

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	41
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3168tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Development support
 - Fast on-chip programming and non intrusive debugging with SWIM
 - Bootloader using USART
- 96-bit unique ID

Table 1. Device summary

Reference	Part number
STM8AL313x/4x/6x (without LCD)	STM8AL3136, STM8AL3138, STM8AL3146, STM8AL3148, STM8AL3166, STM8AL3168
STM8AL3L4x/6x (with LCD)	STM8AL3L46, STM8AL3L48, STM8AL3L66, STM8AL3L68



		3.16.1	SPI
		3.16.2	l²C
		3.16.3	USART
	3.17	Infrare	d (IR) interface
	3.18	Develo	pment support 23
4	Pin c	descript	ion
	4.1	Systen	n configuration options
5	Mem	ory and	l register map
	5.1	Memor	ry mapping
	5.2	Registe	er map
6	Inter	rupt ve	ctor mapping
7	Opti	on byte	s 55
8	Uniq	ue ID.	
9	Elec	trical pa	rameters
9	Elec 9.1		Irameters 59 eter conditions 59
9			
9		Param	eter conditions
9		Param 9.1.1	eter conditions
9		Param 9.1.1 9.1.2	eter conditions
9		Param 9.1.1 9.1.2 9.1.3	eter conditions59Minimum and maximum values59Typical values59Typical curves59
9		Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59
9	9.1	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat 9.3.1	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat 9.3.1 9.3.2	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62Embedded reset and power control block characteristics62
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat 9.3.1 9.3.2 9.3.3	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62Embedded reset and power control block characteristics62Supply current characteristics65
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat 9.3.1 9.3.2 9.3.3 9.3.4	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62Embedded reset and power control block characteristics62Supply current characteristics65Clock and timing characteristics74
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu Operat 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62Embedded reset and power control block characteristics62Supply current characteristics65Clock and timing characteristics74Memory characteristics79
9	9.1 9.2	Param 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 Absolu 0perat 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6	eter conditions59Minimum and maximum values59Typical values59Typical curves59Loading capacitor59Pin input voltage60te maximum ratings60ting conditions62General operating conditions62Embedded reset and power control block characteristics62Supply current characteristics65Clock and timing characteristics74Memory characteristics79I/O current injection characteristics80

DocID18474 Rev 8

3 Functional overview

Figure 1. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram

 Legend: ADC (Analog-to-digital converter), BOR (Brownout reset), DMA (Direct memory access), DAC (Digital-to-analog converter), I²C (Inter-integrated circuit multimaster interface), IWDG (Independent watchdog), LCD (Liquid crystal display), POR/PDR (Power on reset / power down reset), RTC (Real-time clock), SPI (Serial peripheral interface), SWIM (Single wire interface module), USART (Universal synchronous asynchronous receiver transmitter), WWDG (Window watchdog).

3.13 Timers

The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).

All the timers can be served by DMA1.

Table 3 compares the features of the advanced control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA1 request generation	Capture/compare channels	Complementary outputs						
TIM1		up/down	Any integer from 1 to 65536		3 + 1	3						
TIM2	16-bit		up/down	up/down	up/down	up/down	up/down	up/down	Any power of 2	Yes	2	
TIM3								from 1 to 128	163	2	None	
TIM4	8-bit	up	Any power of 2 from 1 to 32768		0							

Table 3. Timer feature comparison

3.13.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down auto reload counter with 16-bit prescaler
- Three independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output.
- One additional capture/compare channel which is not connected to an external I/O
- Synchronization module to control the timer with external signals
- Break input to force timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.13.2 16-bit general purpose timers

- 16-bit auto reload (AR) up/down-counter
- 7-bit prescaler adjustable to fixed power of 2 ratios (1...128)
- Two individually configurable capture/compare channels
- PWM mode
- Interrupt capability on various events (capture, compare, overflow, break, trigger)
- Synchronization with other timers or external signals (external clock, reset, trigger and enable)

Table 5 Medium-density	/ STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)

