

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	41
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al3l48tay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 48.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad	
	flat package recommended footprint	116
Figure 49.	VFQFPN32 marking example (package top view)	117
Figure 50.	Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x	
-	ordering information scheme	119

3.3 Reset and supply management

3.3.1 Power supply scheme

The STM8AL313x/4x/6x and STM8AL3L4x/6x require a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}; V_{DD1} = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD1} pins, the corresponding ground pin is V_{SS1}.
- V_{SSA}; V_{DDA} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{SS2}; V_{DD2} = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. V_{DD2} and V_{SS2} must be connected to V_{DD1} and V_{SS1}, respectively.
- V_{REF+}; V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.
- V_{REF+} (for DAC): external voltage reference for DAC must be provided externally through V_{REF+}.

3.3.2 Power supply supervisor

The STM8AL313x/4x/6x and STM8AL3L4x/6x have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the V_{DD} min value at power down is 1.65 V).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The STM8AL313x/4x/6x and STM8AL3L4x/6x feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.13.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation.

3.14 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.14.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.14.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

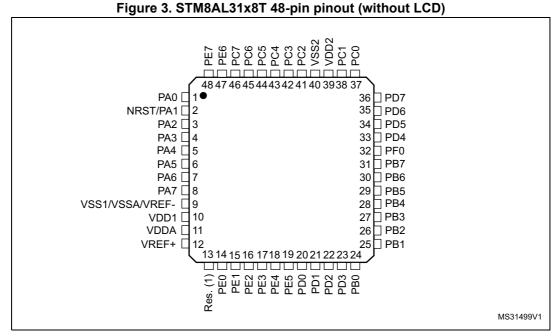
3.15 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

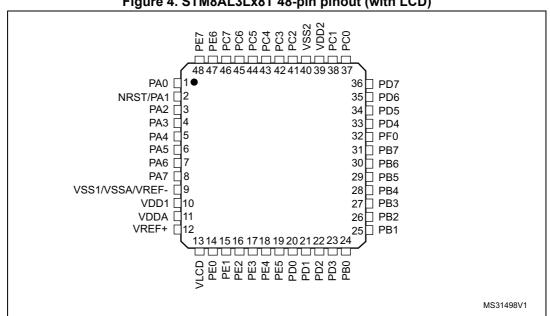
3.16 Communication interfaces

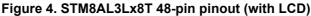
3.16.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.

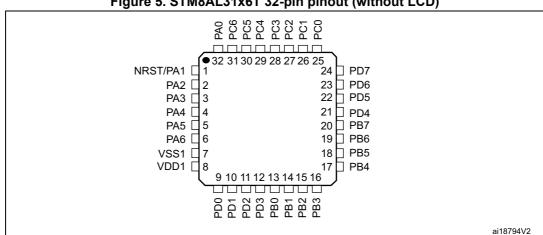

- Maximum speed: 8 Mbit/s (f_{SYSCLK}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 can be served by the DMA1 Controller.

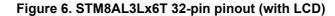




Pin description 4



1. Reserved. Must be tied to V_{DD} .



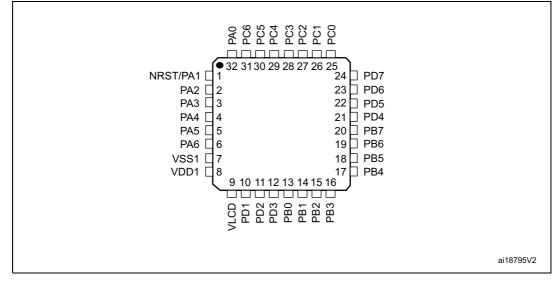


Figure 5. STM8AL31x6T 32-pin pinout (without LCD)

