

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	30
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 22x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3146tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram	13
Figure 2.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram	18
Figure 3.	STM8AL31x8T 48-pin pinout (without LCD)	25
Figure 4.	STM8AL3Lx8T 48-pin pinout (with LCD)	25
Figure 5.	STM8AL31x6T 32-pin pinout (without LCD)	26
Figure 6.	STM8AL3Lx6T 32-pin pinout (with LCD)	26
Figure 7.	STM8AL31x6U 32-pin pinout (without LCD).	27
Figure 8.	STM8AL3Lx6U 32-pin pinout (with LCD)	27
Figure 9.	Memory map	36
Figure 10.	Pin loading conditions.	59
Figure 11.	Pin input voltage	60
Figure 12.	POR/BOR thresholds	64
Figure 13.	Typ. IDD(RUN) vs. VDD, fCPU = $16 \text{ MHz}^{(1)}$	67
Figure 14.	Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz ⁽¹⁾	69
Figure 15.	HSE oscillator circuit diagram	75
Figure 16.	LSE oscillator circuit diagram	77
Figure 17.	Typical HSI frequency vs V _{DD}	78
Figure 18.	Typical LSI frequency vs. VDD	79
Figure 19.	Typical VIL and VIH vs VDD (high sink I/Os)	82
Figure 20.	Typical VIL and VIH vs VDD (true open drain I/Os)	83
Figure 21.	Typical pull-up resistance R _{PU} vs V _{DD} with VIN=VSS	83
Figure 22.	Typical pull-up current I _{nu} vs V _{DD} with VIN=VSS	84
Figure 23.	Typ. VOL @ VDD = 3.0° (high sink ports)	86
Figure 24.	Typ. VOL @ VDD = 1.8 V (high sink ports)	86
Figure 25.	Typ. VOL @ VDD = 3.0 V (true open drain ports)	86
Figure 26.	Typ. VOL @ VDD = 1.8 V (true open drain ports)	86
Figure 27.	Typ. VDD - VOH @ VDD = 3.0 V (high sink ports)	86
Figure 28.	Typ. VDD - VOH @ VDD = 1.8 V (high sink ports)	86
Figure 29.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	87
Figure 30.	Typical NRST pull-up current I _{pu} vs V _{DD}	88
Figure 31.	Recommended NRST pin configuration	88
Figure 32.	SPI1 timing diagram - slave mode and CPHA=0	90
Figure 33.	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	90
Figure 34.	SPI1 timing diagram - master mode ⁽¹⁾	91
Figure 35.	Typical application with I2C bus and timing diagram ⁽¹⁾	92
Figure 36.	ADC1 accuracy characteristics	. 102
Figure 37.	Typical connection diagram using the ADC	. 102
Figure 38.	Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion .	. 103
Figure 39.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	. 104
Figure 40.	Power supply and reference decoupling (VREF+ connected to VDDA)	. 104
Figure 41.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	. 108
Figure 42.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	. 110
Figure 43.	LQFP48 marking example (package top view)	. 110
Figure 44.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline	. 111
Figure 45.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint	. 112
Figure 46.	LQFP32 marking example (package top view)	. 113
Figure 47.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package outline	. 114

Figure 48.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package recommended footprint	116
Figure 49.	VFQFPN32 marking example (package top view)	117
Figure 50.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x	
-	ordering information scheme	119

3.6 LCD (Liquid crystal display)

The liquid crystal display drives up to four common terminals and up to 28 segment terminals to drive up to 112 pixels.

- Internal step-up converter to guarantee contrast control whatever V_{DD}.
- Static 1/2, 1/3, 1/4 duty supported.
- Static 1/2, 1/3 bias supported.
- Phase inversion to reduce power consumption and EMI.
- Up to 4 pixels which can programmed to blink.
- The LCD controller can operate in Halt mode.

Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices have the following main features:

- Up to 2 Kbytes of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 32 Kbytes of medium-density embedded Flash program memory
 - 1 Kbytes of Data EEPROM
 - Option bytes.

It supports the read-while-write (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.

The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the 4 Timers.

3.9 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage
- Conversion time down to 1 µs with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog
- Triggered by timer

Note: ADC1 can be served by DMA1.

DocID18474 Rev 8

3.13 Timers

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 3 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs			
TIM1			Any integer from 1 to 65536		3 + 1	3			
TIM2	16-bit	up/down	up/down	up/down	up/down	Any power of 2	Ves	2	
TIM3	TIM3 TIM4 8-bit u		from 1 to 128	163	2	None			
TIM4			Any power of 2 from 1 to 32768		0				

Table 3. Timer feature comparison

3.13.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down auto reload counter with 16-bit prescaler
- Three independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output.
- One additional capture/compare channel which is not connected to an external I/O
- Synchronization module to control the timer with external signals
- Break input to force timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.13.2 16-bit general purpose timers

- 16-bit auto reload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- Two individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

3.16.2 I²C

The I²C bus interface (I²C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.

- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz
- 7-bit and 10-bit addressing modes
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note: l^2C1 can be served by the DMA1 Controller.

3.16.3 USART

The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.

- 1 Mbit/s full duplex SCI
- SPI1 emulation
- High precision baud rate generator
- SmartCard emulation
- IrDA SIR encoder decoder
- Single wire half duplex mode

Note: USART1 can be served by the DMA1 Controller.

USART1 can be used to implement LIN slave communication, with LIN Break detection on the framing error flag (FE in USART_SR register) with a value of 0 in the USART data register (USART_DR).

3.17 Infrared (IR) interface

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.18 Development support

Development tools

Development tools for the STM8 microcontrollers include:

- The STice emulation system offering tracing and code profiling
- The STVD high-level language debugger including C compiler, assembler and integrated development environment.
- The STVP Flash programming software

The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

DocID18474 Rev 8

Figure 5. STM8AL31x6T 32-pin pinout (without LCD)

Pin	nun	ıber					Input	t	Ou	tput			
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	QO	dd	Main function (after reset)	Default alternate function
28	-	-	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/COMP1_INP	I/O	TT ⁽³⁾	<u>X</u> ⁽⁶⁾	X ⁽⁶⁾	х	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / Comparator 1 positive input
_	17	17	PB4 ⁽⁶⁾ /[SPI1_NSS] ⁽⁴⁾ / LCD_SEG14 ⁽²⁾ / ADC1_IN14/ COMP1_INP/DAC_OUT	I/O	TT ⁽³⁾	<u>X</u> ⁽⁶⁾	X ⁽⁶⁾	x	HS	x	x	Port B4	[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / DAC output / Comparator 1 positive input
29	-	-	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ⁽²⁾ / ADC1_IN13/COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / Comparator 1 positive input
-	18	18	PB5/[SPI1_SCK] ⁽⁴⁾ / LCD_SEG15 ^{(2)/} ADC1_IN13/DAC_OUT/ COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC output/ Comparator 1 positive input
30	-	-	PB6/[<i>SPI1_MOSI]</i> ⁽⁴⁾ / LCD_SEG16 ^{(2)/} ADC1_IN12/COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	x	x	Port B6	[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12 / Comparator 1 positive input
-	19	19	PB6/[SPI1_MOSI] ⁽⁴⁾ / LCD_SEG16 ⁽²⁾ / ADC1_IN12/COMP1_INP /DAC_OUT	I/O	TT ⁽³⁾	X	x	х	HS	x	х	Port B6	[SPI1 master out]/ slave in / LCD segment 16 / ADC1_IN12 / DAC output / Comparator 1 positive input
31	20	20	PB7/[SPI1_MISO] ⁽⁴⁾ / LCD_SEG17 ⁽²⁾ / ADC1_IN11/COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B7	[SPI1 master in- slave out] / LCD segment 17 / ADC1_IN11 / Comparator 1 positive input
37	25	25	PC0 ⁽⁵⁾ /I2C1_SDA	I/O	FT	X	-	Х		T ⁽⁷⁾		Port C0	I2C1 data

Memory area	Size	Start address	End address				
RAM	2 Kbyte	0x00 0000	0x00 07FF				
	8 Kbyte		0x00 9FFF				
Flash program memory	16 Kbyte	0x00 8000	0x00 BFFF				
	32 Kbyte						

Table 6. Flash and RAM boundary addresses

5.2 Register map

 Table 7. Factory conversion registers

Address	Block	Register label	Register name	Reset status
0x00 4910	-	VREFINT_Factory_ CONV ⁽¹⁾	Internal reference voltage factory conversion	0xXX
0x00 4911	-	TS_Factory_CONV_ V125 ⁽²⁾	Temperature sensor output voltage	0xXX

1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The MSB have a fixed value: 0x6.

2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3.