Pin	num	nber					nput	t	Ou	tput	-		
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function
38	26	26	PC1 ⁽⁵⁾ /I2C1_SCL	I/O	FT	<u>X</u>	-	Х	-	T ⁽⁷⁾		Port C1	I2C1 clock
41	27	27	PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ COMP1_INP/VREFINT	I/O	TT ⁽³⁾	X	x	x	HS	x	х	Port C2	USART1 receive / LCD segment 22 / ADC1_IN6 / Comparator 1 positive input / Internal voltage reference output
42	28	28	PC3/USART1_TX/ LCD_SEG23 ⁽²⁾ / ADC1_IN5/COMP1_INP/ COMP2_INM	I/O	ТТ ⁽³⁾	X	x	x	HS	x	х	Port C3	USART1 transmit / LCD segment 23 / ADC1_IN5 / Comparator 1 positive input / Comparator 2 negative input
43	29	29	PC4/USART1_CK/ I2C1_SMB/CCO/ LCD_SEG24 ⁽²⁾ / ADC1_IN4/COMP2_INM/ COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	×	Port C4	USART1 synchronous clock / I2C1_SMB / Configurable clock output / LCD segment 24 / ADC1_IN4 / Comparator 2 negative input / Comparator 1 positive input
44	30	30	PC5/OSC32_IN /[SPI1_NSS] ⁽⁴⁾ / [USART1_TX] ⁽⁴⁾	I/O	-	<u>X</u>	х	х	HS	х	х	Port C5	LSE oscillator input / [SPI1 master/slave select] / [USART1 transmit]
45	31	31	PC6/OSC32_OUT/ [SPI1_SCKJ ⁽⁴⁾ / [USART1_RXJ ⁽⁴⁾	I/O	-	X	x	x	HS	x	Х	Port C6	LSE oscillator output / [SPI1 clock] / [USART1 receive]
46	-	-	PC7/LCD_SEG25 ⁽²⁾ / ADC1_IN3/COMP2_INM/ COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	х	Port C7	LCD segment 25 /ADC1_IN3/ Comparator negative input / Comparator 1 positive input

Address	Block	Register label Register name		Reset status			
0x00 5055 to 0x00 506F		F	Reserved area (27 bytes)				
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC			
0x00 5071		DMA1_GIR1	DMA1 global interrupt register 1	0x00			
0x00 5072 to 0x00 5074			Reserved area (3 bytes)				
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00			
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00			
0x00 5077	DMA1	DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00			
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52			
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00			
0x00 507A			Reserved area (1 byte)				
0x00 507B		DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00			
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00			
0x00 507D to 0x00 507E		Reserved area (2 bytes)					

			- · ·			
Table 9.	General I	hardware	register	map	(continued)	

Address	Block	Register label	Register name	Reset status			
0x00 50A9 to 0x00 50AF		F	Reserved area (7 bytes)				
0x00 50B0		RST_CR	Reset control register	0x00			
0x00 50B1	RST	RST_SR	Reset status register	0x01			
0x00 50B2	514/5	PWR_CSR1 Power control and status register 1		0x00			
0x00 50B3	- PWR	PWR_CSR2	Power control and status register 2	0x00			
0x00 50B4 to 0x00 50BF		R	Reserved area (12 bytes)				
0x00 50C0		CLK_DIVR	Clock master divider register	0x03			
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00			
0x00 50C2	_	CLK_ICKR	Internal clock control register	0x11			
0x00 50C3	_	CLK_PCKENR1	Peripheral clock gating register 1	0x00			
0x00 50C4	_	CLK_PCKENR2	Peripheral clock gating register 2	0x80			
0x00 50C5		CLK_CCOR	Configurable clock control register	0x00			
0x00 50C6		CLK_ECKR	External clock control register	0x00			
0x00 50C7		CLK_SCSR	System clock status register	0x01			
0x00 50C8	- CLK	CLK_SWR	System clock switch register	0x01			
0x00 50C9		CLK_SWCR	Clock switch control register	0bxxxx0000			
0x00 50CA		CLK_CSSR	Clock security system register	0x00			
0x00 50CB		CLK_CBEEPR	Clock BEEP register	0x00			
0x00 50CC		CLK_HSICALR	HSI calibration register	0xxx			
0x00 50CD		CLK_HSITRIMR	HSI clock calibration trimming register	0x00			
0x00 50CE		CLK_HSIUNLCKR	HSI unlock register	0x00			
0x00 50CF		CLK_REGCSR	Main regulator control status register	0bxx11100			
0x00 50D0 to 0x00 50D2		F	Reserved area (3 bytes)				
0x00 50D3		WWDG_CR	WWDG control register	0x7F			
0x00 50D4	WWDG	WWDG_WR	WWDR window register	0x7F			
0x00 50D5 to 00 50DF		R	eserved area (11 bytes)	1			
0x00 50E0	1	IWDG_KR	IWDG key register	0xXX			
0x00 50E1	IWDG	 IWDG_PR	IWDG prescaler register	0x00			
0x00 50E2	-	 IWDG_RLR	IWDG reload register	0xFF			