Pin	num	nber				I	nput		Ou	tput			
LQFP48	VFQFPN32	LQFP32	Pin name	Type	I/O level	floating	wpu	Ext. interrupt	High sink/source	QD	ЬР	Main function (after reset)	Default alternate function
-	5	5	PA5/TIM3_BKIN/ <i>[TIM3_ETR]⁽⁴⁾/</i> LCD_COM1 ⁽²⁾ /ADC1_IN1 /COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	х	x	Port A5	Timer 3 - break input / [<i>Timer 3 - trigger</i>] / LCD_COM 1 / ADC1 input 1 / Comparator 1 positive input
7	6	6	PA6/ <i>[ADC1_TRIG]⁽⁴⁾/</i> LCD_COM2 ⁽²⁾ /ADC1_IN0 /COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	х	х	Port A6	[ADC1 - trigger] / LCD_COM2 / ADC1 input 0 / Comparator 1 positive input
8	-	-	PA7/LCD_SEG0 ⁽²⁾⁽⁵⁾	I/O	FT	<u>X</u>	Х	Х	HS	Х	Х	Port A7	LCD segment 0
24	13	13	PB0 ⁽⁶⁾ /TIM2_CH1/ LCD_SEG10 ⁽²⁾ / ADC1_IN18/COMP1_INP	I/O	TT ⁽³⁾	<u>X</u> ⁽⁶⁾	X ⁽⁶⁾	x	HS	х	х	Port B0	Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18 / Comparator 1 positive input
25	14	14	PB1/TIM3_CH1/ LCD_SEG11 ^{(2)/} ADC1_IN17/COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	х	х	Port B1	Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17 / Comparator 1 positive input
26	15	15	PB2/ TIM2_CH2/ LCD_SEG12 ⁽²⁾ / ADC1_IN16/COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B2	Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16/ Comparator 1 positive input
27	-	-	PB3/TIM2_ETR/ LCD_SEG13 ⁽²⁾ / ADC1_IN15/COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B3	Timer 2 - trigger / LCD segment 13 /ADC1_IN15 / Comparator 1 positive input
-	16	16	PB3/ <i>[TIM2_ETR]</i> ⁽⁴⁾ / TIM1_CH2N/LCD_SEG13 ⁽²⁾ /ADC1_IN15/ COMP1_INP	I/O	TT ⁽³⁾	X	x	x	HS	x	x	Port B3	[Timer 2 - trigger] / Timer 1 inverted channel 2 / LCD segment 13 / ADC1_IN15 / Comparator 1 positive input

Table 9. General hardware register map (continued)AddressBlockRegister labelRegister nameReset status							
Address	Block	Register label	Register name				
0x00 515C		RTC_ALRMAR1	Alarm A register 1	0x00			
0x00 515D	DTO	RTC_ALRMAR2	Alarm A register 2	0x00			
0x00 515E	RTC	RTC_ALRMAR3	Alarm A register 3	0x00			
0x00 515F		RTC_ALRMAR4	Alarm A register 4	0x00			
0x00 5160 to 0x00 51FF		Re	eserved area (160 bytes)				
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00			
0x00 5201		SPI1_CR2	SPI1 control register 2	0x00			
0x00 5202		SPI1_ICR	SPI1 interrupt control register	0x00			
0x00 5203	SPI1	SPI1_SR	SPI1 status register	0x02			
0x00 5204	5P11	SPI1_DR	SPI1 data register	0x00			
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07			
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00			
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00			
0x00 5208		<u> </u>					
to 0x00 520F		R	leserved area (8 bytes)				
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00			
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00			
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00			
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00			
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00			
0x00 5215			Reserved (1 byte)				
0x00 5216		I2C1_DR	I2C1 data register	0x00			
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00			
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00			
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0x			
0x00 521A	1	I2C1_ITR	I2C1 interrupt control register	0x00			
0x00 521B	1	I2C1_CCRL	I2C1 clock control register low	0x00			
0x00 521C	1	I2C1_CCRH	I2C1 clock control register high	0x00			
0x00 521D	1	I2C1_TRISER	I2C1 TRISE register	0x02			
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00			
0x00 521F to 0x00 522F		R	eserved area (17 bytes)				

Table 9. General hardware register map (continued)

