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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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The ADC can sample the voltage at any of the GPIO pins (with the exception of P2.7) and has an on-chip 
attenuator that allows it to measure voltages up to twice the voltage reference. Additional ADC inputs 
include an on-chip temperature sensor, the VDD/DC+ supply voltage, the VBAT supply voltage, and the 
internal digital supply voltage.

Figure 1.7. ADC0 Functional Block Diagram
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Figure 3.6. QFN-24 Package Drawing

Table 3.4. QFN-24 Package Dimensions

Dimension Min Typ Max Dimension Min Typ Max

A 0.70 0.75 0.80 L 0.30 0.40 0.50

A1 0.00 0.02 0.05 L1 0.00 — 0.15

b 0.18 0.25 0.30 aaa — — 0.15

D 4.00 BSC bbb — — 0.10

D2 2.55 2.70 2.80 ddd — — 0.05

e 0.50 BSC eee — — 0.08

E 4.00 BSC Z — 0.24 —

E2 2.55 2.70 2.80 Y — 0.18 —

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation WGGD except 

for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small 

Body Components.
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Figure 3.8. LQFP-32 Package Diagram

Table 3.6. LQFP-32 Package Dimensions

Dimension Min Typ Max Dimension Min Typ Max

A — — 1.60 E 9.00 BSC

A1 0.05 — 0.15 E1 7.00 BSC

A2 1.35 1.40 1.45 L 0.45 0.60 0.75

b 0.30 0.37 0.45 aaa 0.20

c 0.09 — 0.20 bbb 0.20

D 9.00 BSC. ccc 0.10

D1 7.00 BSC ddd 0.20

e 0.80 BSC  0º 3.5º 7º

Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MS-026, variation BBA.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body 

Components.
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4.2. Electrical Characteristics

Table 4.2. Global Electrical Characteristics  
–40 to +85 °C, 25 MHz system clock unless otherwise specified. See "AN358: Optimizing Low Power Operation of the 
‘F9xx" for details on how to achieve the supply current specifications listed in this table. 

Parameter Conditions Min Typ Max Units

Battery Supply Voltage (VBAT) One-Cell Mode
Two-Cell Mode

0.9
1.8

1.2
2.4

1.8
3.6

V

Supply Voltage (VDD/DC+) One-Cell Mode
Two-Cell Mode

1.8
1.8

1.9
2.4

3.6
3.6

V

Minimum RAM Data 
Retention Voltage1

VDD (not in Sleep Mode)
VBAT (in Sleep Mode)

—
—

1.4
0.3

—
0.5

V

SYSCLK (System Clock)2 0 — 25 MHz

TSYSH (SYSCLK High Time) 18 — — ns

TSYSL (SYSCLK Low Time) 18 — — ns

Specified Operating 
Temperature Range

–40 — +85 °C

Digital Supply Current—CPU Active (Normal Mode, fetching instructions from Flash)

IDD 3, 4, 5, 6 VDD = 1.8–3.6 V, F = 24.5 MHz 
(includes precision oscillator current)

— 4.1 5.0 mA

VDD = 1.8–3.6 V, F = 20 MHz
(includes low power oscillator current)

— 3.5 — mA

VDD = 1.8 V, F = 1 MHz
VDD = 3.6 V, F = 1 MHz
(includes external oscillator/GPIO current)

—
—

295
365

—
—

µA
µA

VDD = 1.8–3.6 V, F = 32.768 kHz 
(includes SmaRTClock oscillator current)

— 90 — µA

IDD Frequency Sensitivity3, 5, 6 VDD = 1.8–3.6 V, T = 25 °C, F < 10 MHz 

(Flash oneshot active, see Section 13.6)

— 226 — µA/MHz

VDD = 1.8–3.6 V, T = 25 °C, F > 10 MHz 

(Flash oneshot bypassed, see Section 13.6)

— 120 — µA/MHz

Digital Supply Current—CPU Inactive (Idle Mode, not fetching instructions from Flash)

IDD
4, 6, 7 VDD = 1.8–3.6 V, F = 24.5 MHz 

(includes precision oscillator current)

— 2.5 3.0 mA

VDD = 1.8–3.6 V, F = 20 MHz
(includes low power oscillator current)

