

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	30
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 22x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3136tay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices are members of the STM8AL automotive ultra-low-power 8-bit family. The medium-density STM8AL3xxx family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85°C and -40 to +125°C temperature ranges.

The medium-density STM8AL3xxx ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultrafast Flash programming.

All medium-density STM8AL3xxx microcontrollers feature embedded data EEPROM and low power low-voltage single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Two different packages are proposed which include 32 and 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8AL3xxx ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

3.2 Central processing unit STM8

3.2.1 Advanced STM8 core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.3 Reset and supply management

3.3.1 Power supply scheme

The STM8AL313x/4x/6x and STM8AL3L4x/6x require a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- V_{SSA}; V_{DDA} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{SS2}; V_{DD2} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.
- V_{REF+} (for DAC): external voltage reference for DAC must be provided externally through V_{REF+}.

3.3.2 Power supply supervisor

The STM8AL313x/4x/6x and STM8AL3L4x/6x have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The STM8AL313x/4x/6x and STM8AL3L4x/6x feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.13 Timers

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 3 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs														
TIM1			Any integer from 1 to 65536		3 + 1	3														
TIM2	16-bit	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	up/down	Any power of 2		2	
TIM3			from 1 to 128	163	2	None														
TIM4	8-bit	up	Any power of 2 from 1 to 32768		0															

Table 3. Timer feature comparison

3.13.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down auto reload counter with 16-bit prescaler
- Three independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output.
- One additional capture/compare channel which is not connected to an external I/O
- Synchronization module to control the timer with external signals
- Break input to force timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.13.2 16-bit general purpose timers

- 16-bit auto reload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- Two individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

	Table 5. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status		
0x00 507F		DMA1_C1CR	DMA1 channel 1 configuration register	0x00		
0x00 5080		DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00		
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00		
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52		
0x00 5083		DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00		
0x00 5084	-		Reserved area (1 byte)			
0x00 5085	DMA1	DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00		
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00		
0x00 5087 0x00 5088		Reserved area (2 bytes)				
0x00 5089	1	DMA1_C2CR	DMA1 channel 2 configuration register	0x00		
0x00 508A	1	DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00		
0x00 508B	508B DMA1_C2NDTR DMA1 number of data to trans (channel 2)		DMA1 number of data to transfer register (channel 2)	0x00		

Table 9. Gen	eral hardware	register map	(continued)
	ciul nul awaic	register map	(continued)

Address	Block	Register Label	Register Name	Reset Status	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00	
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)		
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF	
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF	
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF	
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF	
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF	
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF	
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00	
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00	
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10	
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00	
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF	
0x00 7F9B to 0x00 7F9F	Reserved area (5 bytes)				

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

8 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

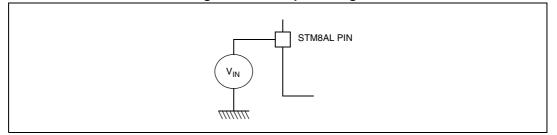

Address	Content		Unique ID bit				\$		
Address	description	7	6	5	4	3	2	1	0
0x4926	X co-ordinate on		U_ID[7:0]						
0x4927	the wafer				U_I	D[15:8]			
0x4928	Y co-ordinate on		U_ID[23:16] U_ID[31:24]						
0x4929	the wafer								
0x492A	Wafer number	U_ID[39:32]							
0x492B					U_II	D[47:40]			
0x492C			U_II			D[55:48]			
0x492D					U_II	D[63:56]			
0x492E	Lot number				U_II	D[71:64]			
0x492F					U_II	U_ID[79:72]			
0x4930					U_II	D[87:80]			
0x4931					U_II	D[95:88]			

Table 14. Unique ID registers (96 bits)

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 15: Voltage characteristics*, *Table 16: Current characteristics* and *Table 17: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and a functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability.

