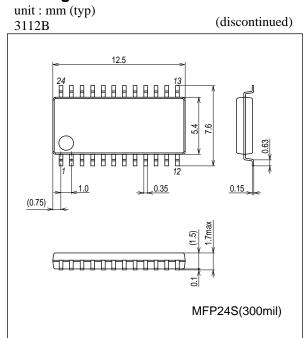




#### What is "Embedded - Microcontrollers"?

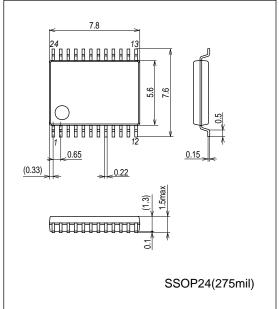


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

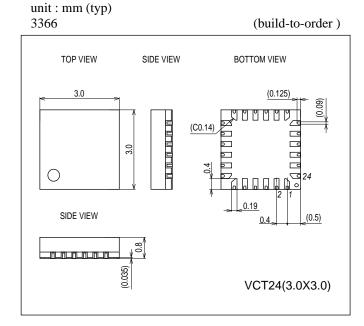

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------|
|                            | • •                                                                                 |
| Product Status             | Active                                                                              |
| Core Processor             | -                                                                                   |
| Core Size                  | 8-Bit                                                                               |
| Speed                      | 12MHz                                                                               |
| Connectivity               | SIO, UART/USART                                                                     |
| Peripherals                | LVD, POR, WDT                                                                       |
| Number of I/O              | 21                                                                                  |
| Program Memory Size        | 4KB (4K x 8)                                                                        |
| Program Memory Type        | FLASH                                                                               |
| EEPROM Size                | -                                                                                   |
| RAM Size                   | 128 x 8                                                                             |
| Voltage - Supply (Vcc/Vdd) | 2.2V ~ 5.5V                                                                         |
| Data Converters            | A/D 8x12b                                                                           |
| Oscillator Type            | Internal                                                                            |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                       |
| Package / Case             | 24-LFSOP (0.173", 4.40mm Width)                                                     |
| Supplier Device Package    | 24-SSOP                                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/sanyo-denki-sanups-products/lc87f2r04au-ssop-h |

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### **Package Dimensions**




# **Package Dimensions**

unit : mm (typ) 3175C (build-to-order )



# **Package Dimensions**



- ■Minimum Bus Cycle
  - 83.3ns (12MHz at V<sub>DD</sub>=2.7V to 5.5V)
  - 100ns (10MHz at V<sub>DD</sub>=2.2V to 5.5V) Note: The bus cycle time here refers to the ROM read speed.
- ■Minimum Instruction Cycle Time
  - 250ns (12MHz at V<sub>DD</sub>=2.7V to 5.5V)
  - 300ns (10MHz at V<sub>DD</sub>=2.2V to 5.5V)

#### **■**Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1-bit units 11(P1n, P20, P21, P70)

Ports whose I/O direction can be designated in 4-bit units 8 (P0n)

• Dedicated oscillator ports/input ports 2 (<u>CF1</u>, CF2)

• Reset pin 1 (RES)

• Power pins 2 (V<sub>SS</sub>1, V<sub>DD</sub>1)

#### **■**Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)  $\times$  2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)

• Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)

#### **■**SIO

• SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■ AD Converter: 12 bits/8 bits  $\times$  8 channels

• 12/8 bits AD converter resolution selectable

- ■Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
  - Noise rejection function (noise filter time constant selectable from 1 tCYC/32 tCYC/128 tCYC)
- ■Watchdog Timer
  - External RC watchdog timer
  - Interrupt and reset signals selectable

#### **■**Interrupts

- 12 sources, 8 vector addresses
  - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
  - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

| No. | Vector Address | Level  | Interrupt Source |
|-----|----------------|--------|------------------|
| 1   | 00003H         | X or L | INT0             |
| 2   | 0000BH         | X or L | INT1             |
| 3   | 00013H         | H or L | INT2/T0L/INT4    |
| 4   | 0001BH         | H or L | INT3             |
| 5   | 00023H         | H or L | ТОН              |
| 6   | 0002BH         | H or L | None             |
| 7   | 00033H         | H or L | None             |
| 8   | 0003BH         | H or L | SIO1             |
| 9   | 00043H         | H or L | ADC/T6/T7        |
| 10  | 0004BH         | H or L | Port 0           |

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 64levels (The stack is allocated in RAM.)

### **■**Development Tools

• On-chip debugger: TCB87 TypeB+LC87F2R04A

: TCB87 TypeC (3 wire version) +LC87F2R04A

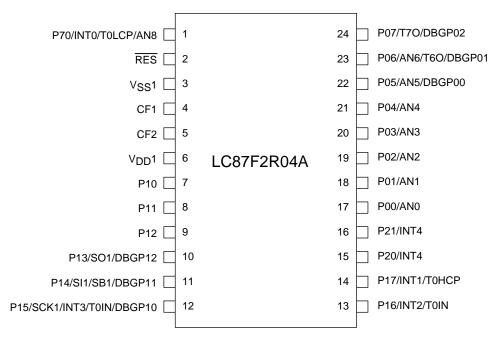
**■**Programming Boards

| Package        | Programming boards |
|----------------|--------------------|
| MFP24S(300mil) | W87F2GM            |
| SSOP24(225mil) | W87F2GS            |
| SSOP24(275mil) | build-to-order     |
| VCT24          | build-to-order     |

■Flash ROM Programmer

| Maker                     |                       | Model                                      | Supported Version   | Device      |  |
|---------------------------|-----------------------|--------------------------------------------|---------------------|-------------|--|
|                           |                       | AF9708                                     |                     |             |  |
|                           | Single                | AF9709/AF9709B/AF9709C                     | Rev 03.11 or later  | LC87F2L08A  |  |
| Floob Cuppert Croup Inc   |                       | (including Ando Electric Co., Ltd. models) |                     |             |  |
| Flash Support Group, Inc. |                       | AF9723/AF9723B(Main unit)                  |                     |             |  |
| (FSG)                     | Canaad                | (including Ando Electric Co., Ltd. models) | -                   | -           |  |
|                           | Ganged                | AF9833(Unit)                               |                     |             |  |
|                           |                       | (including Ando Electric Co., Ltd. models) | -                   | -           |  |
| Flash Support Group, Inc. |                       | AF9101/AF9103(Main unit)                   |                     |             |  |
| (FSG)                     | Onboard               | (FSG)                                      | (Note 2)            |             |  |
| +                         | single/ganged         | SIB87(Interface driver)                    | (Note 2)            | -           |  |
| Our company (Note 1)      |                       | (Our company)                              |                     |             |  |
|                           | Cinalo/aonao d        | SKK/SKK Type B                             | Application version |             |  |
| Our sampanu               | Single/ganged Omboard | (SANYO FWS)                                | 1.05 or later       | 1.007500044 |  |
| Our company               |                       | SKK-DBG Type B                             | Chip data version   | LC87F2R04A  |  |
|                           | single/ganged         | (SANYO FWS)                                | 2.22 or later       |             |  |

For information about AF-Series:

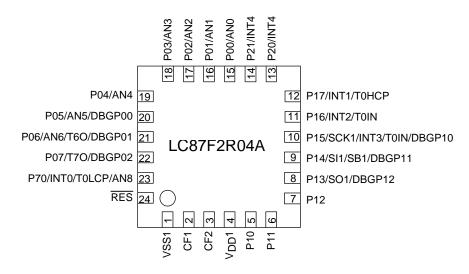

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87) together

can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.