— 1.8 — mA

VDD = 1.8 V, F = 1 MHz
VDD = 3.6 V, F = 1 MHz
(includes external oscillator/GPIO current)

—
—

165
235

—
—

µA
µA

VDD = 1.8–3.6 V, F = 32.768 kHz (includes 

SmaRTClock oscillator current)

— 84 — µA

IDD Frequency Sensitivity1,6,7 VDD = 1.8–3.6 V, T = 25 °C — 95 — µA/MHz
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Figure 4.3. Typical DC-DC Converter Efficiency (High Current, VDD/DC+ = 2 V)
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Figure 4.8. Typical VOH Curves, 0.9–1.8 V

Typical VOH (High Drive Mode)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3 4 5 6 7 8 9 10 11 12

Load Current (mA)

V
o

lta
g

e
VDD = 1.8V

VDD = 1.5V

VDD = 1.2V

VDD = 0.9V

Typical VOH (Low Drive Mode)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3

Load Current (mA)

V
o

lta
g

e

VDD = 1.8V

VDD = 1.5V

VDD = 1.2V

VDD = 0.9V



C8051F93x-C8051F92x

62 Rev. 1.2

Table 4.13. Comparator Electrical Characteristics
VDD = 1.8 to 3.6 V, –40 to +85 °C unless otherwise noted.

Parameter Conditions Min Typ Max Units

Response Time:

Mode 0, VDD = 2.4 V, VCM
* = 1.2 V

CP0+ – CP0– = 100 mV — 130 — ns

CP0+ – CP0– = –100 mV — 200 — ns

Response Time:

Mode 1, VDD = 2.4 V, VCM
* = 1.2 V

CP0+ – CP0– = 100 mV — 210 — ns

CP0+ – CP0– = –100 mV — 410 — ns

Response Time:

Mode 2, VDD = 2.4 V, VCM
* = 1.2 V

CP0+ – CP0– = 100 mV — 420 — ns

CP0+ – CP0– = –100 mV — 1200 — ns

Response Time:

Mode 3, VDD = 2.4 V, VCM
* = 1.2 V

CP0+ – CP0– = 100 mV — 1750 — ns

CP0+ – CP0– = –100 mV — 6200 — ns

Common-Mode Rejection Ratio — 1.5 4 mV/V

Inverting or Non-Inverting Input 
Voltage Range

–0.25 — VDD + 0.25 V

Input Capacitance — 12 — pF

Input Bias Current — 1 — nA

Input Offset Voltage –7 — +7 mV

Power Supply

Power Supply Rejection — 0.1 — mV/V

Power-up Time

VDD = 3.6 V — 0.6 — µs

VDD = 3.0 V — 1.0 — µs

VDD = 2.4 V — 1.8 — µs

VDD = 1.8 V — 10 — µs

Supply Current at DC

Mode 0 — 23 — µA

Mode 1 — 8.8 — µA

Mode 2 — 2.6 — µA

Mode 3 — 0.4 — µA

*Note:  Vcm is the common-mode voltage on CP0+ and CP0–.
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10.5. External Memory Interface Operating Modes

The external data memory space can be configured in one of four operating modes, shown in Figure 10.3, 
based on the EMIF Mode bits in the EMI0CF register (SFR Definition 10.2). These modes are summarized 
below. Timing diagrams for the different modes can be found in Section “10.6. External Memory Interface 
Timing” on page 118.

10.5.1. Internal XRAM Only

When EMI0CF.[3:2] are set to 00, all MOVX instructions will target the internal XRAM space on the device. 
Memory accesses to addresses beyond the populated space will wrap, and will always target on-chip 
XRAM. As an example, if the entire address space is consecutively written and the data pointer is 
incremented after each write, the write pointer will always point to the first byte of on-chip XRAM after the 
last byte of on-chip XRAM has been written.

• 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address 
and R0 or R1 to determine the low-byte of the effective address.

• 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

10.5.2. Split Mode without Bank Select

When EMI0CF.[3:2] are set to 01, the XRAM memory map is split into two areas, on-chip space and off-
chip space.

