

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	30
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 22x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3166tax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices are members of the STM8AL automotive ultra-low-power 8-bit family. The medium-density STM8AL3xxx family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85°C and -40 to +125°C temperature ranges.

The medium-density STM8AL3xxx ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultrafast Flash programming.

All medium-density STM8AL3xxx microcontrollers feature embedded data EEPROM and low power low-voltage single-supply program Flash memory.

They incorporate an extensive range of enhanced I/Os and peripherals.

The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

Two different packages are proposed which include 32 and 48 pins. Depending on the device chosen, different sets of peripherals are included.

All STM8AL3xxx ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

2.1 Device overview

Table 2. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts

Fea	itures		STM8AL3xx	6	STM8AL3xx8				
Flash (Kbyte)		8	16	32	8	16	32		
Data EEPROM (Kbyte)				1				
RAM-Kbyte			2			2			
LCD			4x17 ⁽¹⁾			4x28 ⁽¹⁾			
	Basic		1 (8-bit)			1 (8-bit)			
Timers	General purpose		2 (16-bit)		2 (16-bit)				
	Advanced control		1 (16-bit)		1 (16-bit)				
	SPI		1			1			
Communication interfaces	I2C		1			1			
	USART		1			1			
GPIOs		30) ⁽²⁾⁽³⁾ or 29 ⁽¹	1)(3)	41 ⁽³⁾				
12-bit synchroniz (number of chan	zed ADC nels)		1 (22 ⁽²⁾ or 21 ⁽¹	⁽⁾)	1 (25)				
12-Bit DAC (number of chan	nels)		1 (1)		1 (1)				
Comparators CC)MP1/COMP2		2			2			
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external of							
CPU frequency				16 I	MHz				
Operating voltag	e		1.8 V to 3	1.65 V at po	wer down)				
Operating tempe	rature			40 to +85 °C/	/-40 to +125 °C				
Packages		LC	۵۶۹۲۵۲ (7 x7 r ۵۶۹۷۵۲ (5 x t	nm) 5 mm)	LQFP48 (7x7) VFQFPN32 (5 x 5 mm)				

1. STM8AL3Lxx versions only

2. STM8AL31xx versions only

3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

3.2 Central processing unit STM8

3.2.1 Advanced STM8 core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.3 Reset and supply management

3.3.1 Power supply scheme

The STM8AL313x/4x/6x and STM8AL3L4x/6x require a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- V_{SSA}; V_{DDA} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{SS2}; V_{DD2} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.
- V_{REF+} (for DAC): external voltage reference for DAC must be provided externally through V_{REF+}.

3.3.2 Power supply supervisor

The STM8AL313x/4x/6x and STM8AL3L4x/6x have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The STM8AL313x/4x/6x and STM8AL3L4x/6x feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

Туре	I= input, O	= input, O = output, S = power supply						
I/O level	TT	3.6 V tolerant						
	FT	Five-volt tolerant						
Port and control	Input	 floating wpu = weak pull-up Ext. interrupt = external interrupt 						
configuration	Output - HS = high sink/source - OD = open drain (where T defines a true open drain) - PP = push pull							
Reset state	Underlined Unless othe "under rese	X (pin state after reset release). erwise specified, the pin state is the same during the reset phase (i.e. t") and after internal reset release (i.e. at reset state).						