# **Pin Assignment**




Top view

MFP24S(300mil) "Lead-/Halogen-free Type" (discontinued) SSOP24(225mil) "Lead-/Halogen-free Type" (build-to-order) SSOP24(275mil) "Lead-/Halogen-free Type" (build-to-order)

| MFP24S<br>SSOP24 | NAME                      |
|------------------|---------------------------|
| 1                | P70/INT0/T0LCP/AN8        |
| 2                | RES                       |
| 3                | V <sub>SS</sub> 1         |
| 4                | CF1                       |
| 5                | CF2                       |
| 6                | V <sub>DD</sub> 1         |
| 7                | P10                       |
| 8                | P11                       |
| 9                | P12                       |
| 10               | P13/SO1/DBGP12            |
| 11               | P14/SI1/SB1/DBGP11        |
| 12               | P15/SCK1/INT3/T0IN/DBGP10 |

| MFP24S<br>SSOP24 | NAME               |
|------------------|--------------------|
| 13               | P16/INT2/T0IN      |
| 14               | P17/INT1/T0HCP     |
| 15               | P20/INT4           |
| 16               | P21/INT4           |
| 17               | P00/AN0            |
| 18               | P01/AN1            |
| 19               | P02/AN2            |
| 20               | P03/AN3            |
| 21               | P04/AN4            |
| 22               | P05/AN5/DBGP00     |
| 23               | P06/AN6/T6O/DBGP01 |
| 24               | P07/T7O/DBGP02     |



Top view

VCT24(3.0×3.0) "Lead-/Halogen-free Type" (build-to-order)

| VCT24 | NAME                      |  |  |  |
|-------|---------------------------|--|--|--|
| 1     | V <sub>SS</sub> 1         |  |  |  |
| 2     | CF1                       |  |  |  |
| 3     | CF2                       |  |  |  |
| 4     | VDD1                      |  |  |  |
| 5     | P10                       |  |  |  |
| 6     | P11                       |  |  |  |
| 7     | P12                       |  |  |  |
| 8     | P13/SO1/DBGP12            |  |  |  |
| 9     | P14/SI1/SB1/DBGP11        |  |  |  |
| 10    | P15/SCK1/INT3/T0IN/DBGP10 |  |  |  |
| 11    | P16/INT2/T0IN             |  |  |  |
| 12    | P17/INT1/T0HCP            |  |  |  |

| VCT24 | NAME               |  |  |  |
|-------|--------------------|--|--|--|
| 13    | P20/INT4           |  |  |  |
| 14    | P21/INT4           |  |  |  |
| 15    | P00/AN0            |  |  |  |
| 16    | P01/AN1            |  |  |  |
| 17    | P02/AN2            |  |  |  |
| 18    | P03/AN3            |  |  |  |
| 19    | P04/AN4            |  |  |  |
| 20    | P05/AN5/DBGP00     |  |  |  |
| 21    | P06/AN6/T6O/DBGP01 |  |  |  |
| 22    | P07/T7O/DBGP02     |  |  |  |
| 23    | P70/INT0/T0LCP/AN8 |  |  |  |
| 24    | RES                |  |  |  |

# **Pin Description**

| Pin Name          | I/O |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 | Des                                                           | scription                                             |         |              | Option |
|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|---------|--------------|--------|
| V <sub>SS</sub> 1 | -   | - power supply pins                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | No      |              |        |
| V <sub>DD</sub> 1 | -   | + power supply pin                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | No      |              |        |
| Port 0            | I/O | 8-bit I/O port                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |                                                               |                                                       |         |              |        |
| P00 to P07        |     | Pull-up resiste HOLD reset in Port 0 interrup Pin functions P06: Timer 6                                                                                                                                                                                                                                                                                                        | <ul> <li>I/O specifiable in 4-bit units</li> <li>Pull-up resistors can be turned on and off in 4-bit units.</li> <li>HOLD reset input</li> <li>Port 0 interrupt input</li> <li>Pin functions</li> <li>P06: Timer 6 toggle output</li> <li>P07: Timer 7 toggle output</li> </ul> |                                                               |                                                       | Yes     |              |        |
|                   |     | P00(AN0) to F                                                                                                                                                                                                                                                                                                                                                                   | toggle output<br>P06(AN6): AD cc<br>) to P07(DBGP0                                                                                                                                                                                                                              | •                                                             | ugger 0 port                                          |         |              |        |
| Port 1 P10 to P17 | I/O | Pin functions     P13: SIO1 da     P14: SIO1 da     P15: SIO1 clc     P16: INT2 inp     P17: INT1 inp                                                                                                                                                                                                                                                                           | ors can be turned                                                                                                                                                                                                                                                               | nt (with noise filte<br>nput/timer 0 even<br>nput/timer 0H ca | er)/timer 0 event<br>nt input/timer 0L<br>pture input | -       | apture input | Yes    |
|                   |     | Interrupt ackn                                                                                                                                                                                                                                                                                                                                                                  | owledge types Rising                                                                                                                                                                                                                                                            | Falling                                                       | Rising &<br>Falling                                   | H level | L level      |        |
|                   |     | INT1                                                                                                                                                                                                                                                                                                                                                                            | enable                                                                                                                                                                                                                                                                          | enable                                                        | disable                                               | enable  | enable       |        |
|                   |     | INT2                                                                                                                                                                                                                                                                                                                                                                            | enable                                                                                                                                                                                                                                                                          | enable                                                        | enable                                                | disable | disable      |        |
|                   |     | INT3                                                                                                                                                                                                                                                                                                                                                                            | enable                                                                                                                                                                                                                                                                          | enable                                                        | enable                                                | disable | disable      |        |
| P20 to P21        | 1/0 | 2-bit I/O port     I/O specifiable in 1-bit units     Pull-up resistors can be turned on and off in 1-bit units.     Pin functions     P20 to P21: INT4 input/HOLD reset input/timer 0L capture input/ timer 0H capture input     Interrupt acknowledge types     Rising Falling Rising & H level L level     INT4 enable enable enable disable disable                         |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | Yes     |              |        |
| P70               | I/O | 1-bit I/O port     I/O specifiable in 1-bit units     Pull-up resistors can be turned on and off in 1-bit units.     Pin functions     P70: INT0 input/HOLD reset input/timer 0L capture input/watchdog timer output     P70(AN8): AD converter input     Interrupt acknowledge types      Rising Falling Rising & H level L level     INT0 enable enable disable enable enable |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | No      |              |        |
|                   |     | INTO                                                                                                                                                                                                                                                                                                                                                                            | enable                                                                                                                                                                                                                                                                          | enable                                                        | disable                                               | enable  | enable       |        |
| RES               | I/O | External reset I                                                                                                                                                                                                                                                                                                                                                                | nput/internal res                                                                                                                                                                                                                                                               | et output                                                     |                                                       |         |              | No     |
| CF1               | I   | External reset Input/internal reset output     Ceramic resonator oscillator input pin     Pin function     General-purpose input port                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | No      |              |        |
| CF2               | I/O | Ceramic resonator oscillator output pin     Pin function     General-purpose input port                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                               |                                                       | No      |              |        |

