	Select Boot Configuration input	UART0: Transmit data output				

Table 4. STR710 pin description

 The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 6 on page 30. The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset

2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured by software as Alternate Function (see *Table 6: Port bit configuration table on page 30*) to be used by the External Memory Interface.

- In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address 0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they need to be configured by software as Alternate Function (see *Table 6: Port bit configuration table on* page 30).
- 4. $V_{33IO-PLL}$ and V_{33} are internally connected. $V_{SSIO-PLL}$ and V_{SS} are internally connected.
- 5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Output Push-Pull.
- 6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as Hi-Z.
- 7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured as Output Push-Pull.
- 8. During the reset phase, this pin is in input floating state. When reset is released, it is configured as Output Push-Pull.

3.4 Pin description for 64-pin packages

1. CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.

Symbol	Ratings	Max.	Unit	
I _{V33}	Total current into $V_{33}/V_{33IO-PLL}$ power lines (source) ²⁾	150		
I _{VSS}	Total current out of $V_{SS}/V_{SSIO-PLL}$ ground lines (sink) ²⁾	150		
I _{IO}	Output current sunk by any I/O and control pin	25		
	Output current source by any I/Os and control pin	- 25	m۸	
	Injected current on RSTIN pin	± 5	ША	
I _{INJ(PIN)} 1) 3)	Injected current on CK pin	± 5		
	Injected current on any other pin 4)	± 5		
I _{INJ(PIN)} ¹⁾	Total injected current (sum of all I/O and control pins) $^{4)}$ ± 25			

Table 9.Current characteristics

The I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V₃₃ while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected. Data based on T_A = 25 °C.

All 3.3V power (V₃₃, AV_{DD}, V_{33IO-PLL}) and ground (V_{SS}, AV_{SS}, V_{SSIO-PLL}) pins must always be connected to the external 3.3V supply.

Negative injection disturbs the analog performance of the device. See note in *Section 4.3.11: ADC characteristics on page 66.*

When several inputs are submitted to a current injection, the maximum $I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

Only when using external 1.8V power supply. All the power (V_{18} , V_{18BKP}) and ground (V_{SS18} , V_{SSBKP}) pins must always be connected to the external 1.8V supply.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature (see Section 5 page 73)	5.2: Thermal characte	ristics on

Table 10. Thermal characteristics

TA=-40 to +90°C

3.5

3.6

Figure 11. STOP I_{DD} vs. V₃₃

Figure 12. STANDBY I_{DD} vs. V_{33}

60 50 3

3.1

3.2

3.3

V33 (V)

3.4

4.3.4 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electro magnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort, Prefetch Abort and Undefined Instruction exceptions are managed by the application software. This will prevent the code going into an undefined state or performing any unexpected operation.

Figure 22. Typical V_{OL} vs. V₃₃

Figure 23. Typical V_{OH} vs. V₃₃

Symbol	Parameter	Standaı I ²	rd mode C	Fast mod	Unit	
		Min ¹⁾	Max ¹⁾	Min ¹⁾	Max ¹⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		110
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μο
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ³⁾		0 ²⁾	900 ³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF

Table 34. I2C characteristics

Notes:

- 1. Data based on standard I^2C protocol requirement, not tested in production.
- 2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
- 3. The maximum hold time $t_{h(\mbox{SDA})}$ is not applicable.
- 4. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.
- 5. f_{PCLK1} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).
- 6. The following table gives the values to be written in the I2CCCR register to obtain the required I^2C SCL line frequency.

4.3.10 USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 37. USB startup time

Symbol	Parameter	Conditions	Max	Unit
t _{STARTUP}	USB transceiver startup time		1	μs

Table 38. USB DC characteristics

Symbol	Parameter	Conditions	Min. ⁽¹⁾⁽²⁾	Max. ⁽¹⁾⁽²⁾	Unit				
	Input Levels								
V _{DI}	Differential Input Sensitivity	I(DP, DM)	0.2						
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8	2.5	V				
V _{SE}	Single Ended Receiver Threshold		1.3	2.0					
Output Levels									
V _{OL}	Static Output Level Low	R _L of 1.5 k to 3.6V ⁽³⁾		0.3	V				
V _{OH}	Static Output Level High	R_L of 15 k to $V_{SS}^{(3)}$	2.8	3.6	v				

1. All the voltages are measured from the local ground potential.

2. It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased . This will not damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be affected.

3. $\ensuremath{\,R_L}$ is the load connected on the USB drivers

Figure 37. USB: data signal rise and fall time

Table 39.

USB: Full speed driver electrical characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t _r	Rise time ⁽¹⁾	C _L =50 pF	4	20	ns
t _f	Fall Time ¹⁾	C _L =50 pF	4	20	ns
t _{rfm}	Rise/ Fall Time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal Crossover Voltage		1.3	2.0	V

1. Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB Specification - Chapter 7 (version 2.0).

Analog power supply and reference pins

The AV_{DD} and AV_{SS} pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB design guidelines).

General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 39*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as AV_{DD} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 39. Power supply filtering

Date	Revision	Changes
22-May-2006	8	Added Flashless device. Changed reset state of pins P1.10 and P1.13 from pu to pd, P0.15 from pu to floating and removed x in interrupt column for P1.15 and P1.12 in <i>Table 4</i> and <i>Table 5</i> Added notes under <i>Table 4</i> on EMI pin reset state. Corrected inch value for d3 in <i>Figure 40</i> Added footprint diagrams in <i>Figure 40</i> and <i>Figure 43</i> Updated Section 4: Electrical parameters
01-Aug-2006	9	Flash data retention changed to 20 years at 85° C. Changed note 8 on page 19 Changed note 1 on page 45
06-Nov-2006	10	Added STR715FR0T1 in <i>Table 42: Order codes</i> P0.12 corrected in <i>Table 5 on page 25</i>
20-Mar-2007	11	Added characteristics of <i>BSPI</i> - <i>buffered serial peripheral</i> <i>interface on page 63</i> Updated <i>Table 21: Low-power mode wakeup timing on page 46</i>
13-Feb-2008	12	Updated ordering information Updated USB characteristics Updated external clock characteristics
03-Apr-2013	13	Updated title (to be in line with the "device summary" table) Updated ST Logo and Disclaimer Added Section 8: Known limitations

Table 44. Document revision history (continued)

