E·) / Frenesas Electronics America Inc - <u>UPD78F8040K8(R)-9B4-AX Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	78K/0
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-WFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f8040k8-r-9b4-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.1.3 LIN-bus supporting function (channel 7 only)	152
8.2 Configuration of Timer Array Unit	153
8.3 Registers Controlling Timer Array Unit	
8.4 Basic Rules of Simultaneous Channel Operation Function	
8.5 Channel Output (TOmn pin) Control	
8.5.1 TOmn pin output circuit configuration	
8.5.2 TOmn Pin Output Setting	
8.5.3 Cautions on Channel Output Operation	
8.5.4 Collective manipulation of TOmn bits	
8.5.5 Timer Interrupt and TOmn Pin Output at Operation Start	190
8.6 Channel Input (TImn Pin) Control	191
8.6.1 TImn edge detection circuit	191
8.7 Operation of Timer Array Unit as Independent Channel	
8.7.1 Operation as interval timer/square wave output	192
8.7.2 Operation as external event counter	197
8.7.3 Operation as input pulse interval measurement	201
8.7.4 Operation as input signal high-/low-level width measurement	205
8.8 Simultaneous Channel Operation Function of Timer Array Unit	
8.8.1 Operation as one-shot pulse output function	
8.8.2 Operation as PWM function	
8.8.3 Operation as multiple PWM output function	
CHAPTER 9 WATCHDOG TIMER	
9.1 Functions of Watchdog Timer	
9.2 Configuration of Watchdog Timer	
9.3 Register Controlling Watchdog Timer	
9.4 Operation of Watchdog Timer	
9.4.1 Controlling operation of watchdog timer	
9.4.2 Setting overflow time of watchdog timer	
9.4.3 Setting window open period of watchdog timer	
9.4.4 Setting watchdog timer interval interrupt	
CHAPTER 10 A/D CONVERTER	
10.1 Function of A/D Converter	
10.2 Configuration of A/D Converter	
10.3 Registers Used in A/D Converter	
10.4 A/D Converter Operations	
10.4.1 Basic operations of A/D converter	
10.4.2 Input voltage and conversion results	
10.4.3 A/D converter operation modes	
10.5 How to Read A/D Converter Characteristics Table	
10.6 Cautions for A/D Converter	
CHAPTER 11 SERIAL ARRAY UNIT	
11.1 Functions of Serial Array Unit	
11.1.1 3-wire serial I/Q (CSI20)	264
11.1.2 UART (UARTO, UART2 UART3)	204
11.1.3 Simplified I ² C (IIC20)	
11.2 Configuration of Serial Array Unit	

5.4.7 Based addressing

[Function]

Based addressing uses the contents of a register pair specified with the instruction word as a base address, and 8bit immediate data or 16-bit immediate data as offset data. The sum of these values is used to specify the target address.

[Operand format]

Identifier	Description
_	[HL + byte], [DE + byte], [SP + byte] (only the space from F0000H to FFFFFH is specifiable)
_	word[B], word[C] (only the space from F0000H to FFFFFH is specifiable)
_	word[BC] (only the space from F0000H to FFFFFH is specifiable)
-	ES:[HL + byte], ES:[DE + byte] (higher 4-bit addresses are specified by the ES register)
-	ES:word[B], ES:word[C] (higher 4-bit addresses are specified by the ES register)
_	ES:word[BC] (higher 4-bit addresses are specified by the ES register)

Figure 5-29. Example of [SP+byte]

Function Name	I/O	Function	After Reset	Alternate Function
P142	I/O	Port 14.	Input port	SCK20/SCL20
P143		3-bit I/O port.		SI20/RxD2/SDA20
P144		Input of P142 and P143 can be set to TTL input buffer. Output of P142 to P144 can be set to the N-ch open-drain output (V_{DD} tolerance). Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		SO20/TxD2
P150 to P153	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI8 to ANI11

Table 6-2.	Port	Functions	(2/2)
			\

6.2 Port Configuration

Ports include the following hardware.