### **Port Output Types**

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

| Port Name  | Option selected in units of | Option type | Output type    | Pull-up resistor      |
|------------|-----------------------------|-------------|----------------|-----------------------|
| P00 to P07 | 1 bit                       | 1           | CMOS           | Programmable (Note 1) |
|            |                             | 2           | Nch-open drain | No                    |
| P10 to P17 | 1 bit                       | 1           | CMOS           | Programmable          |
|            |                             | 2           | Nch-open drain | Programmable          |
| P20 to P21 | 1 bit                       | 1           | CMOS           | Programmable          |
|            |                             | 2           | Nch-open drain | Programmable          |
| P70        | -                           | No          | Nch-open drain | Programmable          |

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

#### **User Option Table**

| Option Name             | Option Type          | Mask version<br>*1 | Flash Version | Option Selected in Units of | Option Selection  |
|-------------------------|----------------------|--------------------|---------------|-----------------------------|-------------------|
| Port output type        | P00 to P07           | 0                  | 0             | 1 bit                       | CMOS              |
|                         |                      |                    |               |                             | Nch-open drain    |
|                         | P10 to P17           | 0                  | 0             | 1 bit                       | CMOS              |
|                         |                      |                    |               |                             | Nch-open drain    |
|                         | P20 to P21           | 0                  | 0             | 1 bit                       | CMOS              |
|                         |                      |                    |               |                             | Nch-open drain    |
| Program start           | -                    | ×                  | 0             | -                           | 00000h            |
| address                 |                      | *2                 |               |                             | 01E00h            |
| Low-voltage             | Detect function      | 0                  | 0             | -                           | Enable: Use       |
| detection reset         |                      |                    |               |                             | Disable: Not Used |
| function                | Detect level         | 0                  | 0             | -                           | 7-level           |
| Power-on reset function | Power-On reset level | 0                  | 0             | -                           | 8-level           |

<sup>\*1:</sup> Mask option selection-No change possible after mask is completed.

#### **Recommended Unused Pin Connections**

| Deat News       | Recommended Unused Pin Connections              |                            |  |  |  |
|-----------------|-------------------------------------------------|----------------------------|--|--|--|
| Port Name Board |                                                 | Software                   |  |  |  |
| P00 to P07      | Open                                            | Output low                 |  |  |  |
| P10 to P17      | Open                                            | Output low                 |  |  |  |
| P20 to P21      | Open                                            | Output low                 |  |  |  |
| P70             | Open                                            | Output low                 |  |  |  |
| CF1             | Pulled low with a $100k\Omega$ resistor or less | General-purpose input port |  |  |  |
| CF2             | Pulled low with a $100k\Omega$ resistor or less | General-purpose input port |  |  |  |

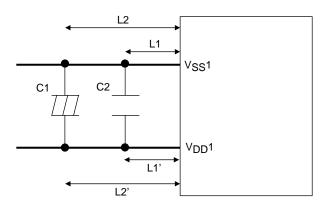
### **On-chip Debugger Pin Connection Requirements**

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual" and "LC872000 series on-chip debugger pin connection requirements"

#### Notes on CF1 and CF2 Pins

• When using as general-purpose input ports Since the CF1 and CF2 pins are configured as CF oscillator pins at system reset time, it is necessary to add a current limiting resistor of  $1k\Omega$  or greater to the CF2 pin in series when using them as general-purpose input pins.

<sup>\*2:</sup> Program start address of the mask version is 00000h.


### Differences between LC872G00 and LC872R00 Series.

|                   |         | System Reset Time State               | After System Reset is Released |
|-------------------|---------|---------------------------------------|--------------------------------|
| Flash ROM version | CF1/XT1 | Set high via the internal Rf resistor | CF oscillation state           |
| LC87F2G08A        | CF2/XT2 | Set high                              | CF oscillation state           |
| Mask ROM version  | CF1/XT1 | Set low via the internal Rf resistor  | CF oscillation state           |
| LC872G08A         | CF2/XT2 | Set low                               | CF oscillation state           |
| Flash ROM version | CF1     | Set low via the internal Rf resistor  | CF oscillation state           |
| LC87F2R04A        | CF2     |                                       |                                |
| Mask ROM version  |         | High-impedance (OPEN)                 | CF oscillation state           |
| LC872R04A         |         |                                       |                                |

### Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the V<sub>DD</sub>1 and V<sub>SS</sub>1 pins:

- Connect among the V<sub>DD</sub>1 and V<sub>SS</sub>1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should approximately 0.1μF.



### Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = 0V$

|                           | Doromotor                            | Cumbal              | Din/Damarka              | Conditions                                                       |                     |      | Specif | ication              |      |
|---------------------------|--------------------------------------|---------------------|--------------------------|------------------------------------------------------------------|---------------------|------|--------|----------------------|------|
|                           | Parameter                            | Symbol              | Pin/Remarks              | Conditions                                                       | V <sub>DD</sub> [V] | min  | typ    | max                  | unit |
|                           | aximum supply<br>Itage               | V <sub>DD</sub> max | V <sub>DD</sub> 1        |                                                                  |                     | -0.3 |        | +6.5                 |      |
| Inp                       | out voltage                          | VI                  | CF1, CF2                 |                                                                  |                     | -0.3 |        | V <sub>DD</sub> +0.3 | V    |
| Ι.                        | out/output<br>ltage                  | V <sub>IO</sub>     | Ports 0, 1, 2<br>P70     |                                                                  |                     | -0.3 |        | V <sub>DD</sub> +0.3 |      |
| nt                        | Peak output current                  | IOPH                | Ports 0, 1, 2            | CMOS output select Per 1 applicable pin                          |                     | -10  |        |                      |      |
| High level output current | Mean output<br>current<br>(Note 1-1) | IOMH                | Ports 0, 1, 2            | CMOS output select Per 1 applicable pin                          |                     | -7.5 |        |                      |      |
| velo                      | Total output                         | ΣΙΟΑΗ(1)            | P10 to P14               | Total of all applicable pins                                     |                     | -20  |        |                      |      |
| High le                   | current                              | ΣΙΟΑΗ(2)            | P15 to P17<br>Ports 0, 2 | Total of all applicable pins                                     |                     | -20  |        |                      |      |
|                           |                                      | ΣΙΟΑΗ(3)            | Ports 0, 1, 2            | Total of all applicable pins                                     |                     | -25  |        |                      |      |
|                           | Peak output current                  | IOPL(1)             | P02 to P07<br>Ports 1, 2 | Per 1 applicable pin                                             |                     |      |        | 20                   |      |
|                           |                                      | IOPL(2)             | P00, P01                 | Per 1 applicable pin                                             |                     |      |        | 30                   | mA   |
| Ħ                         |                                      | IOPL(3)             | P70                      | Per 1 applicable pin                                             |                     |      |        | 10                   |      |
| Low level output current  | Mean output current                  | IOML(1)             | P02 to P07<br>Ports 1, 2 | Per 1 applicable pin                                             |                     |      |        | 15                   |      |
| outbr                     | (Note 1-1)                           | IOML(2)             | P00, P01                 | Per 1 applicable pin                                             |                     |      |        | 20                   |      |
| velo                      |                                      | IOML(3)             | P70                      | Per 1 applicable pin                                             |                     |      |        | 7.5                  |      |
| » e                       | Total output                         | ΣIOAL(1)            | P10 to P14               | Total of all applicable pins                                     |                     |      |        | 50                   |      |
| 2                         | current                              | ΣIOAL(2)            | Ports 0, 2<br>P15 to P17 | Total of all applicable pins                                     |                     |      |        | 60                   |      |
|                           |                                      | ΣIOAL(3)            | Ports 0, 1, 2            | Total of all applicable pins                                     |                     |      |        | 70                   |      |
|                           |                                      | ΣIOAL(4)            | P70                      | Total of all applicable pins                                     |                     |      |        | 7.5                  |      |
|                           | wer<br>ssipation                     | Pd max(1)           | MFP24S(300mil))          | Ta=-40 to +85°C Package only                                     |                     |      |        | 129                  |      |
|                           |                                      | Pd max(2)           |                          | Ta=-40 to +85°C Package with thermal resistance board (Note 1-2) |                     |      |        | 229                  |      |
|                           |                                      | Pd max(3)           | SSOP24(225mil)           | Ta=-40 to +85°C Package only                                     |                     |      |        | 111                  | mW   |
|                           |                                      | Pd max(4)           |                          | Ta=-40 to +85°C Package with thermal resistance board (Note 1-2) |                     |      |        | 334                  |      |
|                           | erating ambient<br>mperature         | Topr                |                          |                                                                  |                     | -40  |        | +85                  |      |
|                           | orage ambient nperature              | Tstg                |                          |                                                                  |                     | -55  |        | +125                 | °C   |