• Effective addresses below the on-chip XRAM boundary will access on-chip XRAM space.
• Effective addresses above the on-chip XRAM boundary will access off-chip space.
• 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-

chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the 
upper 4-bits A[11:8] of the Address Bus during an off-chip access. This allows the user to manip-
ulate the upper address bits at will by setting the Port state directly via the port latches. This behavior 
is in contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus 
A[7:0] are driven, determined by R0 or R1.

• 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-
chip or off-chip, and unlike 8-bit MOVX operations, the full 12-bits of the Address Bus A[11:0] are 
driven during the off-chip transaction.

Figure 10.3. EMIF Operating Modes
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SFR Page = 0x0; SFR Address = 0xB8; Bit-Addressable

SFR Definition 12.2. IP: Interrupt Priority

Bit 7 6 5 4 3 2 1 0

Name PSPI0 PT2 PS0 PT1 PX1 PT0 PX0

Type R R/W R/W R/W R/W R/W R/W R/W

Reset 1 0 0 0 0 0 0 0

Bit Name Function

7 Unused Unused.

Read = 1b, Write = don't care.

6 PSPI0 Serial Peripheral Interface (SPI0) Interrupt Priority Control.

This bit sets the priority of the SPI0 interrupt.
0: SPI0 interrupt set to low priority level.
1: SPI0 interrupt set to high priority level.

5 PT2 Timer 2 Interrupt Priority Control. 

This bit sets the priority of the Timer 2 interrupt.
0: Timer 2 interrupt set to low priority level.
1: Timer 2 interrupt set to high priority level.

4 PS0 UART0 Interrupt Priority Control. 

This bit sets the priority of the UART0 interrupt.
0: UART0 interrupt set to low priority level.
1: UART0 interrupt set to high priority level.

3 PT1 Timer 1 Interrupt Priority Control.

This bit sets the priority of the Timer 1 interrupt.
0: Timer 1 interrupt set to low priority level.
1: Timer 1 interrupt set to high priority level.

2 PX1 External Interrupt 1 Priority Control. 

This bit sets the priority of the External Interrupt 1 interrupt.
0: External Interrupt 1 set to low priority level.
1: External Interrupt 1 set to high priority level.

1 PT0 Timer 0 Interrupt Priority Control. 

This bit sets the priority of the Timer 0 interrupt.
0: Timer 0 interrupt set to low priority level.
1: Timer 0 interrupt set to high priority level.

0 PX0 External Interrupt 0 Priority Control. 

This bit sets the priority of the External Interrupt 0 interrupt.
0: External Interrupt 0 set to low priority level.
1: External Interrupt 0 set to high priority level.
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The level of Flash security depends on the Flash access method. The three Flash access methods that 
can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on 
unlocked pages, and user firmware executing on locked pages. Table 13.1 summarizes the Flash security 
features of the C8051F93x-C8051F92x devices.

Table 13.1. Flash Security Summary

Action C2 Debug 
Interface

User Firmware executing from: 

an unlocked page a locked page

Read, Write or Erase unlocked pages                      
(except page with Lock Byte)

Permitted Permitted Permitted

Read, Write or Erase locked pages                        
(except page with Lock Byte)

Not Permitted FEDR Permitted

Read or Write page containing Lock Byte                      
(if no pages are locked)

Permitted Permitted Permitted

Read or Write page containing Lock Byte                        
(if any page is locked)

Not Permitted FEDR Permitted

Read contents of Lock Byte
(if no pages are locked)

Permitted Permitted Permitted

Read contents of Lock Byte
(if any page is locked)

Not Permitted FEDR Permitted

Erase page containing Lock Byte                                      
(if no pages are locked)

Permitted FEDR FEDR

Erase page containing Lock Byte - Unlock all pages       
(if any page is locked)

Only by C2DE FEDR FEDR

Lock additional pages                                               
(change 1s to 0s in the Lock Byte)

Not Permitted FEDR FEDR

Unlock individual pages
(change 0s to 1s in the Lock Byte)

Not Permitted FEDR FEDR

Read, Write or Erase Reserved Area Not Permitted FEDR FEDR


C2DE—C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte)
FEDR—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset)

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).
- Locking any Flash page also locks the page containing the Lock Byte.
- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase. 
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.
- The scratchpad is locked when all other Flash pages are locked.
- The scratchpad is erased when a Flash Device Erase command is performed.
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13.5. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk 
that the write or erase routines will execute unintentionally if the CPU is operating outside its specified 
operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modi-
fying code can result in alteration of Flash memory contents causing a system failure that is only recover-
able by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and 
enabled as a reset source on C8051F92x-C8051F93x devices for the Flash to be successfully modified. If 
either the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset 
will be generated when the firmware attempts to modify the Flash. 

