

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	41
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3138tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram	13
Figure 2.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram	18
Figure 3.	STM8AL31x8T 48-pin pinout (without LCD)	25
Figure 4.	STM8AL3Lx8T 48-pin pinout (with LCD)	25
Figure 5.	STM8AL31x6T 32-pin pinout (without LCD)	26
Figure 6.	STM8AL3Lx6T 32-pin pinout (with LCD)	26
Figure 7.	STM8AL31x6U 32-pin pinout (without LCD).	27
Figure 8.	STM8AL3Lx6U 32-pin pinout (with LCD)	27
Figure 9.	Memory map	36
Figure 10.	Pin loading conditions.	59
Figure 11.	Pin input voltage	60
Figure 12.	POR/BOR thresholds	64
Figure 13.	Typ. IDD(RUN) vs. VDD, fCPU = $16 \text{ MHz}^{(1)}$	67
Figure 14.	Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz ⁽¹⁾	69
Figure 15.	HSE oscillator circuit diagram	75
Figure 16.	LSE oscillator circuit diagram	77
Figure 17.	Typical HSI frequency vs V _{DD}	78
Figure 18.	Typical LSI frequency vs. VDD	79
Figure 19.	Typical VIL and VIH vs VDD (high sink I/Os)	82
Figure 20.	Typical VIL and VIH vs VDD (true open drain I/Os)	83
Figure 21.	Typical pull-up resistance R _{PU} vs V _{DD} with VIN=VSS	83
Figure 22.	Typical pull-up current I _{nu} vs V _{DD} with VIN=VSS	84
Figure 23.	Typ. VOL @ VDD = 3.0° (high sink ports)	86
Figure 24.	Typ. VOL @ VDD = 1.8 V (high sink ports)	86
Figure 25.	Typ. VOL @ VDD = 3.0 V (true open drain ports)	86
Figure 26.	Typ. VOL @ VDD = 1.8 V (true open drain ports)	86
Figure 27.	Typ. VDD - VOH @ VDD = 3.0 V (high sink ports)	86
Figure 28.	Typ. VDD - VOH @ VDD = 1.8 V (high sink ports)	86
Figure 29.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	87
Figure 30.	Typical NRST pull-up current I _{pu} vs V _{DD}	88
Figure 31.	Recommended NRST pin configuration	88
Figure 32.	SPI1 timing diagram - slave mode and CPHA=0	90
Figure 33.	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	90
Figure 34.	SPI1 timing diagram - master mode ⁽¹⁾	91
Figure 35.	Typical application with I2C bus and timing diagram ⁽¹⁾	92
Figure 36.	ADC1 accuracy characteristics	. 102
Figure 37.	Typical connection diagram using the ADC	. 102
Figure 38.	Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion .	. 103
Figure 39.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	. 104
Figure 40.	Power supply and reference decoupling (VREF+ connected to VDDA)	. 104
Figure 41.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	. 108
Figure 42.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	. 110
Figure 43.	LQFP48 marking example (package top view)	. 110
Figure 44.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline	. 111
Figure 45.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint	. 112
Figure 46.	LQFP32 marking example (package top view)	. 113
Figure 47.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package outline	. 114