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

### Allowable Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

| Parameter                              | Symbol              | Pin/Remarks                               | Conditions                                                                                      |                     |                         | Specif | ication                  |      |
|----------------------------------------|---------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|-------------------------|--------|--------------------------|------|
| Farameter                              | Symbol              | FIII/Nemarks                              | Conditions                                                                                      | V <sub>DD</sub> [V] | min                     | typ    | max                      | unit |
| Operating                              | V <sub>DD</sub> (1) | V <sub>DD</sub> 1                         | $0.245\mu s \le tCYC \le 200\mu s$                                                              |                     | 2.7                     |        | 5.5                      |      |
| supply voltage<br>(Note 2-1)           | V <sub>DD</sub> (2) |                                           | 0.294μs ≤ tCYC ≤ 200μs                                                                          |                     | 2.2                     |        | 5.5                      |      |
| Memory<br>sustaining<br>supply voltage | VHD                 | V <sub>DD</sub> 1                         | RAM and register contents sustained in HOLD mode.                                               |                     | 1.6                     |        |                          |      |
| High level input voltage               | V <sub>IH</sub> (1) | Ports 1, 2 P70 port input/ interrupt side |                                                                                                 | 2.2 to 5.5          | 0.3V <sub>DD</sub> +0.7 |        | V <sub>DD</sub>          |      |
|                                        | V <sub>IH</sub> (2) | Port 0                                    |                                                                                                 | 2.2 to 5.5          | 0.3V <sub>DD</sub> +0.7 |        | $V_{DD}$                 |      |
|                                        | V <sub>IH</sub> (3) | Port 70 watchdog timer side               |                                                                                                 | 2.2 to 5.5          | 0.9V <sub>DD</sub>      |        | V <sub>DD</sub>          | ٧    |
|                                        | V <sub>IH</sub> (4) | CF1, RES                                  |                                                                                                 | 2.2 to 5.5          | 0.75V <sub>DD</sub>     |        | $V_{DD}$                 |      |
| Low level                              | V <sub>IL</sub> (1) | Ports 1, 2,                               |                                                                                                 | 4.0 to 5.5          | VSS                     |        | 0.1V <sub>DD</sub> +0.4  |      |
| input voltage                          |                     | P70 port input/<br>interrupt side         |                                                                                                 | 2.2 to 4.0          | V <sub>SS</sub>         |        | 0.2V <sub>DD</sub>       |      |
|                                        | V <sub>IL</sub> (2) | Port 0                                    |                                                                                                 | 4.0 to 5.5          | V <sub>SS</sub>         |        | 0.15V <sub>DD</sub> +0.4 |      |
|                                        |                     |                                           |                                                                                                 | 2.2 to 4.0          | V <sub>SS</sub>         |        | 0.2V <sub>DD</sub>       |      |
|                                        | V <sub>IL</sub> (3) | Port 70 watchdog timer side               |                                                                                                 | 2.2 to 5.5          | V <sub>SS</sub>         |        | 0.8V <sub>DD</sub> -1.0  |      |
|                                        | V <sub>IL</sub> (4) | CF1, RES                                  |                                                                                                 | 2.2 to 5.5          | V <sub>SS</sub>         |        | 0.25V <sub>DD</sub>      |      |
| Instruction                            | tCYC                |                                           |                                                                                                 | 2.7 to 5.5          | 0.245                   |        | 200                      |      |
| cycle time<br>(Note 2-1)               | (Note 2-2)          |                                           |                                                                                                 | 2.2 to 5.5          | 0.294                   |        | 200                      | μs   |
| External                               | FEXCF               | CF1                                       | CF2 pin open                                                                                    | 2.7 to 5.5          | 0.1                     |        | 12                       |      |
| system clock<br>frequency              |                     |                                           | System clock frequency division ratio=1/1     External system clock duty=50±5%                  | 2.2 to 5.5          | 0.1                     |        | 10                       |      |
|                                        |                     |                                           | CF2 pin open     System clock frequency division ratio=1/2     External system clock duty=50±5% | 3.0 to 5.5          | 0.2                     |        | 24.4                     | MHz  |
| Oscillation frequency                  | FmCF(1)             | CF1, CF2                                  | 12MHz ceramic oscillation See Fig. 1.                                                           | 2.7 to 5.5          |                         | 12     |                          |      |
| range<br>(Note 2-3)                    | FmCF(2)             | CF1, CF2                                  | 10MHz ceramic oscillation See Fig. 1.                                                           | 2.2 to 5.5          |                         | 10     |                          |      |
|                                        | FmCF(3)             | CF1, CF2                                  | 4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1  | 2.2 to 5.5          |                         | 4      |                          |      |
|                                        |                     |                                           | 4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.    | 2.2 to 5.5          |                         | 4      |                          | MHz  |
|                                        | FmMRC               |                                           | Frequency variable RC oscillation. 1/2 frequency division ration. (RCCTD=0) (Note 2-4)          | 2.7 to 5.5          | 7.6                     | 8.0    | 8.4                      |      |
|                                        | FmRC                |                                           | Internal medium-speed RC oscillation                                                            | 2.2 to 5.5          | 0.5                     | 1.0    | 2.0                      |      |

- Note 2-1: V<sub>DD</sub> must be held greater than or equal to 2.2V in the flash ROM onboard programming mode.
- Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.
- Note 2-3: See Tables 1 and 2 for the oscillation constants.
- Note 2-4: When switching the system clock, allow an oscillation stabilization time of  $100\mu s$  or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