Item	Configuration
Control registers	Port mode registers (PM0 to PM7, PM11, PM12, PM14, PM15) Port registers (P0 to P7, P11, P12, P14, P15) Pull-up resistor option registers (PU0, PU1, PU3 to PU6, PU12, PU14) Port input mode register 14 (PIM14) Port output mode register 14 (POM14) A/D port configuration register (ADPC)
Port	Total: 26 (CMOS I/O: 23, CMOS input: 1, N-ch open drain I/O: 2)
Pull-up resistor	Total: 18

Table 6-3. Port Configuration

6.5 Settings of Port Mode Register, and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register, and output latch as shown in Table 6-6.

Pin Name	me Alternate Function		PM×× P××		Pin Name	Alternate F	unction	PM××	P××
	Function Name	I/O				Function Name	I/O		
P05	TI05	Input	1	×	P60	SCL0	I/O	0	0
	TO05	Output	0	0	P61	SDA0	I/O	0	0
P11	RxD0	Input	1	×	P65	TI11	Input	1	×
P13	TxD3	Output	0	1		TO11	Output	0	0
P14	RxD3	Input	1	×	P67	TI13	Input	1	×
P16	TI01	Input	1	×		TO13	Output	0	0
	TO01	Output	0	0	P120	INTP0	Input	1	×
	INTP5	Input	1	×		EXLVI	Input	1	×
P17	TI02	Input	1	×	P142	SCK20	Input	1	×
	TO02	Output	0	0			Output	0	1
P26, P27 _{Note}	ANI6, ANI7 _{Note}	Input	1	×		SCL20	I/O	0	1
P31	TI03	Input	1	×	P143	SI20	Input	1	×
	TO03	Output	0	0		RxD2	Input	1	×
	INTP4	Input	1	×		SDA20	I/O	0	1
P40	TOOL0	I/O	×	×	P144	SO20	Output	0	1
P41	TOOL1	Output	×	×		TxD2	Output	0	1
P50	INTP1	Input	1	×	P150 to P153 ^{Note}	ANI8 to ANI11 ^{Note}	Input	1	×
P51	INTP2	Input	1	×					

Table 6-6. Settings of Port Mode Register, and Output Latch When Using Alternate Function

Note The functions of the ANI6/P26, ANI7/P27, and ANI8/P150 to ANI11/P153 pins can be selected by using the A/D port configuration register (ADPC), the analog input channel specification register (ADS), and port mode registers 2, 15 (PM2, PM15).

Tuble of the octaining function of Antion Ed, Antion Ed, and Antion for to Anti in the
--

ADPC	PM2, PM15	ADS	ANI6/P26, ANI7/P27, ANI8/P150 to ANI11/P153 Pins
Digital I/O selection	Input mode	-	Digital input
	Output mode	_	Digital output
Analog input selection	Input mode	Selects ANI.	Analog input (to be converted)
		Does not select ANI.	Analog input (not to be converted)
	Output mode	Selects ANI.	Setting prohibited
		Does not select ANI.	

 Remark
 ×:
 don't care

 PM××:
 Port mode register

Pxx: Port output latch

Remark fx: X1 clock oscillation frequency

- fін: Internal high-speed oscillation clock frequency
- fiH20: 20 MHz internal high-speed oscillation clock frequency
- fex: External main system clock frequency
- fmx: High-speed system clock frequency
- fMAIN: Main system clock frequency
- fclk: CPU/peripheral hardware clock frequency
- fil: Internal low-speed oscillation clock frequency

7.3 Registers Controlling Clock Generator

The following eight registers are used to control the clock generator.

- Clock operation mode control register (CMC)
- Clock operation status control register (CSC)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)
- System clock control register (CKC)
- 20 MHz internal high-speed oscillation control register (DSCCTL)
- Peripheral enable register 0 (PER0)
- Operation speed mode control register (OSMC)

(1) Clock operation mode control register (CMC)

This register is used to set the operation mode of the X1/P121 and X2/EXCLK pins, and to select a gain of the oscillator.