Table 0	Conoral	hardwara	register		(continued)	
Table 9.	General	naruware	register	map	(continued)	

	Table 13. Option byte description				
Option byte no.	Option description				
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031).				
OPT1	 UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC, memory write-protected. 0xFF: Page 0 to 254 reserved for the UBC, memory write-protected. Refer to User boot code section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL31xx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031). 				
OPT2	Reserved				
	 IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode 				
OPT3	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware				
	WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode				
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles				
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to <i>Table 33: LSE oscillator characteristics</i>				

Table 13. Option byte description

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

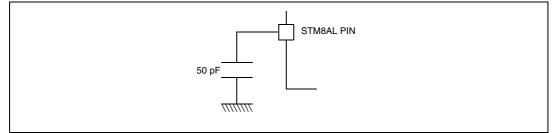
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC and DAC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

Figure 10. Pin loading conditions

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	
Ι _{ΙΟ}	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	mA
	Injected current on true open-drain pins (PC0 and PC1) $^{(1)}$	- 5/+0	
l	Injected current on five-volt tolerant (FT) pins (PA7 and PE0) $^{(1)}$	- 5/+0	
I _{INJ(PIN)}	Injected current on 3.6 V tolerant (TT) pins ⁽¹⁾	- 5/+0	
	Injected current on any other pin ⁽²⁾	- 5/+5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) $^{(3)}$	± 25	

Table 16. Current charac	teristics
--------------------------	-----------

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 15* for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 15* for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17.	Thermal	characteristics
-----------	---------	-----------------

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	C

Table 18. Operating lifetime (OLF)⁽¹⁾

Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100	-40 to 125 °C	Grade 1

1. For detailed mission profile analysis, please contact the local ST Sales Office.

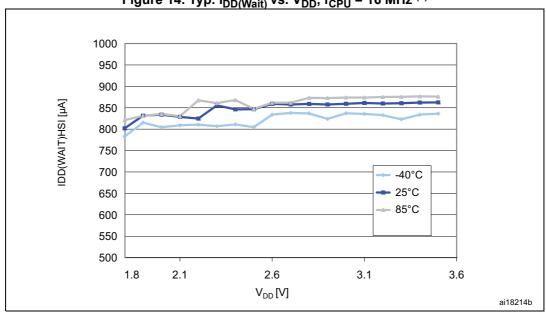


Figure 14. Typ. $I_{DD(Wait)}$ vs. V_{DD} , f_{CPU} = 16 MHz ⁽¹⁾

1. Typical current consumption measured with code executed from Flash memory

Table 23. Total current consumption and timing in low-power run mode)
at V _{DD} = 1.65 V to 3.6 V	

Symbol	Parameter	Conditions ⁽¹⁾				Max	Unit		
				T_A = -40 °C to 25 °C	5.10	5.40 ⁽²⁾			
		(at 38 kHz)			all peripherals OFF	T _A = 85 °C	6.80	11 ⁽³⁾	
	Supply current in Low power	· · · ·		T _A = 125 °C	13.40	20 ⁽³⁾	μA		
IDD(LPR)	run mode	LSE ⁽⁴⁾ external clock	clock OFF		T_A = -40 °C to 25 °C	5.25	5.60 ⁽²⁾	μΛ	
				clock	clock OFF	· ·	T _A = 85 °C	5.85	6.30 ⁽²⁾
		(32.768 kHz)		T _A = 125 °C	9.85	12.00 ⁽²⁾			

1. No floating I/Os.

2. Guaranteed by characterization results.

3. Tested at 85°C for temperature range A or 125°C for temperature range C.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 33.