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address			
18	COMP1/ COMP2/ ADC1	COMP1 interrupt/ COMP2 interrupt ADC1 end of conversion/ analog watchdog/ overrun interrupt	Yes	Yes	Yes	Yes	0x00 8050			
19	TIM2	TIM2 update/overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 8054			
20	TIM2	TIM2 capture/compare interrupt	-	-	Yes	Yes	0x00 8058			
21	TIM3	TIM3 update /overflow/ trigger/break interrupt	-	-	Yes	Yes	0x00 805C			
22	TIM3	TIM3 capture/compare interrupt	-	-	Yes	Yes	0x00 8060			
23	TIM1	TIM1 update /overflow/ trigger/COM	-	-	-	Yes	0x00 8064			
24	TIM1	TIM1 capture/compare interrupt	-	-	-	Yes	0x00 8068			
25	TIM4	TIM4 update /overflow/ trigger interrupt	-	-	Yes	Yes	0x00 806C			
26	SPI1	SPI TX buffer empty/RX buffer not empty/error/wakeup interrupt	Yes	Yes	Yes	Yes	0x00 8070			
27	USART1	USART1 transmit data register empty/ transmission complete interrupt	-	-	Yes	Yes	0x00 8074			
28	USART 1	USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt	-	-	Yes	Yes	0x00 8078			
29	I ² C1	I ² C1 interrupt ⁽³⁾	Yes	Yes	Yes	Yes	0x00 807C			

Table 11. Interrupt mapping (continued)

 The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

 The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).

3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

	Table 13. Option byte description					
Option byte no.	Option description					
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031).					
OPT1	 UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC, memory write-protected. 0xFF: Page 0 to 254 reserved for the UBC, memory write-protected. Refer to User boot code section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL31xx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031). 					
OPT2	Reserved					
	 IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode 					
OPT3	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware					
	WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode					
	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles					
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to <i>Table 33: LSE oscillator characteristics</i>					

Table 13. Option byte description

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and T_A .

9.3.1 General operating conditions

	1451		operating conditions	,		1
Symbol	Parameter	C	onditions	Min	Max	Unit
fsysclk ⁽¹⁾	System clock frequency	1.65 V	≤ V _{DD} < 3.6 V	0	16	MHz
V _{DD}	Standard operating voltage		-		3.6	V
V _{DDA}	Analog operating	ADC and DAC not used	Must be at the same	1.65 ⁽²⁾	3.6	V
	voltage	ADC and DAC used	potential as V_{DD}	1.8	3.6	V
	Power dissipation at T_A = 85 °C for suffix A devices	l	-	288		
		l	-	288		
P _D ⁽³⁾		VF	-	322		
PD	Power dissipation at T _A = 125 °C for suffix C	l	-	77	mW	
		l	_	85		
	devices	VF	-	80		
–	T	1.65 V ≤ V _{DD} <	-40	85	°C	
T _A	Temperature range	1.65 V ≤ V _{DD} <	-40	125		
т	Junction temperature		s ≤ T _A < 85 °C uffix version)	-40	105	- °C
Т _Ј	range		≤ T _A < 125 °C ıffix version)	-40	130	

Table 19. General operating conditions

1. f_{SYSCLK} = f_{CPU}

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled

3. To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

9.3.2 Embedded reset and power control block characteristics

Table 20. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V _{DD} rise time rate	BOR detector enabled	0 ⁽¹⁾	-	_∞ (1)	μs/V
t _{VDD}	V _{DD} fall time rate	BOR detector enabled	20 ⁽¹⁾	-	_∞ (1)	μ3/ ν
t _{TEMP}	Reset release delay	V_{DD} rising	-	3	-	ms

Symbol	Parameter		Conditions ⁽¹⁾		Тур	Max	Unit
				f _{CPU} = 125 kHz	0.38	0.55 ⁽³⁾	
				f _{CPU} = 1 MHz	0.40	0.60 ⁽³⁾	
			HSI	f _{CPU} = 4 MHz	0.50	0.65 ⁽³⁾	
				f _{CPU} = 8 MHz	0.60	0.75 ⁽³⁾	
		CPU not clocked, all peripherals OFF, code executed from Flash,		f _{CPU} = 16 MHz	0.80	0.90	
	Cumplu		HSE ⁽⁴⁾ external clock	f _{CPU} = 125 kHz	0.05	0.10 ⁽³⁾	
I _{DD(Wait)}	Supply current in Wait mode			f _{CPU} = 1 MHz	0.10	0.20 ⁽³⁾	mA
				f _{CPU} = 4 MHz	0.25	0.45 ⁽³⁾	
		V _{DD} from 1.65 V to 3.6 V	(f _{CPU} =HSE)	f _{CPU} = 8 MHz	0.50	0.65 ⁽³⁾	
				f _{CPU} = 16 MHz	1.00	1.20 ⁽³⁾	
			LSI	$f_{CPU} = f_{LSI}$	0.05	0.10 ⁽³⁾	
			LSE ⁽⁵⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.05	0.08 ⁽³⁾	

