

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	0.9V ~ 3.6V
Data Converters	A/D 23x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f920-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13.1.3.Flash Write Procedure	146
13.2.Non-volatile Data Storage	147
13.3.Security Options	147
13.4.Determining the Device Part Number at Run Time	149
13.5.Flash Write and Erase Guidelines	150
13.5.1.VDD Maintenance and the VDD Monitor	150
13.5.2.PSWE Maintenance	151
13.5.3.System Clock	151
13.6.Minimizing Flash Read Current	152
14. Power Management	156
14.1.Normal Mode	157
14.2.Idle Mode	158
14.3.Stop Mode	158
14.4.Suspend Mode	159
14.5.Sleep Mode	159
14.6.Configuring Wakeup Sources	160
14.7. Determining the Event that Caused the Last Wakeup	161
14.8.Power Management Specifications	163
15. Cyclic Redundancy Check Unit (CRC0)	164
15.1.CRC Algorithm	164
15.2.Preparing for a CRC Calculation	166
15.3.Performing a CRC Calculation	166
15.4.Accessing the CRC0 Result	166
15.5.CRC0 Bit Reverse Feature	170
16. On-Chip DC-DC Converter (DC0)	171
16.1.Startup Behavior	172
16.2. High Power Applications	173
16.3.Pulse Skipping Mode	173
16.4.Enabling the DC-DC Converter	174
16.5.Minimizing Power Supply Noise	175
16.6. Selecting the Optimum Switch Size	175
16.7.DC-DC Converter Clocking Options	175
16.8.DC-DC Converter Behavior in Sleep Mode	175
16.9.DC-DC Converter Register Descriptions	177
16.10.DC-DC Converter Specifications	
17. Voltage Regulator (VREG0)	179
17.1.Voltage Regulator Electrical Specifications	179
18 Reset Sources	180
18.1 Power-On (VBAT Supply Monitor) Reset	181
18.2 Power-Fail (VDD/DC+ Supply Monitor) Reset	
18.3 External Reset	184
18 4 Missing Clock Detector Reset	184
18.5 Comparator() Reset	184
18.6 PCA Watchdog Timer Reset	18/
18 7 Flash Frror Reset	185
	100

The ADC can sample the voltage at any of the GPIO pins (with the exception of P2.7) and has an on-chip attenuator that allows it to measure voltages up to twice the voltage reference. Additional ADC inputs include an on-chip temperature sensor, the VDD/DC+ supply voltage, the VBAT supply voltage, and the internal digital supply voltage.

Figure 1.7. ADC0 Functional Block Diagram

Figure 3.1. QFN-32 Pinout Diagram (Top View)

Figure 3.3. LQFP-32 Pinout Diagram (Top View)

Figure 3.4. QFN-32 Package Drawing

Table 3.2. QFN-32	Package	Dimensions

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.80	0.9	1.00	E2	3.20	3.30	3.40
A1	0.00	0.02	0.05	L	0.30	0.40	0.50
b	0.18	0.25	0.30	L1	0.00	—	0.15
D	5.00 BSC			aaa	_	—	0.15
D2	3.20	3.30	3.40	bbb	_	—	0.10
е	0.50 BSC			ddd	_	—	0.05
Ē		5.00 BSC		eee	_	_	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

5. 10-Bit SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low Power Burst Mode

The ADC0 on the C8051F93x-C8051F92x is a 300 ksps, 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold and programmable window detector. ADC0 also has an autonomous low power Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. It also has a 16-bit accumulator that can automatically oversample and average the ADC results.

The ADC is fully configurable under software control via Special Function Registers. The ADC0 operates in Single-ended mode and may be configured to measure various different signals using the analog multiplexer described in "5.5. ADC0 Analog Multiplexer" on page 81. The voltage reference for the ADC is selected as described in "5.7. Voltage and Ground Reference Options" on page 86.

