
Microchip Technology - AT91SAM9G20B-CU Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor ARM926EJ-S

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 400MHz

Co-Processors/DSP -

RAM Controllers SDRAM, SRAM

Graphics Acceleration No

Display & Interface Controllers -

Ethernet 10/100Mbps

SATA -

USB USB 2.0 (2)

Voltage - I/O 1.8V, 3.3V

Operating Temperature -40°C ~ 85°C (TA)

Security Features -

Package / Case 217-LFBGA

Supplier Device Package 217-LFBGA (15x15)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91sam9g20b-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91sam9g20b-cu-4469496
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

SAM9G20
8.5 Power Management Controller

• Provides:
- the Processor Clock PCK
- the Master Clock MCK, in particular to the Matrix and the memory interfaces.The MCK divider can be 1,2,4,6
- the USB Device Clock UDPCK
- independent peripheral clocks, typically at the frequency of MCK
- 2 programmable clock outputs: PCK0, PCK1

• Five flexible operating modes:
- Normal Mode, processor and peripherals running at a programmable frequency
- Idle Mode, processor stopped waiting for an interrupt
- Slow Clock Mode, processor and peripherals running at low frequency
- Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency, processor stopped waiting for an interrupt
- Backup Mode, Main Power Supplies off, VDDBU powered by a battery

Figure 8-3: SAM9G20 Power Management Controller Block Diagram

8.6 Periodic Interval Timer

• Includes a 20-bit Periodic Counter, with less than 1 µs accuracy
• Includes a 12-bit Interval Overlay Counter
• Real Time OS or Linux®/Windows CE® compliant tick generator

8.7 Watchdog Timer

• 16-bit key-protected only-once-Programmable Counter
• Windowed, prevents the processor being in a dead-lock on the watchdog access

MCK

periph_clk[..]

int

SLCK
MAINCK
PLLACK

Prescaler
/1,/2,/4,.../64

PCK
Processor

Clock
Controller

 Idle ModeMaster Clock Controller

Peripherals
Clock Controller

ON/OFF

PLLBCK

Divider
/1,/2,/4,/6

USB Clock Controller

SLCK
MAINCK
PLLACK

Prescaler
/1,/2,/4,...,/64

Programmable Clock Controller

PLLBCK Divider
/1,/2,/4

pck[..]

PLLBCK

UDPCK
ON/OFF

ON/OFF

/1,/2
Divider
 2017 Microchip Technology Inc. DS60001516A-page 29

SAM9G20
Figure 20-6: Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

20.7.2.3 Signal Multiplexing

Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at the external bus interface, control signals
at the SMC interface are multiplexed. Table 20-3 shows signal multiplexing depending on the data bus width and the byte access type.

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused. When Byte Select Option is selected, NWR1
to NWR3 are unused. When Byte Write option is selected, NBS0 to NBS3 are unused.

SMC A1

NWR0

NRD

NCS[3]

Write Enable

Read Enable

Memory Enable

NWR1

Write Enable

Read Enable

Memory Enable

D[7:0] D[7:0]

D[15:8]

D[15:8]

A[24:2]

A[23:1]

A[23:1]

A[0]

A[0]
DS60001516A-page 154  2017 Microchip Technology Inc.

SAM9G20
Figure 22-2: Parity Generation for 512/1024/2048/4096 8-bit Words

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2n

 for i =0 to n
 begin
 for (j = 0 to page_size_byte)
 begin
 if(j[i] ==1)
 P[2i+3]=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
 bit2(+)bit1(+)bit0(+)P[2i+3]
 else
 P[2i+3]’=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
 bit2(+)bit1(+)bit0(+)P[2i+3]'
 end
 end

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

P16

P16'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P8

P8'

P16

P16'

P32

P32

1st byte

P32
2nd byte

3rd byte

4 th byte

 Page size th byte

 (page size -1)th byte

PX

PX'

Page size = 512 Px = 2048
Page size = 1024 Px = 4096
Page size = 2048 Px = 8192
Page size = 4096 Px = 16384

 (page size -2)th byte

 (page size -3)th byte

P1 P1' P1'P1 P1 P1' P1'P1

P2 P2' P2 P2'

P4 P4'

P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
P2=bit7(+)bit6(+)bit3(+)bit2(+)P2
P4=bit7(+)bit6(+)bit5(+)bit4(+)P4
P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4'
 2017 Microchip Technology Inc. DS60001516A-page 211

SAM9G20
22.5.2 ECC Parity Register 1

Name:ECC_PR1

Access:Read-only

NPARITY

Parity N

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

NPARITY

7 6 5 4 3 2 1 0

NPARITY
DS60001516A-page 224  2017 Microchip Technology Inc.