# **Electrical Characteristics** at $Ta = -40^{\circ}C$ to $+85^{\circ}C$ , $V_{SS}1 = 0V$

| Parameter                | Symbol              | Pin/Remarks                 | Conditions                                                                                                        |                     |                      | Specifica           | ation |      |
|--------------------------|---------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---------------------|-------|------|
| Parameter                | Symbol              | Pin/Remarks                 | Conditions                                                                                                        | V <sub>DD</sub> [V] | min                  | typ                 | max   | unit |
| High level input current | I <sub>IH</sub> (1) | Ports 0, 1, 2<br>P70<br>RES | Output disabled Pull-up resistor off V <sub>IN</sub> =V <sub>DD</sub> (Including output Tr's off leakage current) | 2.2 to 5.5          |                      |                     | 1     |      |
|                          | I <sub>IH</sub> (2) | CF1                         | V <sub>IN</sub> =V <sub>DD</sub>                                                                                  | 2.2 to 5.5          |                      |                     | 15    |      |
| Low level input current  | I <sub>IL</sub> (1) | Ports 0, 1, 2<br>P70<br>RES | Output disabled Pull-up resistor off  VIN=VSS (Including output Tr's off leakage current)                         | 2.2 to 5.5          | -1                   |                     |       | μА   |
|                          | I <sub>IL</sub> (2) | CF1                         | V <sub>IN</sub> =V <sub>SS</sub>                                                                                  | 2.2 to 5.5          | -15                  |                     |       |      |
| High level output        | V <sub>OH</sub> (1) | Ports 0, 1, 2               | I <sub>OH</sub> =-1mA                                                                                             | 4.5 to 5.5          | V <sub>DD</sub> -1   |                     |       |      |
| voltage                  | V <sub>OH</sub> (2) |                             | I <sub>OH</sub> =-0.35mA                                                                                          | 2.7 to 5.5          | V <sub>DD</sub> -0.4 |                     |       |      |
|                          | V <sub>OH</sub> (3) |                             | I <sub>OH</sub> =-0.15mA                                                                                          | 2.2 to 5.5          | V <sub>DD</sub> -0.4 |                     |       |      |
| Low level output         | V <sub>OL</sub> (1) | Ports 0, 1, 2               | I <sub>OL</sub> =10mA                                                                                             | 4.5 to 5.5          |                      |                     | 1.5   |      |
| voltage                  | V <sub>OL</sub> (2) |                             | I <sub>OL</sub> =1.4mA                                                                                            | 2.7 to 5.5          |                      |                     | 0.4   |      |
|                          | V <sub>OL</sub> (3) |                             | I <sub>OL</sub> =0.8mA                                                                                            | 2.2 to 5.5          |                      |                     | 0.4   | ٧    |
|                          | V <sub>OL</sub> (4) | P70                         | I <sub>OL</sub> =1.4mA                                                                                            | 2.7 to 5.5          |                      |                     | 0.4   |      |
|                          | V <sub>OL</sub> (5) |                             | I <sub>OL</sub> =0.8mA                                                                                            | 2.2 to 5.5          |                      |                     | 0.4   |      |
|                          | V <sub>OL</sub> (6) | P00, P01                    | I <sub>OL</sub> =25mA                                                                                             | 4.5 to 5.5          |                      |                     | 1.5   |      |
|                          | V <sub>OL</sub> (7) |                             | I <sub>OL</sub> =4mA                                                                                              | 2.7 to 5.5          |                      |                     | 0.4   |      |
|                          | V <sub>OL</sub> (8) |                             | I <sub>OL</sub> =2mA                                                                                              | 2.2 to 5.5          |                      |                     | 0.4   |      |
| Pull-up resistance       | Rpu(1)              | Ports 0, 1, 2<br>P70        | V <sub>OH</sub> =0.9V <sub>DD</sub><br>When Port 0 selected                                                       | 4.5 to 5.5          | 15                   | 35                  | 80    |      |
|                          | Rpu(2)              | 170                         | low-impedance pull-up.                                                                                            | 2.2 to 4.5          | 18                   | 50                  | 230   |      |
|                          | Rpu(3)              | Port 0                      | V <sub>OH</sub> =0.9V <sub>DD</sub> When Port 0 selected high-impedance pull-up.                                  | 2.2 to 5.5          | 100                  | 210                 | 400   | kΩ   |
| Hysteresis voltage       | VHYS(1)             | Ports 1, 2                  |                                                                                                                   | 2.7 to 5.5          |                      | 0.1V <sub>DD</sub>  |       |      |
|                          | VHYS(2)             | P70<br>RES                  |                                                                                                                   | 2.2 to 5.5          |                      | 0.07V <sub>DD</sub> |       | V    |
| Pin capacitance          | СР                  | All pins                    | For pins other than that under test:  VIN=VSS f=1MHz Ta=25°C                                                      | 2.2 to 5.5          |                      | 10                  |       | pF   |

#### AD Converter Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$ , $V_{SS}1 = 0V$

#### 12bits AD Converter Mode

| Danasatas                  | O. mak al | Dia /Damanda | O and distance                  |                     |                 | Specifi | cation   |      |
|----------------------------|-----------|--------------|---------------------------------|---------------------|-----------------|---------|----------|------|
| Parameter                  | Symbol    | Pin/Remarks  | Conditions                      | V <sub>DD</sub> [V] | min             | typ     | max      | unit |
| Resolution                 | N         | AN0(P00) to  |                                 | 2.4 to 5.5          |                 | 12      |          | bit  |
| Absolute                   | ET        | AN6(P06),    | (Note 6-1)                      | 2.7 to 5.5          |                 |         | ±16      | 1.00 |
| accuracy                   |           | AN8(P70)     |                                 | 2.4 to 5.5          |                 |         | ±20      | LSB  |
| Conversion time            | TCAD      |              | See Conversion time calculation | 4.0 to 5.5          | 32              |         | 115      |      |
|                            |           |              | formulas.                       | 2.7 to 5.5          | 64              |         | 115      | μs   |
|                            |           |              | (Note 6-2)                      | 2.4 to 5.5          | 410             |         | 425      |      |
| Analog input voltage range | VAIN      |              |                                 | 2.4 to 5.5          | V <sub>SS</sub> |         | $V_{DD}$ | ٧    |
| Analog port                | IAINH     |              | VAIN=V <sub>DD</sub>            | 2.4 to 5.5          |                 |         | 1        |      |
| input current              | IAINL     |              | VAIN=V <sub>SS</sub>            | 2.4 to 5.5          | -1              |         |          | μΑ   |

#### 8bits AD Converter Mode

|                            | 0      | D: /D                | O a Britana                     |                     |     | Specifi | cation   |      |
|----------------------------|--------|----------------------|---------------------------------|---------------------|-----|---------|----------|------|
| Parameter                  | Symbol | Pin/Remarks          | Conditions                      | V <sub>DD</sub> [V] | min | typ     | max      | unit |
| Resolution                 | N      | AN0(P00) to          |                                 | 2.4 to 5.5          |     | 8       |          | bit  |
| Absolute accuracy          | ET     | AN6(P06)<br>AN8(P70) | (Note 6-1)                      | 2.4 to 5.5          |     |         | ±1.5     | LSB  |
| Conversion time            | TCAD   |                      | See Conversion time calculation | 4.0 to 5.5          | 20  |         | 90       |      |
|                            |        |                      | formulas.                       | 2.7 to 5.5          | 40  |         | 90       | μs   |
|                            |        |                      | (Note 6-2)                      | 2.4 to 5.5          | 250 |         | 265      |      |
| Analog input voltage range | VAIN   |                      |                                 | 2.4 to 5.5          | VSS |         | $V_{DD}$ | V    |
| Analog port                | IAINH  |                      | VAIN=V <sub>DD</sub>            | 2.4 to 5.5          |     |         | 1        | 4    |
| input current              | IAINL  |                      | VAIN=V <sub>SS</sub>            | 2.4 to 5.5          | -1  |         |          | μА   |