The device's mission profile (application conditions) is compliant with the JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
V_{DD} - V_{SS}	External supply voltage (including V_{DDA} and $V_{DD2})^{(1)}$	- 0.3	4.0	
	Input voltage on true open-drain pins (PC0 and PC1)		V +40	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant (FT) pins (PA7 and PE0)	V _{SS} - 0.3	V _{DD} + 4.0	V
	Input voltage on 3.6 V tolerant (TT) pins		4.0	
	Input voltage on any other pin		4.0	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum		V

Table 15. Voltage characteristics

1. All power (V_{DD1}, V_{DD2}, V_{DDA}) and ground (V_{SS1}, V_{SS2}, V_{SSA}) pins must always be connected to the external power supply.

2. V_{IN} maximum must always be respected. Refer to *Table 16* for maximum allowed injected current values.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{PDR}	Power-down reset threshold	Falling edge	1.30	1.50	1.65 ⁽²⁾	
V	Brown-out reset threshold 0	Falling edge	1.45	1.70	1.74 ⁽²⁾	
V _{BOR0}	(BOR_TH[2:0]=000)	Rising edge	1.69 ⁽²⁾	1.75	1.80	
V		Falling edge	1.75	1.93	1.97 ⁽²⁾	
V _{BOR1}		Rising edge	1.96 ⁽²⁾	2.04	2.23	
V	Brown-out reset threshold 2	Falling edge	2.10	2.30	2.35 ⁽²⁾	
V _{BOR2}	(BOR_TH[2:0]=010)	Rising edge	2.31 ⁽²⁾	2.41	2.61	
V	Brown-out reset threshold 3	Falling edge	2.35	2.55	2.60 ⁽²⁾	
V _{BOR3}	(BOR_TH[2:0]=011)	Rising edge	2.54 ⁽²⁾	2.66	2.86	
V	Brown-out reset threshold 4	Falling edge	2.59	2.80	2.85 ⁽²⁾	
V _{BOR4}	(BOR_TH[2:0]=100)	Rising edge	2.78 ⁽²⁾	2.90	3.09	
V	PVD threshold 0	Falling edge	1.75	1.84	1.88 ⁽²⁾	
V _{PVD0}		Rising edge	1.88 ⁽²⁾	1.94	2.15	V
V	PVD threshold 1	Falling edge	1.95	2.04	2.09 ⁽²⁾	
V _{PVD1}		Rising edge	2.08 ⁽²⁾	2.14	2.35	
V	PVD threshold 2	Falling edge	2.14	2.24	2.28 ⁽²⁾	
V _{PVD2}		Rising edge	2.28 ⁽²⁾	2.34	2.56	
V	PVD threshold 3	Falling edge	2.33	2.44	2.48 ⁽²⁾	
V _{PVD3}		Rising edge	2.47 ⁽²⁾	2.54	2.75	
V	PVD threshold 4	Falling edge	2.52	2.64	2.69 ⁽²⁾	
V _{PVD4}	PVD Inteshold 4	Rising edge	2.68 ⁽²⁾	2.74	2.88	
V	PVD threshold 5	Falling edge	2.71	2.83	2.88 ⁽²⁾	
V _{PVD5}		Rising edge	2.87 ⁽²⁾	2.94	3.15	
\/_	PVD threshold 6	Falling edge	2.91	3.05	3.09 ⁽²⁾	
V _{PVD6}		Rising edge	3.08 ⁽²⁾	3.15	3.35	

1. Guaranteed by design.

2. Guaranteed by characterization results.

Symbol	Parameter		Conditions ⁽¹⁾		Тур	Max	Unit
				f _{CPU} = 125 kHz	0.38	0.55 ⁽³⁾	
				f _{CPU} = 1 MHz	0.40	0.60 ⁽³⁾	
		HSI	f _{CPU} = 4 MHz 0.50	0.50	0.65 ⁽³⁾		
				f _{CPU} = 8 MHz	f _{CPU} = 8 MHz 0.60	0.75 ⁽³⁾	
I _{DD(Wait)} Supply current in Wait mode	CPU not		f _{CPU} = 16 MHz	0.80	0.90		
	Cumplu	clocked, all peripherals		f _{CPU} = 125 kHz	0.05	0.10 ⁽³⁾	mA
	current in	OFF, code executed	HSE ⁽⁴⁾	f _{CPU} = 1 MHz	0.10	0.20 ⁽³⁾	
	Wait mode	from Flash,	external clock	f _{CPU} = 4 MHz	0.25	0.45 ⁽³⁾	
	V _{DD} from 1.65 V to 3.6 V	$(f_{CPU}=HSE)$ $f_{CPU}=8 \text{ MHz}$ 0.50	z 0.50	0.65 ⁽³⁾			
			f _{CPU} = 16 MHz 1.00	1.00	1.20 ⁽³⁾		
			LSI	$f_{CPU} = f_{LSI}$	0.05	0.10 ⁽³⁾	
			LSE ⁽⁵⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.05	0.08 ⁽³⁾	