Symbol	Parameter	Condition	Тур	Unit	
	Quere la compacta de la c		V _{DD} = 1.8 V	48	
I _{DD(RST)}	Supply current under external reset ⁽¹⁾	All pins are externally tied to V _{DD}	V _{DD} = 3 V	76	μA
			V _{DD} = 3.6 V	91	

Table 29. Current consumption under external reset

1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.

9.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	External clock source frequency		1 ⁽¹⁾	-	16 ⁽¹⁾	MHz
V _{HSEH}	OSC_IN input pin high level voltage	_	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	*	V _{SS}	-	0.3 x V _{DD}	V
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF
I _{LEAK_HSE}	OSC_IN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-	-	±500	nA

Table 30. HSE external clock characteristics

1. Guaranteed by design.

LSE external clock (LSEBYP=1 in CLK_ECKCR)

Subject to general operating conditions for V_{DD} and T_A .

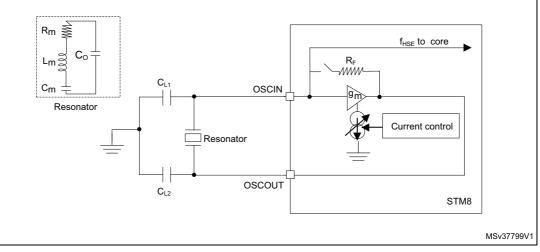
Table 31. LSE external clock characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	-	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	0.7 x V _{DD} ⁽¹⁾	-	V _{DD} ⁽¹⁾	V
V _{LSEL}	OSC32_IN input pin low level voltage		-	0.3 x V _{DD} ⁽¹⁾	
C _{in(LSE)}	OSC32_IN input capacitance	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-		±500	nA

1. Guaranteed by characterization results.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE}	High speed external oscillator frequency	-	1	-	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
C ⁽¹⁾	Recommended load capacitance (2)	-	-	20	-	pF
1		C = 20 pF, f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized) ⁽³⁾	mA
IDD(HSE)	HSE oscillator power consumption	C = 10 pF, f _{OSC} =16 MHz	-	-	2.5 (startup) 0.46 (stabilized) ⁽³⁾	
9 _m	Oscillator transconductance	-	3.5 ⁽³⁾	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	1	-	ms

1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Guaranteed by design.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 15. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

Symbol	Parameter	Min	Тур	Max.	Unit
T _{START} ⁽³⁾	Temperature sensor startup time	-	-	10 ⁽²⁾	
T _{S_TEMP}	ADC sampling time when reading the temperature sensor	-	5	10 ⁽²⁾	μs

Table 50. TS characteristics (continued)

 Tested in production at V_{DD} = 3 V ±10 mV. The 8 LSB of the V₁₂₅ ADC conversion result are stored in the TS_Factory_CONV_V125 byte.

2. Guaranteed by design.

3. Defined for ADC output reaching its final value $\pm 1/2$ LSB.

9.3.12 Comparator characteristics

In the following table, data are guaranteed by design, not tested in production, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	1.65	-	3.6 ⁽¹⁾	V	
T _A	Temperature range	-40	-	125 ⁽¹⁾	°C	
R _{400K}	R _{400K} value	300	400	500 ⁽¹⁾ kΩ		
R _{10K}	R _{10K} value	7.5	10	12.5 ⁽¹⁾		
V _{IN}	Comparator input voltage range 0.6 - V _{DE}		$V_{DDA}^{(1)}$	V		
V _{REFINT}	Internal reference voltage	1.202	1.224	1.242		
t _{START}	Startup time after enable -		7	10 ⁽¹⁾	116	
t _d	Propagation delay ⁽²⁾	-	3	10 ⁽¹⁾	μs	
V _{offset}	Comparator offset error	-	±3	±10 ⁽¹⁾	mV	
I _{CMP1}	Consumption ⁽³⁾	-	160	260 ⁽¹⁾	nA	