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) =  $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) =  $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 

| External oscillation | Operating supply voltage range | System division ratio | Cycle time | AD division ratio |          | ersion time<br>(AD) |
|----------------------|--------------------------------|-----------------------|------------|-------------------|----------|---------------------|
| (FmCF)               | (V <sub>DD</sub> )             | (SYSDIV)              | (tCYC)     | (ADDIV)           | 12bit AD | 8bit AD             |
| CF-12MHz             | 4.0V to 5.5V                   | 1/1                   | 250ns      | 1/8               | 34.8µs   | 21.5μs              |
| CF-12MHZ             | 3.0V to 5.5V                   | 1/1                   | 250ns      | 1/16              | 69.5μs   | 42.8µs              |
| OF 40MH-             | 4.0V to 5.5V                   | 1/1                   | 300ns      | 1/8               | 41.8µs   | 25.8μs              |
| CF-10MHz             | 3.0V to 5.5V                   | 1/1                   | 300ns      | 1/16              | 83.4µs   | 51.4μs              |
| OF ANIL-             | 3.0V to 5.5V                   | 1/1                   | 750ns      | 1/8               | 104.5μs  | 64.5μs              |
| CF-4MHz              | 2.4V to 5.5V                   | 1/1                   | 750ns      | 1/32              | 416.5μs  | 256.5μs             |

- Note 6-1: The quantization error ( $\pm 1/2$ LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

### Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = 0V$

|                                       |        |             |                                            |                         |      | Specif | ication |      |
|---------------------------------------|--------|-------------|--------------------------------------------|-------------------------|------|--------|---------|------|
| Parameter                             | Symbol | Pin/Remarks | Conditions                                 | Option selected voltage | min  | typ    | max     | unit |
| POR release                           | PORRL  |             | Select from option.                        | 1.67V                   | 1.55 | 1.67   | 1.79    |      |
| voltage                               |        |             | (Note 7-1)                                 | 1.97V                   | 1.85 | 1.97   | 2.09    |      |
|                                       |        |             |                                            | 2.07V                   | 1.95 | 2.07   | 2.19    |      |
|                                       |        |             |                                            | 2.37V                   | 2.25 | 2.37   | 2.49    |      |
|                                       |        |             |                                            | 2.57V                   | 2.45 | 2.57   | 2.69    |      |
|                                       |        |             |                                            | 2.87V                   | 2.75 | 2.87   | 2.99    | V    |
|                                       |        |             |                                            | 3.86V                   | 3.73 | 3.86   | 3.99    |      |
|                                       |        |             |                                            | 4.35V                   | 4.21 | 4.35   | 4.49    |      |
| Detection<br>voltage<br>unknown state | POUKS  |             | • See Fig. 7.<br>(Note 7-2)                |                         |      | 0.7    | 0.95    |      |
| Power supply rise time                | PORIS  |             | Power supply rise<br>time from 0V to 1.6V. |                         |      |        | 100     | ms   |

Note7-1: The POR release level can be selected out of 4 levels only when the LVD reset function is disabled.

Note7-2: POR is in an unknown state before transistors start operation.

### Low Voltage Detection Reset (LVD) Characteristics at Ta = -40 °C to +85 °C, $V_{SS}1 = 0$ V

|                                           |        |             |                               |                         |      | Specific | ation |      |
|-------------------------------------------|--------|-------------|-------------------------------|-------------------------|------|----------|-------|------|
| Parameter                                 | Symbol | Pin/Remarks | Conditions                    | Option selected voltage | min  | typ      | max   | unit |
| LVD reset Voltage                         | LVDET  |             | Select from option.           | 1.91V                   | 1.81 | 1.91     | 2.01  |      |
| (Note 8-2)                                |        |             | (Note 8-1)                    | 2.01V                   | 1.91 | 2.01     | 2.11  |      |
|                                           |        |             | (Note 8-3)                    | 2.31V                   | 2.21 | 2.31     | 2.41  |      |
|                                           |        |             | • See Fig. 8.                 | 2.51V                   | 2.41 | 2.51     | 2.61  | V    |
|                                           |        |             |                               | 2.81V                   | 2.71 | 2.81     | 2.91  |      |
|                                           |        |             |                               | 3.79V                   | 3.69 | 3.79     | 3.89  |      |
|                                           |        |             |                               | 4.28V                   | 4.18 | 4.28     | 4.38  |      |
| LVD hysteresis                            | LVHYS  |             | =                             | 1.91V                   |      | 55       |       |      |
| width                                     |        |             |                               | 2.01V                   |      | 55       |       |      |
|                                           |        |             |                               | 2.31V                   |      | 55       |       |      |
|                                           |        |             |                               | 2.51V                   |      | 55       |       | mV   |
|                                           |        |             |                               | 2.81V                   |      | 60       |       |      |
|                                           |        |             |                               | 3.79V                   |      | 65       |       |      |
|                                           |        |             |                               | 4.28V                   |      | 65       |       |      |
| Detection voltage unknown state           | LVUKS  |             | • See Fig. 8.<br>(Note 8-4)   |                         |      | 0.7      | 0.95  | V    |
| Low voltage<br>detection<br>minimum Width | TLVDW  |             | • LVDET-0.5V<br>• See Fig. 9. |                         | 0.2  |          |       | ms   |
| (Reply sensitivity)                       |        |             |                               |                         |      |          |       |      |

Note8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

### Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$ , $V_{SS}1 = 0V$

| Parameter                       | Symbol   | Pin/              | Conditions                                                                                                                    |                     |     | Specif | ication |      |
|---------------------------------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|--------|---------|------|
| Farameter                       | Symbol   | Remarks           | Conditions                                                                                                                    | V <sub>DD</sub> [V] | min | typ    | max     | unit |
| Normal mode consumption current | IDDOP(1) | V <sub>DD</sub> 1 | FmCF=12MHz ceramic oscillation mode     System clock set to 12MHz side     Internal medium speed RC oscillation               | 2.7 to 5.5          |     | 6.1    | 10      |      |
| (Note 9-1)<br>(Note 9-2)        |          |                   | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                        | 2.7 to 3.6          |     | 3.7    | 6.4     |      |
|                                 | IDDOP(2) |                   | FmCF=10MHz ceramic oscillation mode     System clock set to 10MHz side     Internal medium speed RC oscillation               | 2.2 to 5.5          |     | 5.3    | 9.1     |      |
|                                 |          |                   | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                        | 2.2 to 3.6          |     | 3.4    | 5.8     |      |
|                                 | IDDOP(3) |                   | FmCF=4MHz ceramic oscillation mode     System clock set to 4MHz side     Internal medium speed RC oscillation                 | 2.2 to 5.5          |     | 2.6    | 5.5     |      |
|                                 |          |                   | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                        | 2.2 to 3.6          |     | 1.9    | 3.4     |      |
|                                 | IDDOP(4) |                   | CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side       | 2.2 to 5.5          |     | 1.1    | 2.1     | mA   |
|                                 |          |                   | Internal medium speed RC oscillation stopped.     Frequency variable RC oscillation stopped.     1/4 frequency division ratio | 2.2 to 3.6          |     | 0.56   | 1.1     |      |
|                                 | IDDOP(5) |                   | External FmCF oscillation stopped.     System clock set to internal medium speed RC oscillation.                              | 2.2 to 5.5          |     | 0.47   | 1.2     |      |
|                                 |          |                   | Frequency variable RC oscillation stopped.     1/2 frequency division ratio                                                   | 2.2 to 3.6          |     | 0.28   | 0.65    |      |
|                                 | IDDOP(6) |                   | External FmCF oscillation stopped.     Internal medium speed RC oscillation stopped.                                          | 2.7 to 5.5          |     | 4.2    | 8.1     |      |
|                                 |          |                   | System clock set to 8MHz with frequency variable RC oscillation.(RCCTD=0)     1/1 frequency division ratio.                   | 2.7 to 3.6          |     | 3.3    | 5.6     |      |