Table 22. Total current consumption in Wait mode (continued)	Table 22. Tota	current consumption	in Wait mode	(continued)
--	----------------	---------------------	--------------	-------------

1. All peripherals OFF, V_DD from 1.65 V to 3.6 V, HSI internal RC osc., f_{CPU} = f_{SYSCLK}

2. Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

3. Guaranteed by characterization results.

Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to *Table 32*.

Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD HSE}) must be added. Refer to *Table 33*.

68/123

Symbol	Parameter	Condition	Тур	Unit	
	Quere la compacta de la c		V _{DD} = 1.8 V	48	
I _{DD(RST)}	Supply current under external reset ⁽¹⁾	All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μA
			V _{DD} = 3.6 V	91	

Table 29. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency		1 ⁽¹⁾	-	16 ⁽¹⁾	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	*	V _{SS}	-	0.3 x V _{DD}	V
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±500	nA

Table 30. HSE external clock characteristics

1. Guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Table 31. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	-	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 x V _{DD} ⁽¹⁾	-	V _{DD} ⁽¹⁾	V
V _{LSEL}	OSC32_IN input pin low level voltage	$V_{SS}^{(1)}$	-	0.3 x V _{DD} ⁽¹⁾	
C _{in(LSE)}	OSC32_IN input capacitance	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-		±500	nA

1. Guaranteed by characterization results.

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

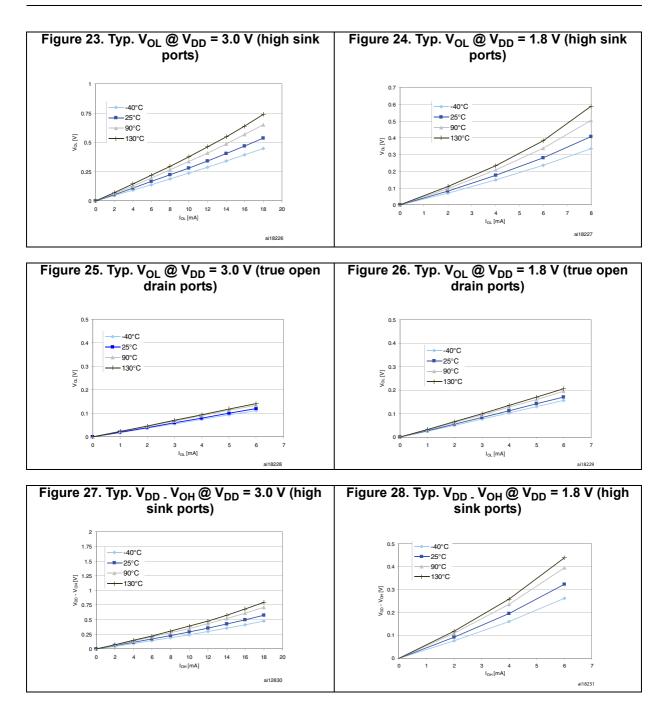
l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
			I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	
	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
High sink			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	
High			I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	
	1/1 $1/2$		I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	

Table 42.	Output driving	current (h	igh sink ports)
	e aipat airring	, ean en (·9·· •···· p•···•

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
drain			I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
Open	V _{OL} ⁽¹⁾ Output low level voltage for an I/O pin	I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V	


Table 43. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

I/О Туре	Symbol	Parameter	Conditions	Min	Max	Unit
IR	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	MHz
1/t _{c(SCK)}	SFTT Clock frequency	Slave mode	0	8	
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	
t _{su(MI)} (2) t _{su(SI)} (2)	Data input setup time	Master mode	30	-	
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-	
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽²⁾	- Data output hold time	Master mode (after enable edge)	1	-	

Table 46. SPI1	characteristics
----------------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

9.3.9 LCD controller (STM8AL3Lxx only)

In the following table, data are guaranteed by design and are not tested in production.