Table 22. Total current consumption in Wait mode (continued)	Table 22. Tota	current consumption	in Wait mode	(continued)
--	----------------	---------------------	--------------	-------------

1. All peripherals OFF, V_DD from 1.65 V to 3.6 V, HSI internal RC osc., f_{CPU} = f_{SYSCLK}

2. Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

3. Guaranteed by characterization results.

Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to *Table 32*.

Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD HSE}) must be added. Refer to *Table 33*.

68/123

Symbol	Parameter	Conditions ⁽¹⁾				Max ⁽²⁾	Unit
				T_A = -40 °C to 25 °C	0.50	1.20	
I _{DD(AH)}			LCD OFF ⁽⁸⁾	T _A = 85 °C	0.90	2.10	
				T _A = 125 °C	4.80	11.00	
			LCD ON	T_A = -40 °C to 25 °C	0.85	1.90	
			(static duty/ external	T _A = 85 °C	1.30	3.20	
	Supply current in	LSE external clock	V _{LCD}) ⁽⁴⁾	T _A = 125 °C	5.00	12.00	
	Active-halt mode	(32.768 kHz) (7)	LCD ON (1/4 duty/ external V _{LCD}) ⁽⁵⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.50	2.50	- μΑ - -
				T _A = 85 °C	1.80	4.20	
				T _A = 125 °C	5.70	14.00	
			LCD ON (1/4 duty/ internal V _{LCD}) ⁽⁶⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	3.40	7.60	
				T _A = 85 °C	3.90	9.20	
				T _A = 125 °C	6.30	15.20	
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)	-	-	-	2.40	-	mA
t _{WU_HSI(AH)} ⁽⁹⁾ (10)	Wakeup time from Active-halt mode to Run mode (using HSI)		-	·	4.70	7.00	μs
t _{WU_LSI(AH)} ⁽⁹⁾ (10)	Wakeup time from Active-halt mode to Run mode (using LSI)		_		150.0	-	μο

Table 25. Total current consumption and timing in active-halt mode at V_{DD} = 1.65 V to 3.6 V (continued)

1. No floating I/O, unless otherwise specified.

2. Guaranteed by characterization results.

3. RTC enabled. Clock source = LSI.

4. RTC enabled, LCD enabled with external V_{LCD} = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.

5. RTC enabled, LCD enabled with external V_{LCD}, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

LCD enabled with internal LCD booster V_{LCD} = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 33.

8. RTC enabled. Clock source = LSE.

 Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU}.

10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.

Current consumption of on-chip peripherals

Symbol	Parameter		Typ. V _{DD} = 3.0 V	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾		13	
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾		8	
I _{DD(TIM3)}	TIM3 supply current ⁽¹⁾		8	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾		3	
I _{DD(USART1)}	USART1 supply current (2)		6	
I _{DD(SPI1)}	SPI1 supply current ⁽²⁾		3	μΑ/MHz
I _{DD(I2C1)}	I ² C1 supply current ⁽²⁾		5	
I _{DD(DMA1)}	DMA1 supply current ⁽²⁾		3	
I _{DD(WWDG)}	WWDG supply current ⁽²⁾	2		
I _{DD(ALL)}	Peripherals ON ⁽³⁾	44		
I _{DD(ADC1)}	ADC1 supply current ⁽⁴⁾		1500	
I _{DD(DAC)}	DAC supply current ⁽⁵⁾		370	
I _{DD(COMP1)}	Comparator 1 supply current ⁽⁶⁾		0.160	
I _{DD(COMP2)}	Comparator 2 supply current ⁽⁶⁾	Slow mode	2	
'DD(COMP2)		Fast mode	5	
I _{DD(PVD/BOR)}	Power voltage detector and brownout Reset unit supply current ⁽⁷⁾		2.6	μΑ
I _{DD(BOR)}	Brownout Reset unit supply current ⁽⁷⁾		2.4	
	Independent watchdog supply current	including LSI supply current	0.45	
I _{DD} (IDWDG)		excluding LSI supply current	0.05	

Table 28. Peripheral current consumption

1. Data based on a differential I_{DD} measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.

3. Peripherals listed above the I_{DD(ALL)} parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.

4. Data based on a differential I_{DD} measurement between ADC in reset configuration and continuous ADC conversion.

 Data based on a differential I_{DD} measurement between DAC in reset configuration and continuous DAC conversion of V_{DD} /2. Floating DAC output.