Pin	nun	ıber					Input	t	Ou	tput			
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	QO	dd	Main function (after reset)	Default alternate function
28	-	-	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/COMP1_INP	I/O	TT ⁽³⁾	<u>X</u> ⁽⁶⁾	X ⁽⁶⁾	х	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / Comparator 1 positive input
_	17	17	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/ COMP1_INP/DAC_OUT	I/O	TT ⁽³⁾	<u>X</u> ⁽⁶⁾	X ⁽⁶⁾	x	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / DAC output / Comparator 1 positive input
29	-	-	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ⁽²⁾ / ADC1_IN13/COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / Comparator 1 positive input
-	18	18	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ^{(2)/} ADC1_IN13/DAC_OUT/ COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC output/ Comparator 1 positive input
30	-	-	PB6/[<i>SPI1_MOSI]</i> ⁽⁴⁾ / LCD_SEG16 ^{(2)/} ADC1_IN12/COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	x	х	Port B6	[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12 / Comparator 1 positive input
-	19	19	PB6/[SPI1_MOSI] ⁽⁴⁾ / LCD_SEG16 ⁽²⁾ / ADC1_IN12/COMP1_INP /DAC_OUT	I/O	TT ⁽³⁾	X	x	х	HS	x	х	Port B6	[SPI1 master out]/ slave in / LCD segment 16 / ADC1_IN12 / DAC output / Comparator 1 positive input
31	20	20	PB7/[SPI1_MISO] ⁽⁴⁾ / LCD_SEG17 ⁽²⁾ / ADC1_IN11/COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B7	[SPI1 master in- slave out] / LCD segment 17 / ADC1_IN11 / Comparator 1 positive input
37	25	25	PC0 ⁽⁵⁾ /I2C1_SDA	I/O	FT	X	-	Х		T ⁽⁷⁾		Port C0	I2C1 data

4.1 System configuration options

As shown in *Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description*, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the "Routing interface (RI) and system configuration controller" section in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

Address	Block	Register label	Register name	Reset status	
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00	
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00	
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00	
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00	
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00	
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00	
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00	
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00	
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00	
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00	
0x00 52C0		TIM1_CNTRL	TIM1 counter low	0x00	
0x00 52C1		TIM1_PSCRH	TIM1 prescaler register high	0x00	
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00	
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF	
0x00 52C4	TIM1	TIM1_ARRL	TIM1 Auto-reload register low	0xFF	
0x00 52C5	1 1101 1	TIM1_RCR	TIM1 Repetition counter register	0x00	
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00	
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00	
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00	
0x00 52C9		TIM1_CCR2L TIM1 Capture/Compare register 2 low		0x00	
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00	
0x00 52CB		TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00	
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00	
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00	
0x00 52CE		TIM1_BKR	TIM1 break register	0x00	
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00	
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00	
0x00 52D1		TIM1_DCR1	DMA1 control register 1	0x00	
0x00 52D2		TIM1_DCR2	TIM1 DMA1 control register 2	0x00	
0x00 52D3		TIM1_DMA1R	TIM1 DMA1 address for burst mode	0x00	
0x00 52D4 to 0x00 52DF	Reserved area (12 bytes)				

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status			
0x00 5352 to 0x00 537F		Reserved area (46 bytes)					
0x00 5380		DAC_CR1	DAC control register 1	0x00			
0x00 5381		DAC_CR2	DAC control register 2	0x00			
0x00 5382 to 0x00 5383			Reserved area (2 bytes)				
0x00 5384		DAC_SWTRIGR	DAC software trigger register	0x00			
0x00 5385		DAC_SR	DAC status register	0x00			
0x00 5386 to 0x00 5387			Reserved area (2 bytes)				
0x00 5388		DAC_RDHRH	DAC right aligned data holding register high	0x00			
0x00 5389		DAC_RDHRL	DAC right aligned data holding register low	0x00			
0x00 538A to 0x00 538B	DAC		Reserved area (2 bytes)				
0x00 538C		DAC_LDHRH DAC left aligned data holding register high		0x00			
0x00 538D		DAC_LDHRL	DAC left aligned data holding register low	0x00			
0x00 538E to 0x00 538F		Reserved area (2 bytes)					
0x00 5390		DAC_DHR8 DAC 8-bit data holding register		0x00			
0x00 5391 to 0x00 53AB		Reserved area (27 bytes)					
0x00 53AC		DAC_DORH	DAC data output register high	0x00			
0x00 53AD		DAC_DORL	DAC data output register low	0x00			
0x00 53AE to 0x00 53FF			Reserved area (82 bytes)				
0x00 5400		LCD_CR1	LCD control register 1	0x00			
0x00 5401		LCD_CR2	LCD control register 2	0x00			
0x00 5402		LCD_CR3	LCD control register 3	0x00			
0x00 5403		LCD_FRQ	LCD frequency selection register	0x00			
0x00 5404		LCD_PM0	LCD Port mask register 0	0x00			
0x00 5405		LCD_PM1	LCD Port mask register 1	0x00			
0x00 5406		LCD_PM2	LCD Port mask register 2	0x00			
0x00 5407	7	LCD_PM3	LCD Port mask register 3	0x00			
0x00 5408 to 0x00 540B			Reserved area (4 bytes)				