Figure 5.1. ADC0 Functional Block Diagram

SFR Definition 7.4. CPT1MD: Comparator 1 Mode Selection

Bit	7	6	5	4	3	2	1	0
Name			CP1RIE	CP1FIE			CP1M	D[1:0]
Туре	R/W	R	R/W	R/W	R	R	R/W	
Reset	1	0	0	0	0	0	1	0

SFR Page = 0x0; SFR Address = 0x9C

Bit	Name	Function
7	Reserved	Reserved. Read = 1b, Must Write 1b.
6	Unused	Unused. Read = 00b, Write = don't care.
5	CP1RIE	Comparator1 Rising-Edge Interrupt Enable. 0: Comparator1 Rising-edge interrupt disabled. 1: Comparator1 Rising-edge interrupt enabled.
4	CP1FIE	Comparator1 Falling-Edge Interrupt Enable. 0: Comparator1 Falling-edge interrupt disabled. 1: Comparator1 Falling-edge interrupt enabled.
3:2	Unused	Unused. Read = 00b, Write = don't care.
1:0	CP1MD[1:0]	Comparator1 Mode Select These bits affect the response time and power consumption for Comparator1. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

7.6. Comparator0 and Comparator1 Analog Multiplexers

Comparator0 and Comparator1 on C8051F93x-C8051F92x devices have analog input multiplexers to connect Port I/O pins and internal signals the comparator inputs; CP0+/CP0- are the positive and negative input multiplexers for Comparator0 and CP1+/CP1- are the positive and negative input multiplexers for Comparator1.

The comparator input multiplexers directly support capacitive touch switches. When the Capacitive Touch Sense Compare input is selected on the positive or negative multiplexer, any Port I/O pin connected to the other multiplexer can be directly connected to a capacitive touch switch with no additional external components. The Capacitive Touch Sense Compare provides the appropriate reference level for detecting when the capacitive touch switches have charged or discharged through the on-chip Rsense resistor. The Comparator outputs can be routed to Timer2 or Timer3 for capturing sense capacitor's charge and discharge time. See Section "25. Timers" on page 278 for details.

Any of the following may be selected as comparator inputs: Port I/O pins, Capacitive Touch Sense Compare, VDD/DC+ Supply Voltage, Regulated Digital Supply Voltage (Output of VREG0), the VBAT Supply voltage or ground. The Comparator's supply voltage divided by 2 is also available as an input; the resistors used to divide the voltage only draw current when this setting is selected. The Comparator input multiplexers are configured using the CPT0MX and CPT1MX registers described in SFR Definition 7.5 and SFR Definition 7.6.

Figure 7.4. CPn Multiplexer Block Diagram

Important Note About Comparator Input Configuration: Port pins selected as comparator inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN and disable the digital driver (PnMDOUT = 0 and Port Latch = 1). To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "21. Port Input/Output" on page 212 for more Port I/O configuration details.

Mnemonic	Mnemonic Description			
	Arithmetic Operations			
ADD A, Rn	Add register to A	1	1	
ADD A, direct	Add direct byte to A	2	2	
ADD A, @Ri	Add indirect RAM to A	1	2	
ADD A, #data	Add immediate to A	2	2	
ADDC A, Rn	Add register to A with carry	1	1	
ADDC A, direct	Add direct byte to A with carry	2	2	
ADDC A, @Ri	Add indirect RAM to A with carry	1	2	
ADDC A, #data	Add immediate to A with carry	2	2	
SUBB A, Rn	Subtract register from A with borrow	1	1	
SUBB A, direct	Subtract direct byte from A with borrow	2	2	
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2	
SUBB A, #data	Subtract immediate from A with borrow	2	2	
INC A	Increment A	1	1	
INC Rn	Increment register	1	1	
INC direct	Increment direct byte	2	2	
INC @Ri	Increment indirect RAM	1	2	
DEC A	Decrement A	1	1	
DEC Rn	Decrement register	1	1	
DEC direct	Decrement direct byte	2	2	
DEC @Ri	Decrement indirect RAM	1	2	
INC DPTR	Increment Data Pointer	1	1	
MUL AB	Multiply A and B	1	4	
DIV AB	Divide A by B	1	8	
DA A	Decimal adjust A	1	1	
	Logical Operations	·		
ANL A, Rn	AND Register to A	1	1	
ANL A, direct	AND direct byte to A	2	2	
ANL A, @Ri	AND indirect RAM to A	1	2	
ANL A, #data	AND immediate to A	2	2	
ANL direct, A	AND A to direct byte	2	2	
ANL direct, #data	AND immediate to direct byte	3	3	
ORL A, Rn	OR Register to A	1	1	
ORL A, direct	OR direct byte to A	2	2	
ORL A, @Ri	OR indirect RAM to A	1	2	
ORL A, #data	OR immediate to A	2	2	
ORL direct, A	OR A to direct byte	2	2	
ORL direct, #data	OR immediate to direct byte	3	3	
XRL A, Rn	Exclusive-OR Register to A	1	1	
XRL A, direct	Exclusive-OR direct byte to A	2	2	
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2	
XRL A, #data	Exclusive-OR immediate to A	2	2	
XRL direct, A	Exclusive-OR A to direct byte	2	2	
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3	