CMC can be written only once by an 8-bit memory manipulation instruction after reset release. This register can be read by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Address: F0	00F0H After	r reset: 00H	R/W								
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>			
PER0	0	0	ADCEN	IICAEN	SAU1EN	SAU0EN	TAU1EN	TAU0EN			
TAU1EN Control of timer array unit 1 input clock supply											
	0 Stops input clock supply.										
		 SFR used 	 SFR used by timer array unit 1 cannot be written. 								
		 Timer arra 	Timer array unit 1 is in the reset status.								
	1	Supplies inp	Supplies input clock.								
		 SFR used 	by timer array	/ unit 1 can be	e read and wri	tten.					
	TAU0EN Control of timer array unit 0 input clock supply										
	0	Stops input clock supply.									
		 SFR used by timer array unit 0 cannot be written. 									
		Timer arra	y unit 0 is in tl	ne reset statu	s.						
	1	Supplies inp	ut clock.								

• SFR used by timer array unit 0 can be read and written.

Figure 7-8. Format of Peripheral Enable Register 0 (PER0) (2/2)

Caution Be sure to clear bits 6 and 7 to 0.

- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
 - **2.** When releasing a reset, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC).
 - **3.** The microcontroller operates on the 8 MHz internal high-speed oscillation clock if 8 MHz or 20 MHz is selected for the internal high-speed oscillator by using the option byte or on the 1 MHz internal high-speed oscillation clock if 1 MHz is selected.
 - 4. If the internal high-speed oscillator is set to 1 MHz by using the option byte, the 20 MHz internal high-speed oscillation clock cannot be used.
- Cautions 1. A voltage stabilization time (about 2.12 to 5.84 ms) is required after the supply voltage reaches 1.61 V (TYP.). If the time for the supply voltage to rise from 1.61 V (TYP.) to 2.07 V (TYP.) is shorter than the voltage stabilization time, reset processing is entered after the voltage stabilization time elapses.
 - 2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

(1) Timer counter register mn (TCRmn)

The TCRmn register is a 16-bit read-only register and is used to count clocks.

The value of this counter is incremented or decremented in synchronization with the rising edge of a count clock. Whether the counter is incremented or decremented depends on the operation mode that is selected by the MDmn3 to MDmn0 bits of timer mode register mn (TMRmn) (refer to **8.3 (3) Timer mode register mn (TMRmn)**).

Figure 8-4. Format of Timer Counter Register mn (TCRmn)

Address: F0180H, F0181H (TCR00) to F018EH, F018FH (TCR07) After reset: FFFFH R

F01C0H, F01C1H (TCR10) to F01C6H, F01C7H (TCR13)

F0181H (TCR00)					F0180H (TCR00)											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TCRmn																

The count value can be read by reading TCRmn.

The count value is set to FFFFH in the following cases.

- When the reset signal is generated
- When the TAU0EN bit (in case of TAU0) or TAU1EN bit (in case of TAU1) of peripheral enable register 0 (PER0) is cleared
- When counting of the slave channel has been completed in the PWM output mode
- When counting of the master/slave channel has been completed in the one-shot pulse output mode
- When counting of the slave channel has been completed in the multiple PWM output mode

The count value is cleared to 0000H in the following cases.

- When the start trigger is input in the capture mode
- When capturing has been completed in the capture mode
- Caution The count value is not captured to timer data register mn (TDRmn) even when the TCRmn register is read.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7), mn = 00 to 07, 10 to 13

The TCRmn register read value differs as follows according to operation mode changes and the operating status.