Table 9. General	hardware registe	er map (co	ntinued)
	na ana o rogioto	// iniap (00	madaj

Address	Block	Register label	Register name	Reset status
0x00 540C		LCD_RAM0	LCD display memory 0	0x00
0x00 540D		LCD_RAM1	LCD display memory 1	0x00
0x00 540E		LCD_RAM2	LCD display memory 2	0x00
0x00 540F		LCD_RAM3	LCD display memory 3	0x00
0x00 5410		LCD_RAM4	LCD display memory 4	0x00
0x00 5411		LCD_RAM5	LCD display memory 5	0x00
0x00 5412		LCD_RAM6	LCD display memory 6	0x00
0x00 5413		LCD_RAM7	LCD display memory 7	0x00
0x00 5414		LCD_RAM8	LCD display memory 8	0x00
0x00 5415		LCD_RAM9	LCD display memory 9	0x00
0x00 5416		LCD_RAM10	LCD display memory 10	0x00
0x00 5417		LCD_RAM11	LCD display memory 11	0x00
0x00 5418		LCD_RAM12	LCD display memory 12	0x00
0x00 5419		LCD_RAM13	LCD display memory 13	0x00
0x00 541A to 0x00 542F		F	Reserved area (22 bytes)	·
0x00 5430			Reserved area (1 byte)	0x00
0x00 5431		RI_ICR1	Timer input capture routing register 1	0x00
0x00 5432		RI_ICR2	Timer input capture routing register 2	0x00
0x00 5433		RI_IOIR1	I/O input register 1	undefined
0x00 5434		RI_IOIR2	I/O input register 2	undefined
0x00 5435		RI_IOIR3	I/O input register 3	undefined
0x00 5436		RI_IOCMR1	I/O control mode register 1	0x00
0x00 5437		RI_IOCMR2	I/O control mode register 2	0x00
0x00 5438	RI RI	RI_IOCMR3	I/O control mode register 3	0x00
0x00 5439		RI_IOSR1	I/O switch register 1	0x00
0x00 543A		RI_IOSR2	I/O switch register 2	0x00
0x00 543B		RI_IOSR3	I/O switch register 3	0x00
0x00 543C		RI_IOGCR	I/O group control register	0x3F
0x00 543D		RI_ASCR1	Analog switch register 1	0x00
0x00 543E	1	RI_ASCR2	Analog switch register 2	0x00
0x00 543F		RI_RCR	Resistor control register 1	0x00

Table 9 Genera	bardwara	rogistor man	(continued)
Table 9. Genera	naruware	register map	(continued)

DocID18474 Rev 8

Address	Block	Register Label	Register Name	Reset Status					
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00					
0x00 7F81 to 0x00 7F8F		Reserved area (15 bytes)							
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF					
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF					
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF					
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF					
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF					
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF					
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00					
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00					
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10					
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00					
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF					
0x00 7F9B to 0x00 7F9F		·	Reserved area (5 bytes)	·					