Table 4. Legend/abbreviation

Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description

Pin	nun	nber				I	npu	t	Ou	tput			
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	QO	ЬР	Main function (after reset)	Default alternate function
2	1	1	NRST/PA1 ⁽¹⁾	I/O	-	-	<u>X</u>	-	HS	-	Х	Reset	PA1
3	2	2	PA2/OSC_IN/ [USART1_TX] ⁽⁴⁾ / [SPI1_MISO] ⁽⁴⁾	I/O	-	X	х	х	HS	x	x	Port A2	HSE oscillator input / [USART1 transmit] / [SPI1 master in- slave out]
4	3	3	PA3/OSC_OUT/[USART1 _RX] ⁽⁴⁾ /[SPI1_MOSI] ⁽⁴⁾	I/O	-	X	х	х	HS	x	x	Port A3	HSE oscillator output / [USART1 receive]/ [SPI1 master out/slave in]
5	-	-	PA4/TIM2_BKIN/ LCD_COM0 ⁽²⁾ /ADC1_IN2 /COMP1_INP	I/O	TT ⁽³⁾	X	х	х	HS	x	x	Port A4	Timer 2 - break input / LCD COM 0 / ADC1 input 2 / Comparator 1 positive input
_	4	4	PA4/TIM2_BKIN/ <i>[TIM2_ETR]⁽⁴⁾/</i> LCD_COM0 ⁽²⁾ / ADC1_IN2/COMP1_INP	I/O	TT ⁽³⁾	X	х	х	HS	x	x	Port A4	Timer 2 - break input / [<i>Timer 2 - trigger</i>] / LCD_COM 0 / ADC1 input 2 / Comparator 1 positive input
6	-	-	PA5/TIM3_BKIN/ LCD_COM1 ⁽²⁾ /ADC1_IN1 /COMP1_INP	I/O	TT ⁽³⁾	X	х	х	HS	x	x	Port A5	Timer 3 - break input / LCD_COM 1 / ADC1 input 1/ Comparator 1 positive input

Table 5. Medium-densif	y STM8AL313x/4x/6x and STM8AL3L4	4x/6x pin description (continued)
------------------------	----------------------------------	-----------------------------------

Pin	num	ıber				I	nput	t	Ou	tput			
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	QO	ЬЬ	Main function (after reset)	Default alternate function
34	22	22	PD5/TIM1_CH3 /LCD_SEG19 ⁽²⁾ / ADC1_IN9/COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	x	x	Port D5	Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ Comparator 1 positive input
35	23	23	PD6/TIM1_BKIN /LCD_SEG20 ⁽²⁾ / ADC1_IN8/RTC_CALIB/ /VREFINT/ COMP1_INP	I/O	ТТ ⁽³⁾	X	x	х	HS	x	x	Port D6	Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output / Comparator 1 positive input
36	24	24	PD7/TIM1_CH1N /LCD_SEG21 ⁽²⁾ / ADC1_IN7/RTC_ALARM/ VREFINT/ COMP1_INP	I/O	ТТ ⁽³⁾	X	x	x	HS	x	x	Port D7	Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output /Comparator 1 positive input
14	-	-	PE0 ⁽⁵⁾ /LCD_SEG1 ⁽²⁾	I/O	FT	<u>X</u>	Х	Х	HS	Х	Х	Port E0	LCD segment 1
15	-	-	PE1/TIM1_CH2N /LCD_SEG2 ⁽²⁾	I/O	ТТ ⁽³⁾	X	x	х	HS	x	x	Port E1	Timer 1 - inverted channel 2 / LCD segment 2
16	-	-	PE2/TIM1_CH3N /LCD_SEG3 ⁽²⁾	I/O	TT ⁽³⁾	X	х	х	HS	x	х	Port E2	Timer 1 - inverted channel 3 / LCD segment 3
17	-	-	PE3/LCD_SEG4 ⁽²⁾	I/O	TT ⁽³⁾	X	Х	Х	HS	Х	Х	Port E3	LCD segment 4
18	-	-	PE4/LCD_SEG5 ⁽²⁾	I/O	TT ⁽³⁾	X	Х	Х	HS	х	Х	Port E4	LCD segment 5
19	-	-	PE5/LCD_SEG6 ⁽²⁾ / ADC1_IN23/COMP2_INP / COMP1_INP	I/O	TT ⁽³⁾	X	x	х	HS	х	x	Port E5	LCD segment 6 / ADC1_IN23 / Comparator 2 positive input / Comparator 1 positive input
47		-	PE6/LCD_SEG26 ⁽²⁾ / PVD_IN	I/O	TT ⁽³⁾	<u>X</u>	х	х	HS	х	х	Port E6	LCD segment 26/PVD_IN
48		-	PE7/LCD_SEG27 ⁽²⁾	I/O	TT ⁽³⁾	<u>X</u>	Х	Х	HS	Х	Х	Port E7	LCD segment 27
32		-	PF0/ADC1_IN24/ DAC_OUT	I/O	TT ⁽³⁾	X	х	х	HS	х	х	Port F0	ADC1_IN24 / DAC_OUT