SAM9G20
22.7.10 ECC Parity Register 9

Name:ECC_PR9

Access:Read-only

Once the entire main area of a page is written with data, the register content must be stored at any free location of the

spare area

BITADDR9: corrupted bit address in the page between the 2304th and the 2559th bytes

During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If multiple errors
were detected, this value is meaningless.

WORDADDR9: corrupted word address in the page between the 2304th and the 2559th bytes

During a page read, this value contains the word address (8-bit word) where an error occurred, if a single error was detected. If multiple
errors were detected, this value is meaningless

NPARITY9

Parity N

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

0 NPARITY9

15 14 13 12 11 10 9 8

NPARITY9 0 WORDADDR9

7 6 5 4 3 2 1 0

WORDADDR9 BITADDR9
DS60001516A-page 242  2017 Microchip Technology Inc.

SAM9G20
23.4 Peripheral DMA Controller (PDC) User Interface

Note 1: PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI, etc.)

Table 23-1: Register Mapping

Offset Register Name(1) Access Reset

0x100 Receive Pointer Register PERIPH_RPR Read/Write 0

0x104 Receive Counter Register PERIPH_RCR Read/Write 0

0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0

0x10C Transmit Counter Register PERIPH_TCR Read/Write 0

0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0

0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0

0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0

0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0

0x120 Transfer Control Register PERIPH_PTCR Write-only –

0x124 Transfer Status Register PERIPH_PTSR Read-only 0
 2017 Microchip Technology Inc. DS60001516A-page 253

SAM9G20
23.4.5 Receive Next Pointer Register

Name:PERIPH_RNPR

Access:Read/Write

RXNPTR: Receive Next Pointer

RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR
DS60001516A-page 258  2017 Microchip Technology Inc.

SAM9G20
Once the PMC_PLLB register has been written, the user must wait for the LOCKB bit to be set in the PMC_SR. This can be done
either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to LOCKB has been enabled
in the PMC_IER. All parameters in CKGR_PLLBR can be programmed in a single write operation. If at some stage one of the fol-
lowing parameters, MULB, DIVB is modified, LOCKB bit will go low to indicate that PLL B is not ready yet. When PLL B is locked,
LOCKB will be set again. The user is constrained to wait for LOCKB bit to be set before using the PLL A output clock.

The USBDIV field is used to control the additional divider by 1, 2 or 4, which generates the USB clock(s).

Code Example:

write_register(CKGR_PLLBR,0x20030602)

PLL B input clock is main clock divided by 2. PLL B output clock is PLL B input clock multiplied by 4. Once CKGR_PLLBR has been
written, LOCKB bit will be set after six slow clock cycles.

5. Selection of Master Clock and Processor Clock

The Master Clock and the Processor Clock are configurable via the PMC_MCKR.

The CSS field is used to select the clock source of the Master Clock and Processor Clock dividers. By default, the selected clock
source is slow clock.

The PRES field is used to control the Master/Processor Clock prescaler. The user can choose between different values (1, 2, 4, 8,
16, 32, 64). Prescaler output is the selected clock source divided by PRES parameter. By default, PRES parameter is set to 1 which
means that the input clock of the Master Clock and Processor Clock dividers is equal to slow clock.

The MDIV field is used to control the Master Clock divider. It is possible to choose between different values (0, 1, 2, 3). The Master
Clock output is Master/Processor Clock Prescaler output divided by 1, 2, 4 or 6, depending on the value programmed in MDIV.

The PDIV field is used to control the Processor Clock divider. It is possible to choose between different values (0, 1). The Processor
Clock output is Master/Processor Clock Prescaler output divided by 1 or 2, depending on the value programmed in PDIV.

By default, MDIV and PDIV are set to 0, which indicates that Processor Clock is equal to the Master Clock.

Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR. This can be done either
by polling the status register or by waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been enabled
in the PMC_IER.

The PMC_MCKR must not be programmed in a single write operation. The preferred programming sequence for the PMC_MCKR
is as follows:

• If a new value for CSS field corresponds to PLL Clock,
- Program the PRES field in the PMC_MCKR.
- Wait for the MCKRDY bit to be set in the PMC_SR.
- Program the CSS field in the PMC_MCKR.
- Wait for the MCKRDY bit to be set in the PMC_SR.

• If a new value for CSS field corresponds to Main Clock or Slow Clock,
- Program the CSS field in the PMC_MCKR.
- Wait for the MCKRDY bit to be set in the PMC_SR.
- Program the PRES field in the PMC_MCKR.
- Wait for the MCKRDY bit to be set in the PMC_SR.

If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY bit will go low to indicate that the Master
Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY bit to be set again before using the Master and
Processor Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR (CKGR_PLLAR
or CKGR_PLLBR), the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB)
goes high and MCKRDY is set. While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock.
While PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further information, see Sec-
tion 25.8.2 “Clock Switching Waveforms”.