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x01
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00

Table 8. I/O port hardware register map

Address	Block	Register label	Register name	Reset status				
0x00 50E3 to 0x00 50EF		F	Reserved area (13 bytes)					
0x00 50F0		BEEP_CSR1	BEEP control/status register 1	0x00				
0x00 50F1 0x00 50F2	BEEP		Reserved area (2 bytes) BEEP CSR2 BEEP control/status register 2					
0x00 50F3		BEEP_CSR2	BEEP control/status register 2	0x1F				
0x00 50F4 to 0x00 513F		F	Reserved area (76 bytes)					
0x00 5140		RTC_TR1	Time register 1	0x00				
0x00 5141		RTC_TR2	Time register 2	0x00				
0x00 5142	-	RTC_TR3	Time register 3	0x00				
0x00 5143	-		Reserved area (1 byte)	1				
0x00 5144		RTC_DR1	Date register 1	0x01				
0x00 5145		RTC_DR2	Date register 2	0x21				
0x00 5146		RTC_DR3	Date register 3	0x00				
0x00 5147			Reserved area (1 byte)					
0x00 5148		RTC_CR1	Control register 1	0x00				
0x00 5149		RTC_CR2	Control register 2	0x00				
0x00 514A		RTC_CR3	Control register 3	0x00				
0x00 514B			Reserved area (1 byte)					
0x00 514C	BTC	RTC_ISR1	Initialization and status register 1	0x00				
0x00 514D	RIC	RTC_ISR2	Initialization and Status register 2	0x00				
0x00 514E 0x00 514F			Reserved area (2 bytes)	·				
0x00 5150		RTC_SPRERH ⁽¹⁾	Synchronous prescaler register high	0x00 ⁽¹⁾				
0x00 5151		RTC_SPRERL ⁽¹⁾	Synchronous prescaler register low	0xFF ⁽¹⁾				
0x00 5152		RTC_APRER ⁽¹⁾	Asynchronous prescaler register	0x7F ⁽¹⁾				
0x00 5153			Reserved area (1 byte)					
0x00 5154		RTC_WUTRH ⁽¹⁾	Wakeup timer register high	0xFF ⁽¹⁾				
0x00 5155		RTC_WUTRL ⁽¹⁾	Wakeup timer register low	0xFF ⁽¹⁾				
0x00 5156 to 0x00 5158			Reserved area (3 bytes)	•				
0x00 5159		RTC_WPR	Write protection register	0x00				
0x00 515A 0x00 515B			Reserved area (2 bytes)					

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 52B6		TIM1_SR1	TIM1 status register 1	0x00
0x00 52B7		TIM1_SR2	TIM1 status register 2	0x00
0x00 52B8		TIM1_EGR	TIM1 event generation register	0x00
0x00 52B9		TIM1_CCMR1	TIM1 Capture/Compare mode register 1	0x00
0x00 52BA		TIM1_CCMR2	TIM1 Capture/Compare mode register 2	0x00
0x00 52BB		TIM1_CCMR3	TIM1 Capture/Compare mode register 3	0x00
0x00 52BC		TIM1_CCMR4	TIM1 Capture/Compare mode register 4	0x00
0x00 52BD		TIM1_CCER1	TIM1 Capture/Compare enable register 1	0x00
0x00 52BE		TIM1_CCER2	TIM1 Capture/Compare enable register 2	0x00
0x00 52BF		TIM1_CNTRH	TIM1 counter high	0x00
0x00 52C0		TIM1_CNTRL	TIM1 counter low	0x00
0x00 52C1		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 52C2		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 52C3		TIM1_ARRH	TIM1 Auto-reload register high	0xFF
0x00 52C4	TIM1	TIM1_ARRL	TIM1 Auto-reload register low	0xFF
0x00 52C5	1 1101 1	TIM1_RCR	TIM1 Repetition counter register	0x00
0x00 52C6		TIM1_CCR1H	TIM1 Capture/Compare register 1 high	0x00
0x00 52C7		TIM1_CCR1L	TIM1 Capture/Compare register 1 low	0x00
0x00 52C8		TIM1_CCR2H	TIM1 Capture/Compare register 2 high	0x00
0x00 52C9		TIM1_CCR2L	TIM1 Capture/Compare register 2 low	0x00
0x00 52CA		TIM1_CCR3H	TIM1 Capture/Compare register 3 high	0x00
0x00 52CB		TIM1_CCR3L	TIM1 Capture/Compare register 3 low	0x00
0x00 52CC		TIM1_CCR4H	TIM1 Capture/Compare register 4 high	0x00
0x00 52CD		TIM1_CCR4L	TIM1 Capture/Compare register 4 low	0x00
0x00 52CE		TIM1_BKR	TIM1 break register	0x00
0x00 52CF		TIM1_DTR	TIM1 dead-time register	0x00
0x00 52D0		TIM1_OISR	TIM1 output idle state register	0x00
0x00 52D1		TIM1_DCR1	DMA1 control register 1	0x00
0x00 52D2		TIM1_DCR2	TIM1 DMA1 control register 2	0x00
0x00 52D3		TIM1_DMA1R	TIM1 DMA1 address for burst mode	0x00
0x00 52D4 to 0x00 52DF		F	Reserved area (12 bytes)	