Operation Mode	Count Mode	Timer/counter register mn (TCRmn) Read Value ^{Note}						
		Value if the operation mode was changed after releasing reset	Value if the operation mode was changed after count operation paused (TTmn = 1)	Value if the Operation was restarted after count operation paused (TTmn = 1)	Value when waiting for a start trigger after one count			
Interval timer mode	Count down	FFFFH	Undefined	Stop value	-			
Capture mode	Count up	0000H	Undefined	Stop value	-			
Event counter mode	Count down	FFFFH	Undefined	Stop value	_			
One-count mode	Count down	FFFFH	Undefined	Stop value	FFFFH			
Capture & one- count mode	Count up	0000H	Undefined	Stop value	Capture value of TDRmn register + 1			

Table 8-2. Timer/counter Register mn (TCRmn) Read Value in Various Operation Modes

Note This indicates the value read from the TCRmn register when channel n has stopped operating as a timer (TEmn = 0) and has been enabled to operate as a counter (TSmn = 1). The read value is held in the TCRmn register until the count operation starts.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7), mn = 00 to 07, 10 to 13

(b) Start timing in event counter mode

- <1> Timer/counter register mn (TCRmn) holds its initial value while operation is stopped (TEmn = 0).
- <2> Operation is enabled (TEmn = 1) by writing 1 to the TSmn.
- <3> As soon as 1 has been written to the TSmn bit and 1 has been set to the TEmn bit, the value of timer data register mn (TDRmn) is loaded to the TCRmn to start counting.
- <4> After that, the TCRmn register value is counted down according to the count clock.

Figure 8-13. Start Timing (In Event Counter Mode)

(c) Start timing in capture mode

- <1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn.
- <2> The write data to the TSmn is held until count clock generation.
- <3> Timer/counter register mn (TCRmn) holds the initial value until count clock generation.
- <4> On generation of count clock, 0000H is loaded to the TCRmn register and count starts.

Figure 8-14. Start Timing (In Capture Mode)

Caution In the first cycle operation of count clock after writing TSmn, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0 = 1.

Figure 8-61. Example of Set Contents of Registers When PWM Function (Slave Channel) Is Used

However, mp = 01 to 03, 05, 11, and 13 in the case of the timer output pin (TOmp).

Figure 8-64. Example of Basic Timing of Operation as Multiple PWM Output Function (output two types of PWMs) (1/2)

(Remarks are listed on the next page.)

12.5.7 Canceling wait

The I²C usually cancels a wait state by the following processing.

- Writing data to IICA shift register (IICA)
- Setting bit 5 (WREL) of IICA control register 0 (IICCTL0) (canceling wait)
- Setting bit 1 (STT) of IICCTL0 register (generating start condition)^{Note}
- Setting bit 0 (SPT) of IICCTL0 register (generating stop condition)^{Note}

Note Master only

When the above wait canceling processing is executed, the I²C cancels the wait state and communication is resumed. To cancel a wait state and transmit data (including addresses), write the data to IICA register.

To receive data after canceling a wait state, or to complete data transmission, set bit 5 (WREL) of IICCTL0 register to 1. To generate a restart condition after canceling a wait state, set bit 1 (STT) of IICCTL0 register to 1.

To generate a stop condition after canceling a wait state, set bit 0 (SPT) of IICCTL0 register to 1.

Execute the canceling processing only once for one wait state.

If, for example, data is written to IICA register after canceling a wait state by setting WREL bit to 1, an incorrect value may be output to SDA0 line because the timing for changing the SDA0 line conflicts with the timing for writing IICA register.

In addition to the above, communication is stopped if IICE bit is cleared to 0 when communication has been aborted, so that the wait state can be canceled.

If the I²C bus has deadlocked due to noise, processing is saved from communication by setting bit 6 (LREL) of IICCTL0 register, so that the wait state can be canceled.

Caution If a processing to cancel a wait state is executed when WUP = 1, the wait state will not be canceled.

(3) Slave device operation (when receiving extension code)

The device is always participating in communication when it receives an extension code.