Code Example:

write_register(PMC_MCKR,0x00000001)

wait (MCKRDY=1)

write_register(PMC_MCKR,0x00000011)
DS60001516A-page 270  2017 Microchip Technology Inc.

SAM9G20
25.9.3 PMC System Clock Status Register

Name:PMC_SCSR

Access:Read-only

PCK: Processor Clock Status

0: The Processor clock is disabled.

1: The Processor clock is enabled.

UHP: USB Host Port Clock Status

0: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is disabled.

1: The 12 and 48 MHz clock (UHPCK) of the USB Host Port is enabled.

UDP: USB Device Port Clock Status

0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

PCKx: Programmable Clock x Output Status

0: The corresponding Programmable Clock output is disabled.

1: The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – PCK1 PCK0

7 6 5 4 3 2 1 0

UDP UHP – – – – – PCK
 2017 Microchip Technology Inc. DS60001516A-page 279

SAM9G20
29.6.3.1 Master Mode Block Diagram

Figure 29-5: Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSR0..3

CPOL
NCPHA

BITS

MCK Baud Rate Generator

SPI_CSR0..3

SCBR

NPCS3

NPCS0

NPCS2

NPCS1

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSR0..3

CSAAT

PCSDEC

MODFDIS

MSTR
DS60001516A-page 390  2017 Microchip Technology Inc.

SAM9G20
Figure 30-15: TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No
DS60001516A-page 416  2017 Microchip Technology Inc.

SAM9G20
Figure 30-17: TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No
DS60001516A-page 418  2017 Microchip Technology Inc.

SAM9G20
The baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with an error higher than 5%.

31.6.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output frequency changes by only integer multiples
of the reference frequency. An approach to this problem is to integrate a fractional N clock generator that has a high resolution. The gen-
erator architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock. This fractional part is programmed
with the FP field in the Baud Rate Generator Register (US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one
eighth of the clock divider. This feature is only available when using USART normal mode. The fractional Baud Rate is calculated using
the following formula:

The modified architecture is presented in Figure 31-4.

Figure 31-4: Fractional Baud Rate Generator

25 000 000 38 400 40.69 40 38 109.76 0.76%

32 000 000 38 400 52.08 52 38 461.54 0.16%

32 768 000 38 400 53.33 53 38 641.51 0.63%

33 000 000 38 400 53.71 54 38 194.44 0.54%

40 000 000 38 400 65.10 65 38 461.54 0.16%

50 000 000 38 400 81.38 81 38 580.25 0.47%

Table 31-2: Baud Rate Example (OVER = 0) (Continued)

Source Clock
(MHz)

Expected Baud Rate
(bit/s) Calculation Result CD

Actual Baud Rate
(bit/s) Error

BaudRate MCK CD 16×⁄=

Error 1
ExpectedBaudRate

ActualBaudRate
--- 
 –=

Baudrate
SelectedClock

8 2 Over–() CD
FP
8

-------+ 
 

 
 
--=

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDIglitch-free
 logic

Modulus
Control

FP

FP
DS60001516A-page 450  2017 Microchip Technology Inc.

SAM9G20
Figure 31-25: Framing Error Status

31.6.3.14 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the TXD line low during at
least one complete character. It appears the same as a 0x00 character sent with the parity and the stop bits at 0. However, the transmitter
holds the TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This can be performed at any time, either while
the transmitter is empty (no character in either the Shift Register or in US_THR) or when a character is being transmitted. If a break is
requested while a character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is requested before the end of the minimum
break duration (one character, including start, data, parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK commands are taken into account only if
the TXRDY bit in US_CSR is at 1 and the start of the break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All STPBRK commands requested with-
out a previous STTBRK command are ignored. A byte written into the Transmit Holding Register while a break is pending, but not started,
is ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the transmitter ensures that the
remote receiver detects correctly the end of break and the start of the next character. If the timeguard is programmed with a value higher
than 12, the TXD line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 31-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on the TXD line.

Figure 31-26: Break Transmission

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

FRAME

RXRDY

RSTSTA = 1

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break
DS60001516A-page 464  2017 Microchip Technology Inc.

SAM9G20
32.8.4 SSC Receive Frame Mode Register

Name:SSC_RFMR

Access:Read/Write

DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the PDC2 assigned to
the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and 15 (included), half-words are
transferred, and for any other value, 32-bit words are transferred.

LOOP: Loop Mode

0: Normal operating mode.

1: RD is driven by TD, RF is driven by TF and TK drives RK.

MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

DATNB: Data Number per Frame

This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

FSLEN: Receive Frame Sync Length

This field defines the number of bits sampled and stored in the Receive Sync Data Register. When this mode is selected by the START
field in the Receive Clock Mode Register, it also determines the length of the sampled data to be compared to the Compare 0 or Compare
1 register.