Table 8.1. CIP-51 Instruction Set Summary

Table 11.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	SFR Page	Description	Page
TMOD	0x89	0x0	Timer/Counter Mode	285
TMR2CN	0xC8	0x0	Timer/Counter 2 Control	291
TMR2H	0xCD	0x0	Timer/Counter 2 High	293
TMR2L	0xCC	0x0	Timer/Counter 2 Low	293
TMR2RLH	0xCB	0x0	Timer/Counter 2 Reload High	292
TMR2RLL	0xCA	0x0	Timer/Counter 2 Reload Low	292
TMR3CN	0x91	0x0	Timer/Counter 3 Control	297
TMR3H	0x95	0x0	Timer/Counter 3 High	299
TMR3L	0x94	0x0	Timer/Counter 3 Low	299
TMR3RLH	0x93	0x0	Timer/Counter 3 Reload High	298
TMR3RLL	0x92	0x0	Timer/Counter 3 Reload Low	298
TOFFH	0x86	0xF	Temperature Offset High	85
TOFFL	0x85	0xF	Temperature Offset Low	85
VDM0CN	0xFF	0x0	VDD Monitor Control	183
XBR0	0xE1	0x0	Port I/O Crossbar Control 0	219
XBR1	0xE2	0x0	Port I/O Crossbar Control 1	220
XBR2	0xE3	0x0	Port I/O Crossbar Control 2	221

13.5. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and enabled as a reset source on C8051F92x-C8051F93x devices for the Flash to be successfully modified. If either the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset will be generated when the firmware attempts to modify the Flash.

The following guidelines are recommended for any system that contains routines which write or erase Flash from code.

13.5.1. VDD Maintenance and the VDD Monitor

- 1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
- 2. Make certain that the minimum VDD rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external VDD brownout circuit to the RST pin of the device that holds the device in reset until VDD reaches the minimum device operating voltage and re-asserts RST if VDD drops below the minimum device operating voltage.
- 3. Keep the on-chip VDD Monitor enabled and enable the VDD Monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For C-based systems, this will involve modifying the startup code added by the 'C' compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the VDD Monitor and enabling the VDD Monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories web site.

Notes:

On C8051F93x-C8051F92x devices, both the VDD Monitor and the VDD Monitor reset source must be enabled to write or erase Flash without generating a Flash Error Device Reset.

On C8051F93x-C8051F92x devices, both the VDD Monitor and the VDD Monitor reset source are enabled by hardware after a power-on reset.

- 4. As an added precaution, explicitly enable the VDD Monitor and enable the VDD Monitor as a reset source inside the functions that write and erase Flash memory. The VDD Monitor enable instructions should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase operation instruction.
- 5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is correct, but "RSTSRC |= 0x02" is incorrect.
- 6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

21.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. **Port pins used by these digital func-tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1.** Table 21.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
UART0, SPI1, SPI0, SMBus, CP0 and CP1 Outputs, Sys- tem Clock Output, PCA0, Timer0 and Timer1 External Inputs.	Any Port pin available for assignment by the Crossbar. This includes P0.0–P2.6 pins which have their PnSKIP bit set to 0. Note: The Crossbar will always assign UART0 and SPI1 pins to fixed locations.	XBR0, XBR1, XBR2
Any pin used for GPIO	P0.0-P2.6	P0SKIP, P1SKIP, P2SKIP
External Memory Interface	P1.0-P2.6	P1SKIP, P2SKIP EMI0CF

Table 21.2. Port I/O Assignment for Digital Functions

21.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions

External digital event capture functions can be used to trigger an interrupt or wake the device from a low power mode when a transition occurs on a digital I/O pin. The digital event capture functions do not require dedicated pins and will function on both GPIO pins (PnSKIP = 1) and pins in use by the Crossbar (PnSKIP = 0). External digital event capture functions cannot be used on pins configured for analog I/O. Table 21.3 shows all available external digital event capture functions.