Memory area	Size	Start address	End address						
RAM	2 Kbyte	0x00 0000	0x00 07FF						
	8 Kbyte		0x00 9FFF						
Flash program memory	16 Kbyte	0x00 8000	0x00 BFFF						
	32 Kbyte								

Table 6. Flash and RAM boundary addresses

5.2 Register map

 Table 7. Factory conversion registers

Address	Block	Register label	Register name	Reset status
0x00 4910	-	VREFINT_Factory_ CONV ⁽¹⁾	Internal reference voltage factory conversion	0xXX
0x00 4911	-	TS_Factory_CONV_ V125 ⁽²⁾	Temperature sensor output voltage	0xXX

1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The MSB have a fixed value: 0x6.

2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3.

Address	Block	Register label	Register name	Reset status		
0x00 5000		PA_ODR	Port A data output latch register	0x00		
0x00 5001		PA_IDR	Port A input pin value register	0xXX		
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00		
0x00 5003		PA_CR1	Port A control register 1	0x01		
0x00 5004		PA_CR2 Port A control register 2				
0x00 5005		PB_ODR	Port B data output latch register	0x00		
0x00 5006		PB_IDR	Port B input pin value register	0xXX		
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00		
0x00 5008	PB_CR1		Port B control register 1	0x00		
0x00 5009		PB_CR2	Port B control register 2	0x00		
0x00 500A		PC_ODR	Port C data output latch register	0x00		
0x00 500B		PB_IDR	Port C input pin value register	0xXX		
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00		
0x00 500D		PC_CR1	Port C control register 1	0x00		
0x00 500E		PC_CR2	Port C control register 2	0x00		

Table 8. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5230		USART1_SR	USART1 status register	0xC0
0x00 5231		USART1_DR	USART1 data register	undefined
0x00 5232		USART1_BRR1	USART1 baud rate register 1	0x00
0x00 5233		USART1_BRR2	USART1 baud rate register 2	0x00
0x00 5234		USART1_CR1	USART1 control register 1	0x00
0x00 5235	USART1	USART1_CR2	USART1 control register 2	0x00
0x00 5236		USART1_CR3	USART1 control register 3	0x00
0x00 5237		USART1_CR4	USART1 control register 4	0x00
0x00 5238		USART1_CR5	USART1 control register 5	0x00
0x00 5239		USART1_GTR	USART1 guard time register	0x00
0x00 523A		USART1_PSCR	USART1 prescaler register	0x00
0x00 523B to 0x00 524F		F	Reserved area (21 bytes)	
0x00 5250		TIM2_CR1	TIM2 control register 1	0x00
0x00 5251		TIM2_CR2	TIM2 control register 2	0x00
0x00 5252		TIM2_SMCR	TIM2 slave mode control register	0x00
0x00 5253		TIM2_ETR	TIM2 external trigger register	0x00
0x00 5254		TIM2_DER	TIM2 DMA1 request enable register	0x00
0x00 5255		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5256		TIM2_SR1	TIM2 status register 1	0x00
0x00 5257		TIM2_SR2	TIM2 status register 2	0x00
0x00 5258		TIM2_EGR	TIM2 event generation register	0x00
0x00 5259		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 525A	TIM2	TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 525B		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 525C		TIM2_CNTRH	TIM2 counter high	0x00
0x00 525D		TIM2_CNTRL	TIM2 counter low	0x00
0x00 525E		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 525F		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 5260		TIM2_ARRL	TIM2 auto-reload register low	0xFF
0x00 5261		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5262		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5263		TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00
0x00 5264		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00

T-LL A A	1 .		
Table 9. General	naroware	register ma	p (continuea)

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 12* for details on option byte addresses.

The option bytes can also be modified 'on the fly' by the application in IAP mode, except for the ROP, and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8L15x/STM8L16x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0320) for information on SWIM programming procedures.