Symbol	Parameter	Min	Тур	Max.	Unit
V_{LCD}	LCD external voltage	-	-	3.6	
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.7	-	
V _{LCD2}	LCD internal reference voltage 2	-	2.8	-	
V _{LCD3}	LCD internal reference voltage 3	-	2.9	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.0	-	
V _{LCD5}	LCD internal reference voltage 5	-	3.1	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.2	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.3	-	
C _{EXT}	V _{LCD} external capacitance	0.1	-	2	μF
1	Supply current ⁽¹⁾ at V_{DD} = 1.8 V	-	3	-	
I _{DD}	Supply current ⁽¹⁾ at V_{DD} = 3 V	-	3	-	μA
$R_{HN}^{(2)}$	High value resistive network (low drive)	-	6.6	-	MΩ
$R_{LN}^{(3)}$	Low value resistive network (high drive)	-	360	-	kΩ
V ₃₃	Segment/Common higher level voltage	-	-	V _{LCDx}	
V ₂₃	Segment/Common 2/3 level voltage	-	2/3V _{LCDx}	-	1
V ₁₂	Segment/Common 1/2 level voltage	-	1/2V _{LCDx}	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3V _{LCDx}	-	
V ₀	Segment/Common lowest level voltage	0	-	-	1

1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.

2. $\ensuremath{\mathsf{R}_{\mathsf{HN}}}$ is the total high value resistive network.

3. R_{LN} is the total low value resistive network.

VLCD external capacitor (STM8AL3Lxx only)

The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C_{EXT} to the V_{LCD} pin. C_{EXT} is specified in *Table 48*.

9.3.10 Embedded reference voltage

In the following table, data are based on characterization results, not tested in production, unless otherwise specified.

Table 49. Reference voltage characteristics								
Symbol	Parameter	Conditions	Min	Тур	Max.	Unit		
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μΑ		
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	-	5	10	μs		
I _{BUF} ⁽²⁾	Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μΑ		
V _{REFINT out}	Reference voltage output	-	1.202 (3)	1.224	1.242 (3)	V		
I _{LPBUF} ⁽²⁾	Internal reference voltage low power buffer consumption (used for comparators or output)	-	-	730	1200	nA		
I _{REFOUT} ⁽²⁾	Buffer output current ⁽⁴⁾	-	-	-	1	μA		
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF		
t _{VREFINT}	Internal reference voltage startup time	-	-	2	3	ms		
t _{BUFEN} ⁽²⁾	Internal reference voltage buffer startup time once enabled ⁽¹⁾	-	-	-	10	μs		
ACC _{VREFINT}	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte ⁽⁵⁾	-	-	-	± 5	mV		
STAB _{VREFINT} ⁽²⁾	Stability of V _{REFINT} over temperature	-40 °C ≤ T _A ≤ 125 °C	-	20	50	ppm/°C		
UTADVREFINT '	Stability of V _{REFINT} over temperature	0 °C ≤ T _A ≤ 50 °C	-	-	20	phui C		
STAB _{VREFINT} ⁽²⁾	Stability of V_{REFINT} after 1000 hours	-	-	-	1000	ppm		

Table 49.	Reference	voltage	characteristics
-----------	-----------	---------	-----------------

1. Defined when ADC output reaches its final value $\pm 1/2LSB$

2. Guaranteed by design.

- 3. Tested in production at V_{DD} = 3 V ±10 mV.
- 4. To guaranty less than 1% V_{REFOUT} deviation.