The following guidelines are recommended for any system that contains routines which write or erase 
Flash from code.

13.5.1. VDD Maintenance and the VDD Monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient 
protection devices to the power supply to ensure that the supply voltages listed in the Absolute 
Maximum Ratings table are not exceeded.

2. Make certain that the minimum VDD rise time specification of 1 ms is met. If the system can-
not meet this rise time specification, then add an external VDD brownout circuit to the RST pin 
of the device that holds the device in reset until VDD reaches the minimum device operating 
voltage and re-asserts RST if VDD drops below the minimum device operating voltage.

3. Keep the on-chip VDD Monitor enabled and enable the VDD Monitor as a reset source as 
early in code as possible. This should be the first set of instructions executed after the Reset 
Vector. For C-based systems, this will involve modifying the startup code added by the 'C' 
compiler. See your compiler documentation for more details. Make certain that there are no 
delays in software between enabling the VDD Monitor and enabling the VDD Monitor as a 
reset source. Code examples showing this can be found in “AN201: Writing to Flash from 
Firmware," available from the Silicon Laboratories web site.

Notes: 
On C8051F93x-C8051F92x devices, both the VDD Monitor and the VDD Monitor reset source 
must be enabled to write or erase Flash without generating a Flash Error Device Reset.

On C8051F93x-C8051F92x devices, both the VDD Monitor and the VDD Monitor reset source 
are enabled by hardware after a power-on reset.

4. As an added precaution, explicitly enable the VDD Monitor and enable the VDD Monitor as a 
reset source inside the functions that write and erase Flash memory. The VDD Monitor enable 
instructions should be placed just after the instruction to set PSWE to a '1', but before the 
Flash write or erase operation instruction.

5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment 
operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For exam-
ple, "RSTSRC = 0x02" is correct, but "RSTSRC |= 0x02" is incorrect.

6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas 
to check are initialization code which enables other reset sources, such as the Missing Clock 
Detector or Comparator, for example, and instructions which force a Software Reset. A global 
search on "RSTSRC" can quickly verify this.
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15. Cyclic Redundancy Check Unit (CRC0)
C8051F93x-C8051F92x devices include a cyclic redundancy check unit (CRC0) that can perform a CRC 
using a 16-bit or 32-bit polynomial. CRC0 accepts a stream of 8-bit data written to the CRC0IN register. 
CRC0 posts the 16-bit or 32-bit result to an internal register. The internal result register may be accessed 
indirectly using the CRC0PNT bits and CRC0DAT register, as shown in Figure 15.1. CRC0 also has a bit 
reverse register for quick data manipulation.

Figure 15.1. CRC0 Block Diagram

15.1. CRC Algorithm

The C8051F93x-C8051F92x CRC unit generates a CRC result equivalent to the following algorithm:

1. XOR the input with the most-significant bits of the current CRC result. If this is the first iteration 
of the CRC unit, the current CRC result will be the set initial value 
(0x00000000 or 0xFFFFFFFF).

2a. If the MSB of the CRC result is set, shift the CRC result and XOR the result with the selected 
polynomial.

2b. If the MSB of the CRC result is not set, shift the CRC result.

Repeat steps 2a/2b for the number of input bits (8). The algorithm is also described in the following 
example.

CRC0IN
8

CRC0DAT

C
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C
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CRC0VAL
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CRC0PNT0

CRC Engine

4 to 1 MUX

RESULT

32

8 8 8 8

8
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Automatic CRC
Controller

Flash 
Memory

8

CRC0FLIP
Write

CRC0FLIP
Read
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SFR Page = 0xF; SFR Address = 0x92

SFR Definition 15.1. CRC0CN: CRC0 Control

Bit 7 6 5 4 3 2 1 0

Name CRC0SEL CRC0INIT CRC0VAL CRC0PNT[1:0]

Type R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:5 Unused Unused. 