Address	Ontion nome	Option	Option bits							Factory	
Address	Option name	No.	7	6	5	4	3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]						0xAA	
0x00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]						0x00	
0x00 4807				Reserved							0x00
0x00 4808	Independent watchdog option	OPT3 [3:0]		Reserved				WWDG _HW	IWDG _HALT	IWDG _HW	0x00
0x00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4		Reserved				LSECNT[1:0] HSECNT[1			
0x00 480A	Brownout reset (BOR)	OPT5 [3:0]	Reserved BOR_TH BOR _ON						0x01		
0x00 480B	Bootloader	OPTBL						01			0x00
0x00 480C	OPTION bytes (OPTBL)	[15:0]				O	-181[12:0	U]			0x00

Table 12. Option byte addresses

byte no.	Option description			
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031).			
OPT1	 UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC, memory write-protected. 0xFF: Page 0 to 254 reserved for the UBC, memory write-protected. Refer to User boot code section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL31xx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031). 			
OPT2	Reserved			
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG HALT: Independent watchdog off in Halt/Active-halt			
OPT2	0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode			
OFTS	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware			
	WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode			
OPT4	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles			
	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to <i>Table 33: LSE oscillator characteristics</i>			

Table 13. Option byte description

Symbol	Parameter		Condition	ns ⁽¹⁾	Тур	Max ⁽²⁾	Unit	
				T_A = -40 °C to 25 °C	0.50 1.20			
			LCD OFF ⁽⁸⁾	T _A = 85 °C	0.90	2.10		
I _{DD(AH)}				T _A = 125 °C	4.80	11.00		
			LCD ON	T_A = -40 °C to 25 °C	0.85	1.90		
			external	T _A = 85 °C	1.30	3.20		
	Supply current in	clock	V _{LCD}) ⁽⁴⁾	T _A = 125 °C	5.00	12.00		
	Active-halt mode	(32.768 kHz)	LCD ON (1/4 duty/ external V _{LCD}) ⁽⁵⁾	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.50	2.50	μA	
				T _A = 85 °C	1.80	4.20	1	
				T _A = 125 °C	5.70	14.00	-	
			LCD ON (1/4 duty/ internal V _{LCD}) ⁽⁶⁾	T_A = -40 °C to 25 °C	3.40	7.60		
				T _A = 85 °C	3.90	9.20		
				T _A = 125 °C	6.30	15.20		
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)	-	-	-	2.40	-	mA	
t _{WU_HSI(AH)} ⁽⁹⁾ (10)	Wakeup time from Active-halt mode to Run mode (using HSI)	-			4.70	7.00	116	
t _{WU_LSI(AH)} ⁽⁹⁾ (10)	Wakeup time from Active-halt mode to Run mode (using LSI)		-				μο	

Table 25. Total current consumption and timing in active-halt mode at V_{DD} = 1.65 V to 3.6 V (continued)

1. No floating I/O, unless otherwise specified.

2. Guaranteed by characterization results.

3. RTC enabled. Clock source = LSI.

4. RTC enabled, LCD enabled with external V_{LCD} = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.

5. RTC enabled, LCD enabled with external V_{LCD}, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

LCD enabled with internal LCD booster V_{LCD} = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 33.

8. RTC enabled. Clock source = LSE.

 Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU}.

10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

Current consumption of on-chip peripherals

Symbol	Parameter		Typ. V _{DD} = 3.0 V	Unit	
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾		13		
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾		8		
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾	8			
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾		3		
I _{DD(USART1)}	USART1 supply current (2)		6		
I _{DD(SPI1)}	SPI1 supply current ⁽²⁾	3	µA/MHZ		
I _{DD(I2C1)}	I ² C1 supply current ⁽²⁾	5			
I _{DD(DMA1)}	DMA1 supply current ⁽²⁾	3			
I _{DD(WWDG)}	WWDG supply current ⁽²⁾	2			
I _{DD(ALL)}	Peripherals ON ⁽³⁾	44			
I _{DD(ADC1)}	ADC1 supply current ⁽⁴⁾		1500		
I _{DD(DAC)}	DAC supply current ⁽⁵⁾		370		
I _{DD(COMP1)}	Comparator 1 supply current ⁽⁶⁾		0.160		
	Comparator 2 augustu aurrant ⁽⁶⁾	Slow mode	2		
'DD(COMP2)		Fast mode	5		
I _{DD(PVD/BOR)}	Power voltage detector and brownout Reset unit supply current ⁽⁷⁾		2.6	μΑ	
I _{DD(BOR)}	Brownout Reset unit supply current ⁽⁷⁾		2.4		
	Independent watchdog oupply ourrent	including LSI supply current	0.45		
'DD(IDWDG)	חישביים איזיין איזיגערייטע איזיא געוויפוונ	excluding LSI supply current	0.05		

Table 28. Peripheral current consumption

1. Data based on a differential I_{DD} measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.

3. Peripherals listed above the I_{DD(ALL)} parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.

4. Data based on a differential I_{DD} measurement between ADC in reset configuration and continuous ADC conversion.

5. Data based on a differential I_{DD} measurement between DAC in reset configuration and continuous DAC conversion of V_{DD} /2. Floating DAC output.

Data based on a differential I_{DD} measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

7. Including supply current of internal reference voltage.

Figure 22. Typical pull-up current I_{pu} vs V_{DD} with $V_{\text{IN}}\text{=}V_{\text{SS}}$

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	$V_{SS}^{(1)}$	-	0.8 ⁽¹⁾	
V _{IH(NRST)}	NRST input high level voltage	-	1.4 ⁽¹⁾	-	V _{DD} ⁽¹⁾	
	NRST output low level voltage	$I_{OL} = 2 \text{ mA}$ for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4(1)	V
VOL(NRST)		I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis	-	10%V _{DD} ⁽²⁾⁽³⁾	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30 ⁽¹⁾	45	60 ⁽¹⁾	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	50 ⁽³⁾	
V _{NF(NRST)}	NRST input not filtered pulse	-	300 ⁽³⁾	-	-	ns

Table 45.	NRST	pin	characteristics
		P	onaraotoriotioo

1. Guaranteed by characterization results.

2. 200 mV min.

3. Guaranteed by design.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit	
f _{SCK}	SPI1 clock frequency	Master mode	0	8	МН≁	
1/t _{c(SCK)}	SI IT CLOCK ITEQUEICY	Slave mode	0	8		
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30		
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145		
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	30	-		
t _{su(SI)} ⁽²⁾		Slave mode	3	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-		
t _{h(SI)} ⁽²⁾	Data input noid time	Slave mode	0	-	ns	
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}		
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-		
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20		
$t_{h(SO)}^{(2)}$	Data output hold time	Slave mode (after enable edge)	15	-		
t _{h(MO)} ⁽²⁾		Master mode (after enable edge)	1	-		

Table 46. SPI1 of	characteristics
-------------------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

Figure 34. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD} .

I²C - Inter IC control interface

Subject to general operating conditions for V_{DD} , f_{SYSCLK} , and T_A unless otherwise specified.

The STM8AL I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standar I ²	d mode C	Fast mo	Unit	
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	116
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο

Table 47. I²C characteristics

Symbol	Parameter	Min	Тур	Max.	Unit
T _{START} ⁽³⁾	Temperature sensor startup time	-	-	10 ⁽²⁾	
T _{S_TEMP}	ADC sampling time when reading the temperature sensor	-	5	10 ⁽²⁾	μs

Table 50. TS characteristics (continued)

 Tested in production at V_{DD} = 3 V ±10 mV. The 8 LSB of the V₁₂₅ ADC conversion result are stored in the TS_Factory_CONV_V125 byte.

2. Guaranteed by design.

3. Defined for ADC output reaching its final value $\pm 1/2$ LSB.

9.3.12 Comparator characteristics

In the following table, data are guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	1.65	-	3.6 ⁽¹⁾	V
T _A	Temperature range	-40	-	125 ⁽¹⁾	°C
R _{400K}	R _{400K} value	300	400	500 ⁽¹⁾	۲O
R _{10K}	R _{10K} value	7.5	10	12.5 ⁽¹⁾	N32
V _{IN}	Comparator input voltage range	0.6	-	$V_{DDA}^{(1)}$	V
V _{REFINT}	Internal reference voltage	1.202	1.224	1.242	v
t _{START}	Startup time after enable	-	7	10 ⁽¹⁾	116
t _d	Propagation delay ⁽²⁾	-	3	10 ⁽¹⁾	μο
V _{offset}	Comparator offset error	-	±3	±10 ⁽¹⁾	mV
I _{CMP1}	Consumption ⁽³⁾	-	160	260 ⁽¹⁾	nA