Table 21.3. Port I/O Assignment for External Digital Event Capture Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P0.0–P0.7	IT01CF
External Interrupt 1	P0.0–P0.7	IT01CF
Port Match	P0.0–P1.7 Note: On C8051F931/21 devices Port Match is not available on P1.6 or P1.7.	POMASK, POMAT P1MASK, P1MAT

SFR Definition 21.6. P1MASK: Port1 Mask Register

Bit	7	6	5	4	3	2	1	0
Name	P1MASK[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page= 0x0; SFR Address = 0xBF

Bit	Name	Function
7:0	P1MASK[7:0]	Port 1 Mask Value.
		Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P1.n pin logic value is compared to P1MAT.n.
Note:	On C8051F931/21 must be set to 0b.	devices, port match is not available on P1.6 or P1.7. The corresponding P1MASK bits

SFR Definition 21.7. P1MAT: Port1 Match Register

Bit	7	6	5	4	3	2	1	0	
Name	P1MAT[7:0]								
Туре	R/W								
Reset	1	1	1	1	1	1	1	1	

SFR Page = 0x0; SFR Address = 0xCF

Bit	Name	Function					
7:0	P1MAT[7:0]	Port 1 Match Value.					
		Match comparison value used on Port 1 for bits in P1MASK which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.					
Note: C	lote: On C8051F931/21 devices, port match is not available on P1.6 or P1.7.						

SFR Definition 21.12. P0DRV: Port0 Drive Strength

Bit	7	6	5	4	3	2	1	0		
Nam	e	P0DRV[7:0]								
Туре)	R/W								
Rese	t 0	0	0	0	0	0	0	0		
SFR F	Page = 0xF; SI	R Address	= 0xA4							
Bit	Name		Function							
7.0		Drive Strend	th Configur	ation Bits for	P0 7_P0 0 (respectively	<u>۸</u>			

7:0	P0DRV[7:0]	Drive Strength Configuration Bits for P0.7–P0.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength. 0: Corresponding P0.n Output has low output drive strength. 1: Corresponding P0.n Output has high output drive strength.

Bit	Set by Hardware When:	Cleared by Hardware When:	
MASTER	A START is generated	• A STOP is generated.	
		Arbitration is lost.	
	START is generated.	• A START is detected.	
TXMODE	SMB0DAT is written before the start of an	• SMB0DAT is not written before the	
	SMBus frame.	start of an SMBus frame.	
STA	 A START followed by an address byte is received. 	Must be cleared by software.	
	• A STOP is detected while addressed as a		
STO	slave.	 A pending STOP is generated. 	
	Arbitration is lost due to a detected STOP.		
10//20	• A byte has been received and an ACK		
ACKRQ	response value is needed (only when hard- ware ACK is not enabled).	• Alter each ACK cycle.	
	• A repeated START is detected as a MASTER		
	when STA is low (unwanted repeated START).		
ARBLOST	ate a STOP or repeated START condition	• Each time SI is cleared.	
	• SDA is sensed low while transmitting a 1		
	(excluding ACK bits).		
ACK	The incoming ACK value is low	•The incoming ACK value is high (NOT	
	(ACKNOWLEDGE).	ACKNOWLEDGE).	
	• A START has been generated.		
	• A byte has been transmitted and an		
	ACK/NACK received.		
SI	• A byte has been received.	• Must be cleared by software.	
	• A START or repeated START followed by a		
	slave address + R/W has been received.		
	 A STOP has been received. 		

Table 22.3. Sources for Hardware Changes to SMB0CN

24.6. SPI Special Function Registers

SPI0 and SPI1 are accessed and controlled through four special function registers (8 registers total) in the system controller: SPInCN Control Register, SPInDAT Data Register, SPInCFG Configuration Register, and SPInCKR Clock Rate Register. The special function registers related to the operation of the SPI0 and SPI1 Bus are described in the following figures.