Table 51. Comparator 1 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

9.3.15 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter Conditions			Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance			3B
V _{EFTB}		V_{DD} = 3.3 V, T _A = +25 °C, f _{CPU} = 16 MHz, Using HSI		
		conforms to IEC 61000	Using HSE	2B

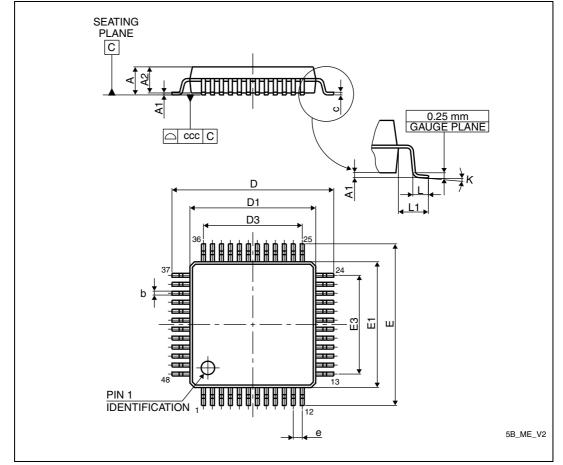
Table 61. EMS data

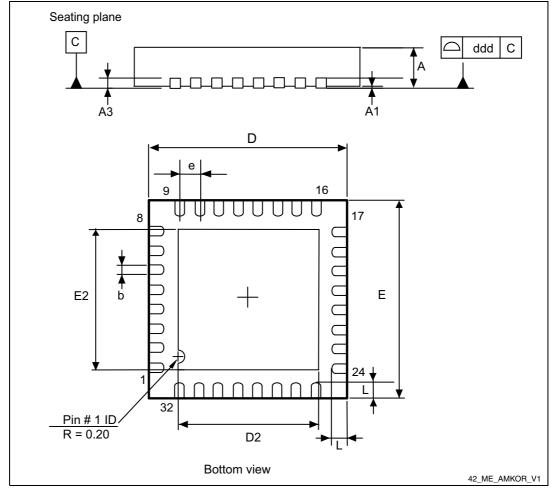
10 Package information

10.1 ECOPACK

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10.2 LQFP48 package information




Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

10.4 VFQFPN32 package information

Figure 47. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

2. There is an exposed die pad on the underside of the VQFPN package. It is recommended to connect and solder this backside pad to the PCB ground.

Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max
А	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.200	-	-	0.0079	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.050	-	-	0.0020

Table 67. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quadflat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

12 Revision history

Date	Revision	Changes	
04-Jan-2012	1	Initial release	
20-Dec-2012	2	Added consumption values when run from Flash or from RAM. Added 8k Flash devices STM8AL3138 and STM8AL3136 to <i>Table 1:</i> <i>Device summary</i> , <i>Table 2: Medium-density STM8AL313x/4x/6x and</i> <i>STM8AL3L4x/6x low-power device features and peripheral counts.</i> and <i>Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x</i> <i>ordering information scheme.</i> Added footnotes stating that power consumption has not been tested to <i>Table 21</i> and <i>Table 22</i> for HSE, and to <i>Table 23</i> and <i>Table 24</i> for LSE.	
		Updated max LSI amperage values in <i>Table 23</i> and <i>Table 24</i> for LSL. Replaced <i>Table 38: Flash program memory</i> and <i>Table 39: Data memory</i> .	
		Added a production test footnote to <i>Table 50: TS characteristics</i> . Updated voltage values in <i>Table 50: TS characteristics</i> , and current values in <i>Table 51: Comparator 1 characteristics</i> and <i>Table 52: Comparator 2 characteristics</i> .	
		Removed Figure 13: Typ. $I_{DD(LPR)}$ vs. V_{DD} (LSI clock source) and Figure 14: Typ. $I_{DD(LPW)}$ vs. V_{DD} (LSI clock source).	
03-Jun-2013	3		
14-Jun-2013	4	Updated max LSI measures in <i>Table 23: Total current consumption and timing in low-power run mode at VDD</i> = 1.65 V to 3.6 V and <i>Table 24: Total current consumption in low-power wait mode at VDD</i> = 1.65 V to 3.6 V	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID18474 Rev 8