(a) Start ~ Code ~ Data ~ Data ~ Stop

(i) When WTIM = 0

(ii) When WTIM = 1

(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(i) When WTIM = 0

(ii) When WTIM = 1

Interrupt	Default		Interrupt Source	Internal/	Vector	Basic
Гуре	Phonity	Name	Trigger	External	I able Address	Configuration Type ^{Note 2}
Maskable	0	INTWDTI	Watchdog timer interval ^{Note 3} (75% of overflow time)	Internal	0004H	(A)
	1	INTLVI	Low-voltage detection ^{Note 4}		0006H	
	2	INTP0	Pin input edge detection	External	0008H	(B)
	3	INTP1	Oercurrents detection of IO-Link ^{Note 5}		000AH	
	4	INTP2	Wakeup signal detection of IO-Link ^{Note 5}		000CH	
	5	INTP4	Pin input edge detection		0010H	
	6	INTP5			0012H	
	7	INTST3	UART3 transmission transfer end or buffer empty interrupt	Internal	0014H	(A)
	8	INTSR3	UART3 reception transfer end		0016H	
	9	INTSRE3	UART3 reception communication error occurrence		0018H	
	10	INTDMA0	End of DMA0 transfer		001AH	
	11	INTDMA1	End of DMA1 transfer		001CH	
	12	INTST0	UART0 transmission transfer end or buffer empty interrupt		001EH	
	13	INTSR0	UART0 reception transfer end		0020H	
	14	INTSRE0	UART0 reception communication error occurrence		0022H	
	15	INTIICA	End of IICA communication		002AH	
	16	INTTM00	End of timer array unit 0 channel 0 count or capture		002CH	
	17	INTTM01	End of timer array unit 0 channel 1 count or capture		002EH	
	18	INTTM02	End of timer array unit 0 channel 2 count or capture		0030H	
	19	INTTM03	End of timer array unit 0 channel 3 count or capture		0032H	
	20	INTAD	End of A/D conversion		0034H	
	21	INTST2 /INTCSI20 /INTIIC20	UART2 transmission transfer end or buffer empty interrupt/CSI20 transfer end or buffer empty interrupt/IIC20 transfer end		003CH	

 Table 15-1. Interrupt Source List (1/2)

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 32 indicates the lowest priority.

- 2. Basic configuration types (A) to (C) correspond to (A) to (C) in Figure 15-1.
- 3. When bit 7 (WDTINT) of the option byte (000C0H) is set to 1.
- 4. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is cleared to 0.
- 5. INTP1/P50 and INTP2/P51 are used for IO-Link communication.

16.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the external main system clock.

- Cautions 1. Because the interrupt request signal is used to release the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately released if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.
 - 2. The STOP instruction cannot be executed when the CPU operates on the 20 MHz internal highspeed oscillation clock. Be sure to execute the STOP instruction after shifting to internal highspeed oscillation clock operation.

The operating statuses in the STOP mode are shown below.

Figure 21-1. Format of User Option Byte (000C0H/010C0H) (2/2)

Address: 000C0H/010C0H^{Note 1}

7	6	5	4	4 3		1	0	
WDTINIT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON	
WDSTBYON	Operation control of watchdog timer counter (HALT/STOP mode)							
0	Counter operation stopped in HALT/STOP mode ^{Note 2}							
1	Counter operation enabled in HALT/STOP mode							

- Notes 1. Set the same value as 000C0H to 010C0H when the boot swap operation is used because 000C0H is replaced by 010C0H.
 - 2. The window open period is 100% when WDSTBYON = 0, regardless the value of WINDOW1 and WINDOW0.
- Caution The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.
- Remark fil: Internal low-speed oscillation clock frequency

Figure 21-2. Format of User Option Byte (000C1H/010C1H)

Address: 000C1H/010C1H^{Note 1}

7	6	5	4	3	2	1	0	
1	1	1	1	1	FRQSEL2	FRQSEL1	LVIOFF	
EBOSEL2	EBOSEL1		Inter	nal high-speed	oscillator frequ	iency		