Table 51. Comparator 1 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

In the following table, data are guaranteed by design, not tested in production unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V_{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
T _A	Temperature range	-	-40	-	125	°C	
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V	
t _{START}	Comparator startup time	Fast mode	-	15	20		
		Slow mode	-	20	25		
4	Propagation delay in slow mode ⁽²⁾	$1.65~\textrm{V} \leq \textrm{V}_\textrm{DDA} \leq 2.7~\textrm{V}$		1.8	3.5	μs	
^L d slow		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DDA} \leq 3.6~\textrm{V}$	-	2.5	6		
+	Propagation delay in fast	$1.65~\textrm{V} \leq \textrm{V}_\textrm{DDA} \leq 2.7~\textrm{V}$		0.8	2		
^L d fast	mode ^(Ž)	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DDA} \leq 3.6~\textrm{V}$	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
	Current concumption ⁽³⁾	Fast mode		3.5	5		
ICOMP2	Current consumption ⁽³⁾	Slow mode	-	0.5	2	μΑ	

|--|

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

9.3.13 12-bit DAC characteristics

In the following table, data are guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	-	1.8	-	V _{DDA}	

Table 53. DAC characteristics

In the following table, data based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Тур.	Max ⁽¹⁾	Unit	
DNL	Differential non linearity ⁽²⁾	$R_L ≥$ 5 kΩ, $C_L ≤$ 50 pF, DACOUT buffer ON ⁽³⁾	1.5	3		
		No load, DACOUT buffer OFF	1.5	3	12-bit LSB	
INL	Integral non linearity ⁽⁴⁾	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF,DACOUT buffer ON}^{(3)}$	2	4		
		No load, DACOUT buffer OFF	2	4		
Offset	Offset error ⁽⁵⁾	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}, \text{DACOUT buffer ON}^{(3)}$	±10	±25		
		No load, DACOUT buffer OFF	±5	±8		
Offset1	Offset error at Code 1 ⁽⁶⁾	DACOUT buffer OFF	±1.5	±5		
Gain error	Gain error ⁽⁷⁾	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF,DACOUT buffer ON}^{(3)}$	+0.1/-0.2	+0.2/-0.5	5 %	
		No load, DACOUT buffer OFF	+0/-0.2	+0/-0.4		
TUE	Total unadjusted error	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}, \text{DACOUT buffer ON}^{(3)}$	12	30	12-bit	
		No load, DACOUT buffer OFF	8	12	LSB	

Table 54. DAC accuracy

1. Not tested in production.

2. Difference between two consecutive codes - 1 LSB.

3. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied.

4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.

5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

6. Difference between the value measured at Code (0x001) and the ideal value.

 Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (V_{DDA} -0.2) V when buffer is OFF.

In the following table, data are guaranteed by design, not tested in production.

Table 55. DAC output on PB4-PB5-PB	6 ⁽¹⁾
------------------------------------	------------------

Symbol	Parameter	Conditions	Max	Unit
	Internal resistance between DAC output and PB4-PB5-PB6 output	2.7 V < V _{DD} < 3.6 V	1.4	
P		2.4 V < V _{DD} < 3.6 V	1.6	
Nint		2.0 V < V _{DD} < 3.6 V	3.2	K12
		1.8 V < V _{DD} < 3.6 V	8.2	

1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers.

9.3.14 12-bit ADC1 characteristics

In the following table, data are guaranteed by design, not tested in production.

Symbol	Parameter	Тур.	Max ⁽¹⁾	Unit
DNL	Differential non linearity	1	2	
INL	Integral non linearity	2	3	
TUE	Total unadjusted error	3	5	LSB
Offset	Offset error	2	3	
Gain	Gain error	2	3	

Table 59. ADC1 accuracy with $V_{DDA} = V_{REF}^+ = 1.8 \text{ V to } 2.4 \text{ V}$

1. Not tested in production.

Figure 36. ADC1 accuracy characteristics

Figure 37. Typical connection diagram using the ADC

- 1. Refer to Table 56 for the values of RAIN and CADC.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