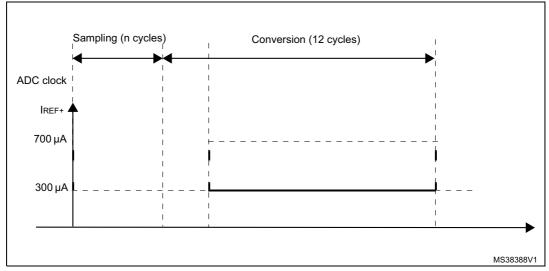
5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

9.3.11 Temperature sensor

In the following table, data are based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max.	Unit
V ₁₂₅ ⁽¹⁾	Sensor reference voltage at 125 °C ±5 °C	0.640	0.660	0.680	V
TL	V _{SENSOR} linearity with temperature	-	±1	±2	°C
Avg_slope	Average slope	1.59 ⁽²⁾	1.62	1.65 ⁽²⁾	mV/°C
I _{DD(TEMP)}	Consumption	-	3.4	6 ⁽²⁾	μA

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
I _{VREF}	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	
	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	μA
I _{VDDA}	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
T _A	Temperature range	-	-40	-	125	°C
RL	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	
CL	Capacitive load ⁽³⁾	-	-	-	50	pF
DAC_OUT	DAC OUT voltage ⁽⁴⁾	DACOUT buffer ON	0.2	-	V _{DDA} -0.2	v
DAC_001		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	v
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-	1	Msps
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-60	-35	dB


1. Resistive load between DACOUT and GNDA.

2. Output on PF0 (48-pin package only).

3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

Figure 38. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 60. R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

		R _{AIN} max (kohm)				
Ts (cycles)	Τs (µs)	Slow cl	nannels	Fast channels		
	. ,	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V	
4	0.25	Not allowed	Not allowed	0.7	Not allowed	
9	0.5625	0.8	Not allowed	2.0	1.0	
16	1	2.0	0.8	4.0	3.0	
24	1.5	3.0	1.8	6.0	4.5	
48	3	6.8	4.0	15.0	10.0	
96	6	15.0	10.0	30.0	20.0	
192	12	32.0	25.0	50.0	40.0	
384	24	50.0	50.0	50.0	50.0	

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 39* or *Figure 40*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling two LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Symbol	Parameter	Conditions	Monitored	Max vs.	Unit
			frequency band	16 MHz	Unit
S _{EMI} P	Peak level	V_{DD} = 3.6 V, T_A = +25 °C, LQFP32 conforming to IEC61967-2	0.1 MHz to 30 MHz	-3	
			30 MHz to 130 MHz	9	dBµV
			130 MHz to 1 GHz	4	
			EMI Level	2	-

Table 62. EMI	data ⁽¹⁾
---------------	---------------------

1. Not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.

Table 63.	ESD	absolute	maximum	ratings
-----------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to ANSI/ESDA/ JEDEC JS-001	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD S5.3.1	C4B	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = +25 °C, conforming to JESD22-A115	M2	200	

1. Guaranteed by characterization results.

Date	Revision	Changes
03-Mar-2014	5	Changed the document status to Datasheet - Production data to reflect the device maturity. Corrected the data memory size in the <i>Features</i> . Updated the package assignment in <i>Table 2: Medium-density</i> <i>STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features</i> <i>and peripheral counts</i>
13-May-2015	6	 Updated: the product names in the document headers and on the cover page, Section 1: Introduction, the captions of Figure 3: STM8AL31x8T 48-pin pinout (without LCD), Figure 4: STM8AL3Lx8T 48-pin pinout (with LCD), Figure 5: STM8AL31x6T 32-pin pinout (without LCD), Figure 6: STM8AL3Lx6T 32-pin pinout (with LCD), Table 6: Flash and RAM boundary addresses, ILEAK_HSE maximum value in Table 32: HSE oscillator characteristics, ILEAK_LSE maximum value in Table 33: LSE oscillator characteristics, Table 54, Table 57, Table 58, Table 59 with a footnote for Max values not tested in production, Section 9.3.15: EMC characteristics, Section 10.2: LQFP48 package information, Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme. Added: Figure 43: LQFP48 marking example (package top view), Figure 46: LQFP32 marking example (package top view). Moved Section 10.5: Thermal characteristics to Section 10: Package information.

Table 69. Document revision history (c	continued)