Read = 000b; Write = Don’t Care.

4 CRC0SEL CRC0 Polynomial Select Bit.

This bit selects the CRC0 polynomial and result length (32-bit or 16-bit).
0: CRC0 uses the 32-bit polynomial 0x04C11DB7 for calculating the CRC result.
1: CRC0 uses the 16-bit polynomial 0x1021 for calculating the CRC result.

3 CRC0INIT CRC0 Result Initialization Bit.

Writing a 1 to this bit initializes the entire CRC result based on CRC0VAL.

2 CRC0VAL CRC0 Set Value Initialization Bit.

This bit selects the set value of the CRC result.
0: CRC result is set to 0x00000000 on write of 1 to CRC0INIT.
1: CRC result is set to 0xFFFFFFFF on write of 1 to CRC0INIT. 

1:0 CRC0PNT[1:0] CRC0 Result Pointer.

Specifies the byte of the CRC result to be read/written on the next access to 
CRC0DAT. The value of these bits will auto-increment upon each read or write.
For CRC0SEL = 0:
00: CRC0DAT accesses bits 7–0 of the 32-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 32-bit CRC result.
10: CRC0DAT accesses bits 23–16 of the 32-bit CRC result.
11: CRC0DAT accesses bits 31–24 of the 32-bit CRC result.
For CRC0SEL = 1:
00: CRC0DAT accesses bits 7–0 of the 16-bit CRC result.
01: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.
10: CRC0DAT accesses bits 7–0 of the 16-bit CRC result. 
11: CRC0DAT accesses bits 15–8 of the 16-bit CRC result.

Note: Upon initiation of an automatic CRC calculation, the third opcode byte fetched from program memory is 
indeterminate. Therefore, writes to CRC0CN that initiate a CRC operation must be immediately followed by a 
benign 3-byte instruction whose third byte is a don’t care. An example of such an instruction is a 3-byte MOV 
that targets the CRC0FLIP register. When programming in ‘C’, the dummy value written to CRC0FLIP should 
be a non-zero value to prevent the compiler from generating a 2-byte MOV instruction.
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18.1. Power-On (VBAT Supply Monitor) Reset 

During power-up, the device is held in a reset state and the RST pin is driven low until VBAT settles above 
VPOR. An additional delay occurs before the device is released from reset; the delay decreases as the 
VBAT ramp time increases (VBAT ramp time is defined as how fast VBAT ramps from 0 V to VPOR). 
Figure 18.3 plots the power-on and VDD monitor reset timing. For valid ramp times (less than 3 ms), the 
power-on reset delay (TPORDelay) is typically 3 ms (VBAT = 0.9 V), 7 ms (VBAT = 1.8 V), or 15 ms (VBAT = 
3.6 V).

Note: The maximum VDD ramp time is 3 ms; slower ramp times may cause the device to be released from reset 
before VBAT reaches the VPOR level. 

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is 
set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other 
resets). Since all resets cause program execution to begin at the same location (0x0000), software can 
read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data 
memory should be assumed to be undefined after a power-on reset. 

Figure 18.2. Power-Fail Reset Timing Diagram
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20.1. SmaRTClock Interface

The SmaRTClock Interface consists of three registers: RTC0KEY, RTC0ADR, and RTC0DAT. These inter-
face registers are located on the CIP-51’s SFR map and provide access to the SmaRTClock internal regis-
ters listed in Table 20.1. The SmaRTClock internal registers can only be accessed indirectly through the 
SmaRTClock Interface. 

20.1.1. SmaRTClock Lock and Key Functions

The SmaRTClock Interface is protected with a lock and key function. The SmaRTClock Lock and Key Reg-
ister (RTC0KEY) must be written with the correct key codes, in sequence, before writes and reads to 
RTC0ADR and RTC0DAT may be performed. The key codes are: 0xA5, 0xF1. There are no timing restric-
tions, but the key codes must be written in order. If the key codes are written out of order, the wrong codes 
are written, or an indirect register read or write is attempted while the interface is locked, the SmaRTClock 
interface will be disabled, and the RTC0ADR and RTC0DAT registers will become inaccessible until the 
next system reset. Once the SmaRTClock interface is unlocked, software may perform any number of 
accesses to the SmaRTClock registers until the interface is re-locked or the device is reset. Any write to 
RTC0KEY while the SmaRTClock interface is unlocked will re-lock the interface.