Data based on a differential I_{DD} measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded.

7. Including supply current of internal reference voltage.

Output driving current

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified.

l/O Type	Symbol	Parameter	Conditions	Min	Мах	Unit
High sink		⁽¹⁾ Output low level voltage for an I/O pin	I _{IO} = +2 mA, V _{DD} = 3.0 V	-	0.45	
	V _{OL} ⁽¹⁾		I _{IO} = +2 mA, V _{DD} = 1.8 V	-	0.45	V
			I _{IO} = +10 mA, V _{DD} = 3.0 V	-	0.7	
		Output high level voltage for an I/O pin	I _{IO} = -2 mA, V _{DD} = 3.0 V	V _{DD} -0.45	-	
	V _{OH} ⁽²⁾		I _{IO} = -1 mA, V _{DD} = 1.8 V	V _{DD} -0.45	-	V
			I _{IO} = -10 mA, V _{DD} = 3.0 V	V _{DD} -0.7	-	

Table 42.	Output driving	current (h	igh sink ports)
	e aipat airring	, ean en (·9·· •···· p•···•

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

l/O Type	Symbol	Parameter	Conditions	Min	Max	Unit
Open drain A ⁽¹⁾		I _{IO} = +3 mA, V _{DD} = 3.0 V	-	0.45	V	
	Output low level voltage for an I/O pin	I _{IO} = +1 mA, V _{DD} = 1.8 V	-	0.45	V	

Table 43. Output driving current (true open drain ports)

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

I/О Туре	Symbol	Parameter	Conditions	Min	Max	Unit
IR	V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA, V _{DD} = 2.0 V	-	0.45	V

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

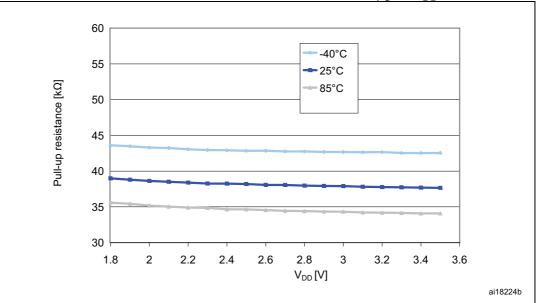

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage	-	$V_{SS}^{(1)}$	-	0.8 ⁽¹⁾	
V _{IH(NRST)}	NRST input high level voltage	-	1.4 ⁽¹⁾	-	V _{DD} ⁽¹⁾	
V _{OL(NRST)}	NRST output low level	$I_{OL} = 2 \text{ mA}$ for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4 ⁽¹⁾	V
VOL(NRST)	voltage	I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis	-	10%V _{DD} ⁽²⁾⁽³⁾	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30 ⁽¹⁾	45	60 ⁽¹⁾	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	50 ⁽³⁾	
V _{NF(NRST)}	NRST input not filtered pulse	-	300 ⁽³⁾	-	-	ns

Table 45.	NRST	pin	characteristics
	111.01	PIII	onunuotonistios

1. Guaranteed by characterization results.

2. 200 mV min.

3. Guaranteed by design.

9.3.8 Communication interfaces

SPI1 - Serial peripheral interface

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under ambient temperature, f_{SYSCLK} frequency and V_{DD} supply voltage conditions summarized in *Section 9.3.1*. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI1 clock frequency	Master mode	0	8	MHz
1/t _{c(SCK)}	SFTT Clock frequency	Slave mode	0	8	
t _{r(SCK)} t _{f(SCK)}	SPI1 clock rise and fall time	Capacitive load: C = 30 pF	-	30	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 x 1/f _{SYSCLK}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	80	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f _{SCK} = 4 MHz	105	145	
t _{su(MI)} (2) t _{su(SI)} (2)	Data input setup time	Master mode	30	-	
t _{su(SI)} ⁽²⁾		Slave mode	3	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	15	-	
t _{h(MI)} (2) t _{h(SI)} (2)	Data input hold time	Slave mode	0	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3x 1/f _{SYSCLK}	
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	30	-	
t _{v(SO)} (2)	Data output valid time	Slave mode (after enable edge)	-	60	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	20	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽²⁾	- Data output hold time	Master mode (after enable edge)	1	-	

Table 46. SPI1	characteristics
----------------	-----------------

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.