SFR Definition 24.1. SPInCFG: SPI Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Addresses: SPI0CFG = 0xA1, SPI1CFG = 0x84 SFR Pages: SPI0CFG = 0x0, SPI1CFG = 0x0

Bit	Name	Function			
7	SPIBSY	SPI Busy.			
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).			
6	MSTEN	Master Mode Enable.			
		0: Disable master mode. Operate in slave mode.1: Enable master mode. Operate as a master.			
5	CKPHA	SPI Clock Phase.			
		0: Data centered on first edge of SCK period. [*] 1: Data centered on second edge of SCK period. [*]			
4	CKPOL	SPI Clock Polarity.			
		0: SCK line low in idle state. 1: SCK line high in idle state.			
3	SLVSEL	Slave Selected Flag.			
		Set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.			
2	NSSIN	NSS Instantaneous Pin Input.			
		This bit mimics the instantaneous value that is present on the NSS port pin at the time that the register is read. This input is not de-glitched.			
1	SRMT	Shift Register Empty (valid in slave mode only).			
		Set to logic 1 when data has been transferred in/out of the shift register, and there is no data is available to read from the transmit buffer or write to the receive buffer. Set to logic 0 when a data byte is transferred to the shift register from the transmit buffer or by a transition on SCK. Note: SRMT = 1 in Master Mode.			
0	RXBMT	Receive Buffer Empty (valid in slave mode only).			
		Set to logic 1 when the receive buffer has been read and contains no new informa- tion. If there is new information available in the receive buffer that has not been read, this bit will return to logic 0. Note: RXBMT = 1 in Master Mode.			
*Note	 Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 24.1 for timing parameters. 				

SFR Definition 24.3. SPInCKR: SPI Clock Rate

Bit	7	6	5	4	3	2	1	0	
Name	SCRn[7:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Addresses: SPI0CKR = 0xA2, SPI1CKR = 0x85 SFR Pages: SPI0CKR = 0x0, SPI1CKR = 0x0

Bit	Name	Function
7:0	SCRn	SPI Clock Rate.
		These bits determine the frequency of the SCK output when the SPI module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPInCKR is the 8-bit value held in the SPInCKR register. $f_{SCK} = \frac{SYSCLK}{2 \times (SPInCKR[7:0] + 1)}$ for 0 <= SPI0CKR <= 255 Example: If SYSCLK = 2 MHz and SPInCKR = 0x04, $f_{SCK} = \frac{2000000}{2 \times (4 \times 1)}$
		$f_{SCK} = 200kHz$
		JOIN .

26.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 26.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xD8; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer. 0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.
5:0	CCF[5:0]	PCA Module n Capture/Compare Flag.
		These bits are set by hardware when a match or capture occurs in the associated PCA Module n. When the CCFn interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.

SFR Definition 26.7. PCA0CPLn: PCA Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPL0 = 0xFB, PCA0CPL1 = 0xE9, PCA0CPL2 = 0xEB, PCA0CPL3 = 0xED, PCA0CPL4 = 0xFD, PCA0CPL5 = 0xD2

SFR Pages: PCA0CPL0 = 0x0, PCA0CPL1 = 0x0, PCA0CPL2 = 0x0, PCA0CPL3 = 0x0, PCA0CPL4 = 0x0, PCA0CPL5 = 0x0

Bit	Name	Function							
7:0	PCA0CPn[7:0]	PCA Capture Module Low Byte.							
		The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.							
Note: A write to this register will clear the module's ECOMn bit to a 0.									

SFR Definition 26.8. PCA0CPHn: PCA Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPH0 = 0xFC, PCA0CPH1 = 0xEA, PCA0CPH2 = 0xEC, PCA0CPH3 = 0xEE, PCA0CPH4 = 0xFE, PCA0CPH5 = 0xD3

SFR Pages: PCA0CPH0 = 0x0, PCA0CPH1 = 0x0, PCA0CPH2 = 0x0, PCA0CPH3 = 0x0, PCA0CPH4 = 0x0, PCA0CPH5 = 0x0

Bit	Name	Function				
7:0	PCA0CPn[15:8]	PCA Capture Module High Byte.				
		The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.				
Note	Note: A write to this register will set the module's ECOMn bit to a 1.					