Reading the RTC0KEY register at any time will provide the SmaRTClock Interface status and will not inter-
fere with the sequence that is being written. The RTC0KEY register description in SFR Definition 20.1 lists 
the definition of each status code.

Table 20.1. SmaRTClock Internal Registers

SmaRTClock 
Address

SmaRTClock
Register

Register Name Description

0x00–0x03 CAPTUREn SmaRTClock Capture 
Registers

Four Registers used for setting the 32-bit 
SmaRTClock timer or reading its current value. 

0x04 RTC0CN SmaRTClock Control 
Register

Controls the operation of the SmaRTClock State 
Machine.

0x05 RTC0XCN SmaRTClock Oscillator 
Control Register

Controls the operation of the SmaRTClock 
Oscillator.

0x06 RTC0XCF SmaRTClock Oscillator 
Configuration Register

Controls the value of the programmable 
oscillator load capacitance and 
enables/disables AutoStep.

0x07 RTC0PIN SmaRTClock Pin 
Configuration Register

Forces XTAL3 and XTAL4 to be internally 
shorted. 
Note: This register also contains other reserved bits 

which should not be modified.

0x08–0x0B ALARMn SmaRTClock Alarm 
Registers

Four registers used for setting or reading the 
32-bit SmaRTClock alarm value.
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21.3. Priority Crossbar Decoder

The Priority Crossbar Decoder assigns a Port I/O pin to each software selected digital function using the 
fixed peripheral priority order shown in Figure 21.3. The registers XBR0, XBR1, and XBR2 defined in SFR 
Definition 21.1, SFR Definition 21.2, and SFR Definition 21.3 are used to select digital functions in the 
Crossbar. The Port pins available for assignment by the Crossbar include all Port pins (P0.0–P2.6) which 
have their corresponding bit in PnSKIP set to 0.

From Figure 21.3, the highest priority peripheral is UART0. If UART0 is selected in the Crossbar (using the 
XBRn registers), then P0.4 and P0.5 will be assigned to UART0. The next highest priority peripheral is 
SPI1. If SPI1 is selected in the Crossbar, then P1.0–P1.2 will be assigned to SPI1. P1.3 will be assigned if 
SPI1 is configured for 4-wire mode. The user should ensure that the pins to be assigned by the Crossbar 
have their PnSKIP bits set to 0.

For all remaining digital functions selected in the Crossbar, starting at the top of Figure 21.3 going down, 
the least-significant unskipped, unassigned Port pin(s) are assigned to that function. If a Port pin is already 
assigned (e.g., UART0 or SPI1 pins), or if its PnSKIP bit is set to 1, then the Crossbar will skip over the pin 
and find next available unskipped, unassigned Port pin. All Port pins used for analog functions, GPIO, or 
dedicated digital functions such as the EMIF should have their PnSKIP bit set to 1. 

Figure 21.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP, P2SKIP = 
0x00); Figure 21.4 shows the Crossbar Decoder priority with the External Oscillator pins (XTAL1 and 
XTAL2) skipped (P0SKIP = 0x0C).

Important Notes: 

• The Crossbar must be enabled (XBARE = 1) before any Port pin is used as a digital output. Port output 
drivers are disabled while the Crossbar is disabled. 

• When SMBus is selected in the Crossbar, the pins associated with SDA and SCL will automatically be 
forced into open-drain output mode regardless of the PnMDOUT setting. 

• SPI0 can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1-
NSSMD0 bits in register SPI0CN. The NSS signal is only routed to a Port pin when 4-wire mode is 
selected. When SPI0 is selected in the Crossbar, the SPI0 mode (3-wire or 4-wire) will affect the pinout 
of all digital functions lower in priority than SPI0.

• For given XBRn, PnSKIP, and SPInCN register settings, one can determine the I/O pin-out of the 
device using Figure 21.3 and Figure 21.4. 
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22.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will 
be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface 
generates the START condition and transmits the first byte containing the address of the target slave and 
the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then 
received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more 
bytes of serial data. 

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each 
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte. 