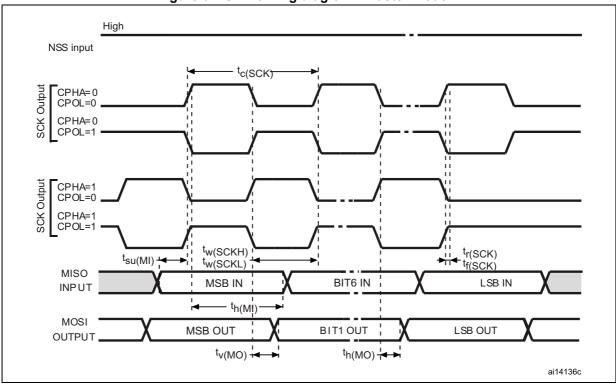


Figure 34. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD} .

I²C - Inter IC control interface

Subject to general operating conditions for V_{DD} , f_{SYSCLK} , and T_A unless otherwise specified.

The STM8AL I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	116
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs

Table 47. I²C characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
I _{VREF}	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	
	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	μA
I _{VDDA}	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
T _A	Temperature range	-	-40	-	125	°C
RL	Resistive load ^{(1) (2)}	DACOUT buffer ON	5	-	-	kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	K12
CL	Capacitive load ⁽³⁾	-	-	-	50	pF
DAC_OUT	DAC_OUT voltage ⁽⁴⁾	DACOUT buffer ON	0.2	-	V _{DDA} -0.2	v
DAC_001		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	v
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-	1	Msps
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	R _L ≥ 5 kΩ, C _L ≤ 50 pF	-	-60	-35	dB

1. Resistive load between DACOUT and GNDA.

2. Output on PF0 (48-pin package only).

3. Capacitive load at DACOUT pin.

4. It gives the output excursion of the DAC.

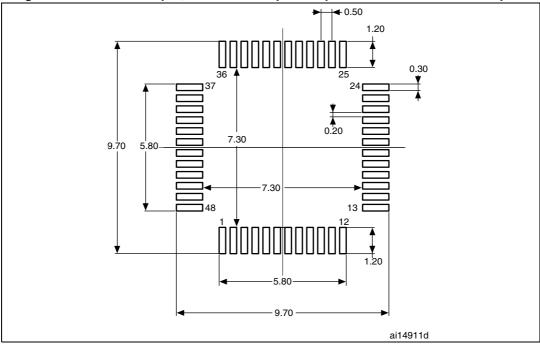


Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

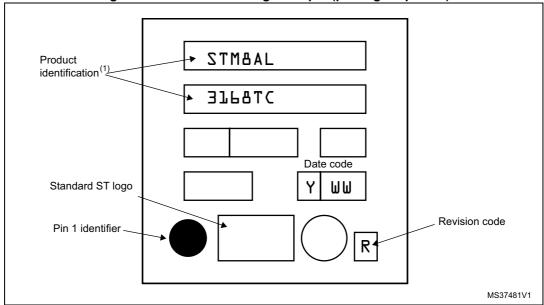
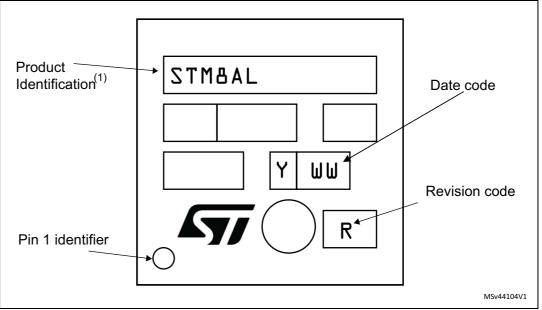
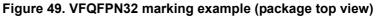


Figure 43. LQFP48 marking example (package top view)


 Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.


 $\mathbf{\nabla}$

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