This field is used with FSLEN_EXT to determine the pulse length of the Receive Frame Sync signal.

Pulse length is equal to FSLEN + (FSLEN_EXT * 16) + 1 Receive Clock periods.

FSOS: Receive Frame Sync Output Selection

31 30 29 28 27 26 25 24

FSLEN_EXT FSLEN_EXT FSLEN_EXT FSLEN_EXT – – – FSEDGE

23 22 21 20 19 18 17 16

– FSOS FSLEN

15 14 13 12 11 10 9 8

– – – – DATNB

7 6 5 4 3 2 1 0

MSBF – LOOP DATLEN

FSOS Selected Receive Frame Sync Signal RF Pin

0x0 None Input-only

0x1 Negative Pulse Output

0x2 Positive Pulse Output

0x3 Driven Low during data transfer Output

0x4 Driven High during data transfer Output

0x5 Toggling at each start of data transfer Output

0x6–0x7 Reserved Undefined
DS60001516A-page 514  2017 Microchip Technology Inc.

SAM9G20
33.5.10 Waveform Operating Mode

Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel Mode Register).

In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same frequency and independently programmable
duty cycles, or generates different types of one-shot or repetitive pulses.

In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used as an external event (EEVT parameter in
TC_CMR).

Figure 33-6 shows the configuration of the TC channel when programmed in Waveform Operating Mode.

33.5.11 Waveform Selection

Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of TC_CV varies.

With any selection, RA, RB and RC can all be used as compare registers.

RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output (if correctly configured) and RC Compare
is used to control TIOA and/or TIOB outputs.
 2017 Microchip Technology Inc. DS60001516A-page 541

SAM9G20
35.5.3 Network Status Register

Name:EMAC_NSR

Access:Read-only

MDIO

Returns status of the mdio_in pin. Use the PHY maintenance register for reading managed frames rather than this bit.

IDLE

0: The PHY logic is running.

1: The PHY management logic is idle (i.e., has completed).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – IDLE MDIO –
 2017 Microchip Technology Inc. DS60001516A-page 615

SAM9G20
35.5.16 Specific Address 1 Bottom Register

Name:EMAC_SA1B

Access:Read/Write

ADDR

Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least
significant bit of the first byte received.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR
DS60001516A-page 628  2017 Microchip Technology Inc.

SAM9G20
35.5.26.9 Late Collisions Register

Name:EMAC_LCOL

Access:Read/Write

LCOL: Late Collisions

An 8-bit register counting the number of frames that experience a collision after the slot time (512 bits) has expired. A late collision is
counted twice; i.e., both as a collision and a late collision.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LCOL
DS60001516A-page 646  2017 Microchip Technology Inc.

SAM9G20
36.6.10 UDP Endpoint Control and Status Register

Name:UDP_CSRx [x = 0..5]

Access:Read/Write

WARNING: Due to synchronization between MCK and UDPCK, the software application must wait for the end of the write operation before
executing another write by polling the bits which must be set/cleared.

//! Clear flags of UDP UDP_CSR register and waits for synchronization

#define Udp_ep_clr_flag(pInterface, endpoint, flags) { \

pInterface->UDP_CSR[endpoint] &= ~(flags); \

while ((pInterface->UDP_CSR[endpoint] & (flags)) == (flags)); \

}

//! Set flags of UDP UDP_CSR register and waits for synchronization

#define Udp_ep_set_flag(pInterface, endpoint, flags) { \

pInterface->UDP_CSR[endpoint] |= (flags); \

while ((pInterface->UDP_CSR[endpoint] & (flags)) != (flags)); \

}

Note: In a preemptive environment, set or clear the flag and wait for a time of 1 UDPCK clock cycle and 1peripheral clock cycle.
However, RX_DATA_BLK0, TXPKTRDY, RX_DATA_BK1 require wait times of 3 UDPCK clock cycles and 3 peripheral clock
cycles before accessing DPR.

TXCOMP: Generates an IN Packet with Data Previously Written in the DPR

This flag generates an interrupt while it is set to one.

Write (Cleared by the firmware):

0: Clear the flag, clear the interrupt.

1: No effect.

Read (Set by the USB peripheral):

0: Data IN transaction has not been acknowledged by the Host.

1: Data IN transaction is achieved, acknowledged by the Host.

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the host has acknowl-
edged the transaction.

31 30 29 28 27 26 25 24

– – – – – RXBYTECNT

23 22 21 20 19 18 17 16

RXBYTECNT

15 14 13 12 11 10 9 8

EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0

DIR RX_DATA_BK1 FORCESTALL TXPKTRDY
STALLSENT
ISOERROR

RXSETUP RX_DATA_BK0 TXCOMP
 2017 Microchip Technology Inc. DS60001516A-page 683