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, 
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be 
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to 
the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after 
the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if 
SMB0DAT is written while an active Master Receiver. Figure 22.6 shows a typical master read sequence. 
Two received data bytes are shown, though any number of bytes may be received. The “data byte 
transferred” interrupts occur at different places in the sequence, depending on whether hardware ACK 
generation is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and 
after the ACK when hardware ACK generation is enabled.

Figure 22.6. Typical Master Read Sequence
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Interrupts with Hardware ACK Enabled (EHACK = 1)
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24.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI 
Configuration Register (SPInCFG). The CKPHA bit (SPInCFG.5) selects one of two clock phases (edge 
used to latch the data). The CKPOL bit (SPInCFG.4) selects between an active-high or active-low clock. 
Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should 
be disabled (by clearing the SPIENn bit, SPInCN.0) when changing the clock phase or polarity. The clock 
and data line relationships for master mode are shown in Figure 24.5. For slave mode, the clock and data 
relationships are shown in Figure 24.6 and Figure 24.7. Note that CKPHA must be set to 0 on both the 
master and slave SPI when communicating between two of the following devices: C8051F04x, 
C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPIn Clock Rate Register (SPInCKR) as shown in SFR Definition 24.3 controls the master mode 
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured 
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, 
whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for 
full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-
wire slave mode), and the serial input data synchronously with the slave’s system clock. If the master 
issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) 
must be less than 1/10 the system clock frequency. In the special case where the master only wants to 
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the 
SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. 
This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s 
system clock.

Figure 24.5. Master Mode Data/Clock Timing
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25.3.3. Comparator 1/External Oscillator Capture Mode

The Capture Mode in Timer 3 allows either Comparator 1 or the external oscillator period to be measured 
against the system clock or the system clock divided by 12. Comparator 1 and the external oscillator 
period can also be compared against each other. 

Setting TF3CEN to 1 enables the Comparator 1/External Oscillator Capture Mode for Timer 3. In this 
mode, T3SPLIT should be set to 0, as the full 16-bit timer is used. 

When Capture Mode is enabled, a capture event will be generated either every Comparator 1 rising edge 
or every 8 external clock cycles, depending on the T3XCLK1 setting. When the capture event occurs, the 
contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) 
and the TF3H flag is set (triggering an interrupt if Timer 3 interrupts are enabled). By recording the differ-
ence between two successive timer capture values, the Comparator 1 or external clock period can be 
determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture 
clock to achieve an accurate reading. 

For example, if T3ML = 1b, T3XCLK1 = 0b, and TF3CEN = 1b, Timer 3 will clock every SYSCLK and cap-
ture every Comparator 1 rising edge. If SYSCLK is 24.5 MHz and the difference between two successive 
captures is 350 counts, then the Comparator 1 period is:

350 x (1 / 24.5 MHz) = 14.2 µs.

This mode allows software to determine the exact frequency of the external oscillator in C and RC mode or 
the time between consecutive Comparator 0 rising edges, which is useful for detecting changes in the 
capacitance of a Touch Sense Switch.

Figure 25.9. Timer 3 Capture Mode Block Diagram
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26.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 5. The WDT is used 
to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified 
limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 5 operates as a watchdog timer (WDT). The 
Module 5 high byte is compared to the PCA counter high byte; the Module 5 low byte holds the offset to be 
used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some 
PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset 
shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and 
optionally re-configured and re-enabled if it is used in the system).

26.4.1. Watchdog Timer Operation

While the WDT is enabled:

• PCA counter is forced on.
• Writes to PCA0L and PCA0H are not allowed.
• PCA clock source bits (CPS2–CPS0) are frozen.
• PCA Idle control bit (CIDL) is frozen.
• Module 5 is forced into software timer mode.
• Writes to the Module 5 mode register (PCA0CPM5) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run 
until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but 
user software has not enabled the PCA counter. If a match occurs between PCA0CPH5 and PCA0H while 
the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a 
write of any value to PCA0CPH5. Upon a PCA0CPH5 write, PCA0H plus the offset held in PCA0CPL5 is 
loaded into PCA0CPH5 (See Figure 26.11).

Figure 26.11. PCA Module 5 with Watchdog Timer Enabled
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