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

Symbol	Ratings Max.			
I _{VDD}	Total current into V _{DD} power line (source)	80		
I _{VSS}	Total current out of V _{SS} ground line (sink)	80		
l _{io}	Output current sunk by IR_TIM pin (with high sink LED driver capability)			
	Output current sunk by any other I/O and control pin	25		
	Output current sourced by any I/Os and control pin	- 25	m۸	
I _{INJ} (PIN)	Injected current on true open-drain pins (PC0 and PC1) $^{(1)}$	- 5/+0	IIIA	
	Injected current on five-volt tolerant (FT) pins (PA7 and PE0) ⁽¹⁾			
	Injected current on 3.6 V tolerant (TT) pins ⁽¹⁾			
	Injected current on any other pin ⁽²⁾	- 5/+5		
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽³⁾	± 25		

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 15* for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 15* for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17. T	hermal chai	racteristics
-------------	-------------	--------------

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	C

Table 18. Operating lifetime (OLF)⁽¹⁾

Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100	-40 to 125 °C	Grade 1

1. For detailed mission profile analysis, please contact the local ST Sales Office.

Figure 12. POR/BOR thresholds

Symbol	Parameter		Conditions		Тур	Max	Unit
				f _{CPU} = 125 kHz	0.45	0.60 ⁽³⁾	
I _{DD(RUN)} Supply current in Run mode				f _{CPU} = 1 MHz	0.60	0.85 ⁽³⁾	
			HSI RC	f _{CPU} = 4 MHz	1.10	1.45 ⁽³⁾	
				f _{CPU} = 8 MHz	1.90	2.40 ⁽³⁾	
	Supply	All peripherals OFF, code executed from Flash, V_{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	3.80	4.90	mA
			HSE external clock (f _{CPU} =f _{HSE}) (4)	f _{CPU} = 125 kHz	0.30	0.45 ⁽³⁾	
	current			f _{CPU} = 1 MHz	0.40	0.55 ⁽³⁾	
	in Run mode			f _{CPU} = 4 MHz	1.15	1.50 ⁽³⁾	
				f _{CPU} = 8 MHz	2.15	2.75 ⁽³⁾	
				f _{CPU} = 16 MHz	4.00	4.75 ⁽³⁾	
			LSI RC osc.	f _{CPU} = f _{LSI}	100	150 ⁽³⁾	
			LSE external clock (32.768 kHz) ⁽⁶⁾	f _{CPU} = f _{LSE}	100	120 ⁽³⁾	μA

 Table 21. Total current consumption in Run mode (continued)

1. CPU executing typical data processing

2. The run from RAM consumption can be approximated with the linear formula: $I_{DD}(run_from_RAM)$ = Freq * 90 $\mu A/MHz$ + 400 μA

3. Guaranteed by characterization results.

Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to *Table 32*.

- 5. The run from Flash consumption can be approximated with the linear formula: $I_{DD}(run_from_Flash)$ = Freq * 195 $\mu A/MHz$ + 440 μA
- Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to *Table 33*.

Symbol	Parameter		Conditions ⁽¹⁾		Тур	Мах	Unit
				f _{CPU} = 125 kHz	0.38	0.55 ⁽³⁾	
				f _{CPU} = 1 MHz	0.40	0.60 ⁽³⁾	
I _{DD(Wait)}			HSI	f _{CPU} = 4 MHz	0.50	0.65 ⁽³⁾	
	Supply current in			f _{CPU} = 8 MHz	0.60	0.75 ⁽³⁾	
		CPU not clocked, all peripherals OFF, code executed from Flash, V _{DD} from 1.65 V to 3.6 V		f _{CPU} = 16 MHz	0.80	0.90	
			HSE ⁽⁴⁾ external clock (f _{CPU} =HSE)	f _{CPU} = 125 kHz	0.05	0.10 ⁽³⁾	1
				f _{CPU} = 1 MHz	0.10	0.20 ⁽³⁾	mA
	Wait mode			f _{CPU} = 4 MHz	0.25	0.45 ⁽³⁾	
				f _{CPU} = 8 MHz	0.50	0.65 ⁽³⁾	
				f _{CPU} = 16 MHz	1.00	1.20 ⁽³⁾	
			LSI	$f_{CPU} = f_{LSI}$	0.05	0.10 ⁽³⁾	
			LSE ⁽⁵⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.05	0.08 ⁽³⁾	

Table 22. Total current consumption in Wait mo
--

1. All peripherals OFF, V_DD from 1.65 V to 3.6 V, HSI internal RC osc., f_{CPU} = f_{SYSCLK}

2. Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

3. Guaranteed by characterization results.

Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to *Table 32*.

Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD HSE}) must be added. Refer to *Table 33*.

68/123

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE}	High speed external oscillator frequency	-	1	-	16	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
C ⁽¹⁾	Recommended load capacitance (2)	-	-	20	-	pF	
I	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized) ⁽³⁾	mΑ	
^I DD(HSE)		C = 10 pF, f _{OSC} =16 MHz	-	-	2.5 (startup) 0.46 (stabilized) ⁽³⁾	mA	
9 _m	Oscillator transconductance	-	3.5 ⁽³⁾	-	-	mA/V	
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	1	_	ms	

	Table 32.	HSE	oscillator	characteristics
--	-----------	-----	------------	-----------------

1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Guaranteed by design.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 15. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

Figure 20. Typical V_{IL} and $V_{IH}\, vs \, V_{DD}$ (true open drain I/Os)

Figure 22. Typical pull-up current I_{pu} vs V_{DD} with $V_{\text{IN}}\text{=}V_{\text{SS}}$

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

I/O Туре	Symbol	Parameter	Conditions	Min	Max	Unit
			I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	
High sink	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	
	V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	
			I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	

Table 42. Output unving current (ingli sink ports)	Table 42.	Output driving	current (high	sink ports)
--	-----------	----------------	---------------	-------------

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
drain	V. (1)	Output low lovel veltage for an I/O pin	I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V
	Output low level voltage for an I/O pin	I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V	

Table 43. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

Table 44. Output driving	g current (PA0 with h	high sink LED	driver capability)
			<u> </u>	

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
IR	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	МН≁
1/t _{c(SCK)}	SI IT Clock nequency	Slave mode	0	8	
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	30	-	
t _{su(SI)} ⁽²⁾		Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	
t _{h(SI)} ⁽²⁾		Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-	
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽²⁾		Master mode (after enable edge)	1	-	

Table 46. SPI1 of	characteristics
-------------------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 65. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

10.3 LQFP32 package information

Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

11 Device ordering information

Figure 50. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme

Example:	STM8	AL	31	6	8	Т	С	
Product class								
STM8 microcontroller								
Family type								
AL = Automotive Low power								
Sub-family type								
31 = Standard								
3L = with LCD								
Memory size								
3 = 8 Kbyte								
4 = 16 Kbyte								
6 = 32 Kbyte								
Pin count								
8 = 48 pins								
6 = 32 pins								
Package								
T = LQFP								
U = VFQFPN								
Temperature range								
C = - 40 °C to 125 °C								
A = - 40 °C to 85 °C								
Packing								
Y = Trav								

1. For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please contact the nearest ST sales office.

Date	Revision	Changes
18-Oct-2016	7	 Added: Section 10.4: VFQFPN32 package information Figure 7: STM8AL31x6U 32-pin pinout (without LCD) Figure 8: STM8AL3Lx6U 32-pin pinout (with LCD) Updated: Section 9.2: Absolute maximum ratings Section : Device marking on page 110, Section : Device marking on page 113 and Section : Device marking on page 117 Table 2: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description Table 19: General operating conditions Table 68: Thermal characteristics Figure 33: SPI1 timing diagram - slave mode and CPHA=1(1) Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme Footnotes on Figure 43: LQFP48 marking example (package top view)
28-Mar-2017	8	 Updated: Table 67: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data Figure 48: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint

Table 03. Document revision mistory (continued)