FRQSEL2	FRQSEL1	Internal high-speed oscillator frequency
0	1	8 MHz/20 MHz Note 2
1	0	1 MHz ^{Note 3}
Other than the above		Setting prohibited

LVIOFF	Setting of LVI on power application
0	LVI is ON by default (LVI default start function enabled) upon reset release (upon power application)
1	LVI is OFF by default (LVI default start function stopped) upon reset release (upon power application)

- Notes 1. Set the same value as 000C1H to 010C1H when the boot swap operation is used because 000C1H is replaced by 010C1H.
 - 2. When 8 MHz or 20 MHz has been selected, the 8 MHz internal high-speed oscillator automatically starts oscillating after reset release. To use the 20 MHz internal high-speed oscillator to operate the microcontroller, oscillation is started by setting bit 0 (DSCON) of the 20 MHz internal high-speed oscillation control register (DSCCTL) to 1 with V_{DD} ≥ 3.0 V. The circuit cannot be changed to a 1 MHz internal high-speed oscillator while the microcontroller operates.
 - 3. When 1 MHz has been selected, the microcontroller operates on the 1 MHz internal high-speed oscillator after reset release. The circuit cannot be changed to an 8 MHz or 20 MHz internal highspeed oscillator while the microcontroller operates.

(Cautions are listed on the next page.)

(3) During communication at same potential (CSI mode) (slave mode, $\overline{SCK20}$... external clock input) (TA = -40 to +85°C, 3.0 V ≤ VDD/EVDD = VDD_IO ≤ 5.5 V, 4.75 V ≤ IVDD ≤ 5.25 V, 1.8 V ≤ AVREF ≤ VDD/EVDD, VSS/EVSS = AVSS = GND1 = GND2 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
SCK20 cycle time	t ксү2	$4.0~V \leq V_{\text{DD}}/EV_{\text{DD}} \leq 5.5~V$		6/fмск			ns	
		$3.0 \text{ V} \leq \text{V}_{\text{DD}}/\text{EV}_{\text{DD}}$ < 4.0 V		16 MHz < fмск	8/fмск			ns
				fмск ≤ 16 MHz	6/fмск			ns
SCK20 high-/low-level width	tкн2, tкL2				fксү2/2			ns
SI20 setup time (to SCK20↑) ^{Note 1}	tsik2			80			ns	
SI20 hold time (from SCK20↑) ^{Note 1}	tksi2			1/fмск+50			ns	
Delay time from $\overline{\text{SCK20}}\downarrow$ to	tĸso2	2 C = 30 pF	4.0 V ≤	V DD/E V DD $\leq 5.5 V$			2/fмск+45	ns
SO20 output Note 2		Note 3	$3.0 \text{ V} \leq V_{\text{DD}}/EV_{\text{DD}} < 4.0 \text{ V}$				2/fмск+57	ns

Notes 1. When DAP10 = 0 and CKP10 = 0, or DAP10 = 1 and CKP10 = 1. The SI20 setup time becomes "to $\overline{SCK20}\downarrow$ " when DAP10 = 0 and CKP10 = 1, or DAP10 = 1 and CKP10 = 0.

- **2.** When DAP10 = 0 and CKP10 = 0, or DAP10 = 1 and CKP10 = 1. The delay time to SO20 output becomes "from $\overline{SCK20}^{\uparrow}$ " when DAP10 = 0 and CKP10 = 1, or DAP10 = 1 and CKP10 = 0.
- **3.** C is the load capacitance of the SO20 output lines.
- Caution Select the normal input buffer for SI20 and SCK20 and the normal output mode for SO20 by using the PIM14 and POM14 registers.
- Remark
 fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKS10 bit of the SMR10 register.)

μ PD78F8040, 78F8041, 78F8042, 78F8043 User's Manual: Hardware							
Publication Date: Rev.0.01 Jun 13, 2009 Rev.3.00 Sep 28, 2010							
Published by:	Renesas E	Electronics Corporation					