Table 9. General hardware register map (continued)

Address	Block	Register Label	Register Name	Reset Status
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F		·	Reserved area (5 bytes)	·

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
18	COMP1/ COMP2/ ADC1	COMP1 interrupt/ COMP2 interrupt ADC1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054
20	TIM2	TIM2 capture/compare interrupt	-	-	Yes	Yes	0x00 8058
21	TIM3	TIM3 update /overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C
22	TIM3	TIM3 capture/compare interrupt	-	-	Yes	Yes	0x00 8060
23	TIM1	TIM1 update /overflow/ trigger/COM	-	-	-	Yes	0x00 8064
24	TIM1	TIM1 capture/compare interrupt	-	-	-	Yes	0x00 8068
25	TIM4	TIM4 update /overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C
26	SPI1	SPI TX buffer empty/RX buffer not empty/error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074
28	USART 1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078
29	I ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C

Table 11. Interrupt mapping (continued)

 The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

 The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

Symbol	Parameter	Conditions		Тур	Unit
	Oursely surgesting day		V _{DD} = 1.8 V	48	
I _{DD(RST)}	external reset ⁽¹⁾	tied to V _{DD}	V _{DD} = 3 V	76	μA
		66	V _{DD} = 3.6 V	91	

Table 29. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency		1 ⁽¹⁾	-	16 ⁽¹⁾	MHz
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	*	V _{SS}	-	0.3 x V _{DD}	v
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF
I _{LEAK_HSE} OSC_IN input leakage current		$V_{SS} < V_{IN} < V_{DD}$	-	-	±500	nA

Table 30. HSE external clock characteristics

1. Guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Table 31. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	-	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 x V _{DD} ⁽¹⁾	-	V _{DD} ⁽¹⁾	V
V _{LSEL}	OSC32_IN input pin low level voltage	$V_{SS}^{(1)}$	-	0.3 x V _{DD} ⁽¹⁾	
C _{in(LSE)}	OSC32_IN input capacitance	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-		±500	nA

1. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	-	-40	125	°C
N _{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
t	Data retention time	T _A = 25 °C	40	-	Veare
^I RET		T _A = 55 °C	20	-	ycars

Table 38. Flash program memory

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

Data memory

Symbol	Parameter	Conditions	Min	Max	Unit	
T _{WE}	Temperature for writing and erasing	-	-40	125	°C	
Data memory endurance		T _A = 25 °C	300 k	-	avalaa	
INWE	(erase/write cycles) ⁽¹⁾	T _A = -40 to 125 °C	100 k ⁽²⁾	-	Cycles	
+	Data rotantian time	T _A = 25 °C	40 ⁽²⁾⁽³⁾	-	Voore	
^I RET		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-	years	

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below Vss or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

Figure 30. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 31* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 45*. Otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF.

Figure 31. Recommended NRST pin configuration

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220		
IVREF	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350		
	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320		
IVDDA	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520		
T _A	Temperature range	-	-40	-	125	°C	
RL	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kO	
R _O	Output impedance	DACOUT buffer OFF	-	8	10	K12	
CL	Capacitive load ⁽³⁾	-	-	-	50	pF	
		DACOUT buffer ON	0.2	-	V _{DDA} -0.2	V	
DAC_001		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB		
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-	1	Msps	
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	9	15	μs	
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-60	-35	dB	

Table 53.	DAC	characteristics	(continued)
-----------	-----	-----------------	-------------

1. Resistive load between DACOUT and GNDA.

2. Output on PF0 (48-pin package only).

3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling two LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

Symbol	Baramotor	Conditions	Monitored	Max vs.	Unit	
Symbol	Farameter	Conditions	frequency band	16 MHz	Unit	
S _{EMI}		V_{DD} = 3.6 V, T_A = +25 °C, LQFP32 conforming to IEC61967-2	0.1 MHz to 30 MHz	-3		
	Deals lavel		30 MHz to 130 MHz	9	dBµV	
	Peak level		130 MHz to 1 GHz	4		
			EMI Level	2	-	

Гable	62.	EMI	data	(1)
-------	-----	-----	------	-----

1. Not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.

Table 63. ESD abso	lute maximum ratings
--------------------	----------------------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to ANSI/ESDA/ JEDEC JS-001	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD S5.3.1	C4B	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = +25 °C, conforming to JESD22-A115	M2	200	

1. Guaranteed by characterization results.

10 Package information

10.1 ECOPACK

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10.2 LQFP48 package information

Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 43. LQFP48 marking example (package top view)

 Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

 $\mathbf{\nabla}$

10.3 LQFP32 package information

Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