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

| Continued from                           |            | Pin/              | Q = Itt                                                                                                                                                         |                     |     | Specit | fication |      |
|------------------------------------------|------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|--------|----------|------|
| Parameter                                | Symbol     | Remarks           | Conditions                                                                                                                                                      | V <sub>DD</sub> [V] | min | typ    | max      | unit |
| HALT mode consumption current (Note 9-1) | IDDHALT(1) | V <sub>DD</sub> 1 | HALT mode     FmCF=12MHz ceramic oscillation mode     System clock set to 12MHz side     Internal medium speed RC oscillation                                   | 2.7 to 5.5          |     | 2.3    | 4.1      |      |
| (Note 9-2)                               |            |                   | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                                                          | 2.7 to 3.6          |     | 1.2    | 1.9      |      |
|                                          | IDDHALT(2) |                   | HALT mode     FmCF=10MHz ceramic oscillation mode     System clock set to 10MHz side     Internal medium speed RC oscillation                                   | 2.2to 5.5           |     | 1.9    | 3.4      |      |
|                                          |            | -                 | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                                                          | 2.2 to 3.6          |     | 1.0    | 1.6      |      |
|                                          | IDDHALT(3) |                   | HALT mode     FmCF=4MHz ceramic oscillation mode     System clock set to 4MHz side     Internal medium speed RC oscillation                                     | 2.2 to 5.5          |     | 1.3    | 2.5      |      |
|                                          |            |                   | stopped.  • Frequency variable RC oscillation stopped.  • 1/1 frequency division ratio                                                                          | 2.2 to 3.6          |     | 0.53   | 1.0      |      |
|                                          | IDDHALT(4) |                   | HALT mode     CF oscillation low amplifier size selected.     (CFLAMP=1)     FmCF=4MHz ceramic oscillation mode                                                 | 2.2 to 5.5          |     | 0.80   | 1.5      | mA   |
|                                          |            |                   | System clock set to 4MHz side     Internal medium speed RC oscillation stopped.     Frequency variable RC oscillation stopped.     1/4 frequency division ratio | 2.2 to 3.6          |     | 0.31   | 0.62     |      |
|                                          | IDDHALT(5) |                   | HALT mode     External FmCF oscillation stopped.     System clock set to internal medium speed                                                                  | 2.2 to 5.5          |     | 0.28   | 0.73     |      |
|                                          |            |                   | RC oscillation  • Frequency variable RC oscillation stopped.  • 1/2 frequency division ratio                                                                    | 2.2 to 3.6          |     | 0.14   | 0.36     |      |
|                                          | IDDHALT(6) |                   | HALT mode     External FmCF oscillation stopped.     Internal medium speed RC oscillation stopped.                                                              | 2.7 to 5.5          |     | 1.3    | 2.7      |      |
|                                          |            |                   | System clock set to 8MHz with frequency variable RC oscillation. (RCCTD=0)     1/1 frequency division ratio.                                                    | 2.7 to 3.6          |     | 0.93   | 1.8      |      |
| HOLD mode consumption                    | IDDHOLD(1) | V <sub>DD</sub> 1 | HOLD mode  • CF1=V <sub>DD</sub> or open (External clock mode)                                                                                                  | 2.2 to 5.5          |     | 0.03   | 25       |      |
| current                                  |            |                   | 5. 1-1DD of open (External clock filede)                                                                                                                        | 2.2 to 3.6          |     | 0.02   | 5.9      |      |
| (Note 9-1)<br>(Note 9-2)                 | IDDHOLD(2) |                   | HOLD mode                                                                                                                                                       | 5.0                 |     | 0.03   | 1.2      |      |
| (140(6 3-2)                              |            |                   | CF1=V <sub>DD</sub> or open (External clock mode)     Ta=-10 to +50°C                                                                                           | 3.3                 |     | 0.02   | 0.56     |      |
|                                          |            |                   |                                                                                                                                                                 | 2.5                 |     | 0.01   | 0.40     |      |
|                                          | IDDHOLD(3) |                   | HOLD mode                                                                                                                                                       | 2.2 to 5.5          |     | 3.0    | 29       | μΑ   |
|                                          |            |                   | CF1=V <sub>DD</sub> or open (External clock mode)     LVD option selected                                                                                       | 2.2 to 3.6          |     | 2.3    | 10       |      |
|                                          | IDDHOLD(4) | 1                 | HOLD mode                                                                                                                                                       | 5.0                 |     | 3.0    | 7.3      |      |
|                                          |            |                   | CF1=V <sub>DD</sub> or open (External clock mode)     Ta=-10 to +50°C                                                                                           | 3.3                 |     | 2.3    | 3.4      |      |
|                                          |            |                   | LVD option selected                                                                                                                                             | 2.5                 |     | 2.0    | 2.9      |      |
|                                          | 1          | 1                 | 1                                                                                                                                                               | 1                   |     |        |          |      |

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

### F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$ , $V_{SS}1 = 0V$

| Danamatan   | 0        | Dia/Damada        | O and the man                    |                     |     | Specifi | cation |      |
|-------------|----------|-------------------|----------------------------------|---------------------|-----|---------|--------|------|
| Parameter   | Symbol   | Pin/Remarks       | Conditions                       | V <sub>DD</sub> [V] | min | typ     | max    | unit |
| Onboard     | IDDFW(1) | V <sub>DD</sub> 1 | Only current of the flash block. |                     |     |         |        |      |
| programming |          |                   |                                  | 2.2 to 5.5          |     | 5       | 10     | mA   |
| current     |          |                   |                                  |                     |     |         |        |      |
| Programming | tFW(1)   |                   | Erasing time                     | 0.04- 5.5           |     | 20      | 30     | ms   |
| time        | tFW(2)   |                   | Programming time                 | 2.2 to 5.5          |     | 40      | 60     | μs   |

## Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

#### **■**MURATA

| Nominal<br>Frequency | Туре | Oscillator Name | Circuit Constant |       |      |      | Operating            | Oscillation Stabilization Time |      |                   |
|----------------------|------|-----------------|------------------|-------|------|------|----------------------|--------------------------------|------|-------------------|
|                      |      |                 | C1               | C1 C2 | Rf   | Rd   | Voltage Range<br>[V] | typ                            | max  | Remarks           |
|                      |      |                 | [pF]             | [pF]  | [Ω]  | [Ω]  |                      | [ms]                           | [ms] |                   |
| 12MHz                | SMD  | CSTCE12M0G52-R0 | (10)             | (10)  | Open | 680  | 2.2 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 1.0k | 2.5 to 5.5           | 0.1                            | 0.5  |                   |
| 10MHz                | SMD  | CSTCE10M0G52-R0 | (10)             | (10)  | Open | 680  | 2.0 to 5.5           | 0.1                            | 0.5  | Internal<br>C1,C2 |
|                      |      |                 |                  |       | Open | 1.0k | 2.1 to 5.5           | 0.1                            | 0.5  |                   |
|                      | LEAD | CSTLS10M0G53-B0 | (15)             | (15)  | Open | 680  | 2.2 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 1.0k | 2.4 to 5.5           | 0.1                            | 0.5  |                   |
| 8MHz                 | SMD  | CSTCE8M00G52-R0 | (10)             | (10)  | Open | 1.0k | 1.9 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 1.5k | 2.0 to 5.5           | 0.1                            | 0.5  |                   |
|                      | LEAD | CSTLS8M00G53-B0 | (15)             | (15)  | Open | 1.0k | 2.0 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 1.5k | 2.2 to 5.5           | 0.1                            | 0.5  |                   |
| 6MHz                 | SMD  | CSTCR6M00G53-R0 | (15)             | (15)  | Open | 1.5k | 1.9 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 2.2k | 2.0 to 5.5           | 0.1                            | 0.5  |                   |
|                      | LEAD | CSTLS6M00G53-B0 | (15)             | (15)  | Open | 1.5k | 2.0 to 5.5           | 0.1                            | 0.5  |                   |
|                      |      |                 |                  |       | Open | 2.2k | 2.1 to 5.5           | 0.1                            | 0.5  |                   |
| 4MHz                 | SMD  | CSTCR4M00G53-R0 | (15)             | (15)  | Open | 1.5k | 1.8 to 5.5           | 0.2                            | 0.6  |                   |
|                      |      |                 |                  |       | Open | 3.3k | 1.9 to 5.5           | 0.2                            | 0.6  |                   |
|                      | LEAD | CSTLS4M00G53-B0 | (15)             | (15)  | Open | 1.5k | 1.8 to 5.5           | 0.2                            | 0.6  |                   |
|                      |      |                 |                  |       | Open | 3.3k | 1.9 to 5.5           | 0.2                            | 0.6  |                   |

• CF oscillation low amplifier size selected (CFLAMP=1)

#### **■**MURATA

| Nominal<br>Frequency | Туре | Oscillator Name    | Circuit Constant |            |           |           | Operating            | Oscillation Stabilization Time |             |                   |
|----------------------|------|--------------------|------------------|------------|-----------|-----------|----------------------|--------------------------------|-------------|-------------------|
|                      |      |                    | C1<br>[pF]       | C2<br>[pF] | Rf<br>[Ω] | Rd<br>[Ω] | Voltage Range<br>[V] | typ<br>[ms]                    | max<br>[ms] | Remarks           |
| 4MHz                 | SMD  | CSTCR4M00G53-R0    | (15)             | (15)       | Open      | 1.0k      | 1.9 to 5.5           | 0.2                            | 0.6         | Internal<br>C1,C2 |
|                      |      |                    |                  |            | Open      | 2.2k      | 2.1 to 5.5           | 0.2                            | 0.6         |                   |
|                      |      | CSTCR4M00G53095-R0 | (15)             | (15)       | Open      | 1.0k      | 1.8 to 5.5           | 0.2                            | 0.6         |                   |
|                      |      |                    |                  |            | Open      | 2.2k      | 1.9 to 5.5           | 0.2                            | 0.6         |                   |
|                      | LEAD | CSTLS4M00G53-B0    | (15)             | (15)       | Open      | 1.0k      | 2.0 to 5.5           | 0.2                            | 0.6         |                   |
|                      |      |                    |                  |            | Open      | 2.2k      | 2.1 to 5.5           | 0.2                            | 0.6         |                   |
|                      |      | CSTLS4M00G53095-B0 | (15)             | (15)       | Open      | 1.0k      | 1.8 to 5.5           | 0.2                            | 0.6         |                   |
|                      |      |                    |                  |            | Open      | 2.2k      | 1.9 to 5.5           | 0.2                            | 0.6         |                   |

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after  $V_{DD}$  goes above the operating voltage lower limit (see Figure 3).

- Time till the oscillation gets stabilized after the CPU reset state is released.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed.
- Till the oscillation gets stabilized after the HOLD mode is reset. (Notes on the implementation of the oscillator circuit)
- Oscillation is influenced by the circuit pattern layout of printed circuit board. Place the oscillation-related components as close to the CPU chip and to each other as possible with the shortest possible pattern length.
- Keep the signal lines whose state changes suddenly or in which large current flows as far away from the oscillator circuit as possible and make sure that they do not cross one another.
- Be sure to insert a current limiting resistor (Rd) so that the oscillation amplitude never exceeds the input voltage level that is specified as the absolute maximum rating.
- The oscillator circuit constants shown above are sample characteristic values that are measured using the Our designated oscillation evaluation board. Since the accuracy of the oscillation frequency and other characteristics vary according to the board on which the IC is installed, it is recommended that the user consult the resonator vendor for oscillation evaluation of the IC on a user's production board when using the IC for applications that require high oscillation accuracy. For further information, contact your resonator vendor or Our company Semiconductor sales representative serving your locality.
- It must be noted, when replacing the flash ROM version of a microcontroller with a mask ROM version, that their operating voltage ranges may differ even when the oscillation constant of the external oscillator is the same.

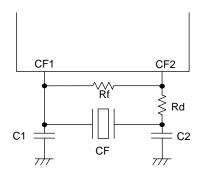



Figure 1 CF Oscillator Circuit



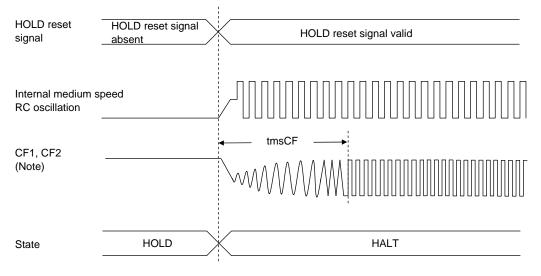
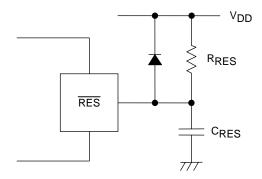



Figure 2 AC Timing Measurement Point




Reset Time and Oscillation Stabilization Time



HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times



#### Note:

External circuits for reset may vary depending on the usage of POR and LVD. Please refer to the user's manual for more information..

Figure 4 Reset Circuit

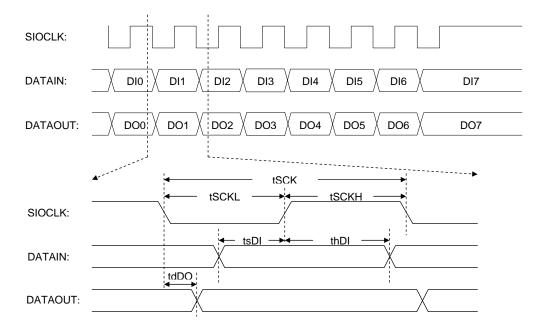



Figure 5 Serial I/O Output Waveforms

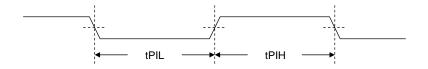



Figure 6 Pulse Input Timing Signal Waveform

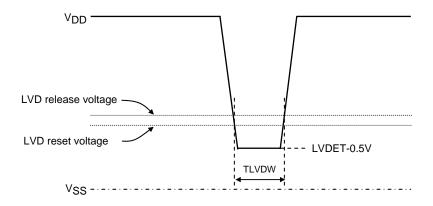



Figure 9 Low voltage detection minimum width (Example of momentary power loss / Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa