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Figure 4-1. MC9S08DN60 Series Memory Map

4.2 Reset and Interrupt Vector Assignments

Table 4-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table
are the labels used in the MC9S08DN60 Series equate file provided by Freescale Semiconductor.

Table 4-1. Reset and Interrupt Vectors

Address
(High/Low)

Vector Vector Name

0xFFC0:0xFFC1 ACMP2 Vacmp2

0xFFC2:0xFFC3 ACMP1 Vacmp1

0xFFC4:0xFFCB Reserved —

0xFFCC:0xFFCD RTC Vrtc

0xFFCE:0xFFCF IIC Viic

0xFFD0:0xFFD1 ADC Conversion Vadc

DIRECT PAGE REGISTERS

RAM
2048 BYTES

0x0000

0x007F
0x0080

0x1800
0x17FF

0x18FF

0x1400

0xFFFF
9S08DN60

128 BYTES

EEPROM
2 x 1024 BYTES

HIGH PAGE REGISTERS
256 BYTES

FLASH
59136 BYTES

DIRECT PAGE REGISTERS

RAM
2048 BYTES

0x0000

0x007F
0x0080

0x087F

0x1800
0x17FF

0x18FF
0x1900

0xFFFF

0x1500

9S08DN48

0x3FFF
0x4000

128 BYTES

HIGH PAGE REGISTERS
256 BYTES

FLASH
49152 BYTES

UNIMPLEMENTED

0x0880

0x14FF

3200 BYTES

UNIMPLEMENTED
9984 BYTES

DIRECT PAGE REGISTERS

RAM
1536 BYTES

0x0000

0x007F
0x0080

0x067F

0x1800
0x17FF

0x18FF
0x1900

0xFFFF

0x1600

9S08DN32

0x7BFF
0x7C00

128 BYTES

HIGH PAGE REGISTERS
256 BYTES

FLASH
33792 BYTES

UNIMPLEMENTED

0x0680

0x15FF

3968 BYTES

UNIMPLEMENTED
25344 BYTES

DIRECT PAGE REGISTERS

RAM
1024 BYTES

0x0000

0x007F
0x0080

0x047F

0x1800
0x17FF

0x18FF
0x1900

0xFFFF

0x1700

9S08DN16

0xBDFF
0xBE00

128 BYTES

HIGH PAGE REGISTERS
256 BYTES

FLASH
16896 BYTES

UNIMPLEMENTED

0x0480

0x16FF

4736 BYTES

UNIMPLEMENTED
42240 BYTES

EEPROM
2 x 512 BYTES EEPROM

2 x 256 BYTES

0x1900

FLASH
2944 BYTES

0x13FF

EEPROM
2 x 768 BYTES

0x087F
0x0880
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Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily
disengage memory security. This key mechanism can be accessed only through user code running in secure
memory. (A security key cannot be entered directly through background debug commands.) This security
key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the
only way to disengage security is by mass erasing the Flash if needed (normally through the background
debug interface) and verifying that Flash is blank. To avoid returning to secure mode after the next reset,
program the security bits (SEC) to the unsecured state (1:0).

Table 4-4. Nonvolatile Register Summary

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

0xFFAE Reserved for
storage of FTRIM

0 0 0 0 0 0 0 FTRIM

0xFFAF Res. for storage of
MCGTRM

TRIM

0xFFB0–
0xFFB7

NVBACKKEY
8-Byte Comparison Key

 0xFFB8–
0xFFBC

Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

0xFFBD NVPROT EPS FPS

0xFFBE Reserved — — — — — — — —

0xFFBF NVOPT KEYEN FNORED EPGMOD 0 0 0 SEC
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if PRDIV8 = 0 — fFCLK = fBus ÷ (DIV + 1) Eqn. 4-1

if PRDIV8 = 1 — fFCLK = fBus ÷ (8 × (DIV + 1)) Eqn. 4-2

Table 4-7 shows the appropriate values for PRDIV8 and DIV for selected bus frequencies.

4.5.11.2 Flash and EEPROM Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from Flash into FOPT. To change
the value in this register, erase and reprogram the NVOPT location in Flash memory as usual and then issue
a new MCU reset.

Table 4-6. FCDIV Register Field Descriptions

Field Description

7
DIVLD

Divisor Loaded Status Flag — When set, this read-only status flag indicates that the FCDIV register has been
written since reset. Reset clears this bit and the first write to this register causes this bit to become set regardless
of the data written.
0 FCDIV has not been written since reset; erase and program operations disabled for Flash and EEPROM.
1 FCDIV has been written since reset; erase and program operations enabled for Flash and EEPROM.

6
PRDIV8

Prescale (Divide) Flash and EEPROM Clock by 8 (This bit is write once.)
0 Clock input to the Flash and EEPROM clock divider is the bus rate clock.
1 Clock input to the Flash and EEPROM clock divider is the bus rate clock divided by 8.

5:0
DIV

Divisor for Flash and EEPROM Clock Divider — These bits are write once. The Flash and EEPROM clock
divider divides the bus rate clock (or the bus rate clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit DIV
field plus one. The resulting frequency of the internal Flash and EEPROM clock must fall within the range of
200 kHz to 150 kHz for proper Flash and EEPROM operations. Program/Erase timing pulses are one cycle of
this internal Flash and EEPROM clock which corresponds to a range of 5 μs to 6.7 μs. The automated
programming logic uses an integer number of these pulses to complete an erase or program operation. See
Equation 4-1 and Equation 4-2.

Table 4-7. Flash and EEPROM Clock Divider Settings

fBus
PRDIV8
(Binary)

DIV
(Decimal)

fFCLK
Program/Erase Timing Pulse

(5 μs Min, 6.7 μs Max)

20 MHz 1 12 192.3 kHz 5.2 μs

10 MHz 0 49 200 kHz 5 μs

8 MHz 0 39 200 kHz 5 μs

4 MHz 0 19 200 kHz 5 μs

2 MHz 0 9 200 kHz 5 μs

1 MHz 0 4 200 kHz 5 μs

200 kHz 0 0 200 kHz 5 μs

150 kHz 0 0 150 kHz 6.7 μs
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4.5.11.5 Flash and EEPROM Status Register (FSTAT)

0x1B 0x2800–0xFFFF 54K 72

0x1A 0x2200–0xFFFF 55.5K 74

0x19 0x1C00–0xFFFF 57K 76

0x18–0x00 0x0000–0xFFFF 64K 86

7 6 5 4 3 2 1 0

R
FCBEF

FCCF
FPVIOL FACCERR

0 FBLANK 0 0

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-9. Flash and EEPROM Status Register (FSTAT)

Table 4-14. FSTAT Register Field Descriptions

Field Description

7
FCBEF

Command Buffer Empty Flag — The FCBEF bit is used to launch commands. It also indicates that the
command buffer is empty so that a new command sequence can be executed when performing burst
programming. The FCBEF bit is cleared by writing a 1 to it or when a burst program command is transferred to
the array for programming. Only burst program commands can be buffered.
0 Command buffer is full (not ready for additional commands).
1 A new burst program command can be written to the command buffer.

6
FCCF

Command Complete Flag — FCCF is set automatically when the command buffer is empty and no command
is being processed. FCCF is cleared automatically when a new command is started (by writing 1 to FCBEF to
register a command). Writing to FCCF has no meaning or effect.
0 Command in progress
1 All commands complete

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when a command that attempts to erase or program
a location in a protected block is launched (the erroneous command is ignored). FPVIOL is cleared by writing a
1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

Table 4-13. Flash Block Protection (continued)

FPS Address Area Protected Memory Size Protected (bytes) Number of Sectors Protected
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5.6 Low-Voltage Detect (LVD) System
The MC9S08DN60 Series includes a system to protect against low-voltage conditions in order to protect
memory contents and control MCU system states during supply voltage variations. The system is

Table 5-1. Vector Summary1

1 Vector priority is shown from lowest (first row) to highest (last row). For example, Vreset is the highest priority vector.

Vector
No.

Address
(High/Low)

Vector
Name

Module Source Enable Description

31 0xFFC0/0xFFC1 Vacmp2 ACMP2 ACF ACIE Analog comparator 2
30 0xFFC2/0xFFC3 Vacmp1 ACMP1 ACF ACIE Analog comparator 1

29–26 0xFFC4/0xFFC5–
0xFFCA/0xFFCB

(Reserved)

25 0xFFCC/0xFFCD Vrtc RTC RTIF RTIE Real-time interrupt
24 0xFFCE/0xFFCF Viic IIC IICIS IICIE IIC control
23 0xFFD0/0xFFD1 Vadc ADC COCO AIEN ADC
22 0xFFD2/0xFFD3 Vport Port A,B,D PTAIF, PTBIF,

PTDIF
PTAIE, PTBIE, PTDIE Port Pins

21–19 0xFFD4/0xFFD5–
0xFFD8/0xFFD9

(Reserved)

18 0xFFDA/0xFFDB Vsci1tx SCI1 TDRE, TC TIE, TCIE SCI1 transmit
17 0xFFDC/0xFFDD Vsci1rx SCI1 IDLE, LBKDIF,

RDRF, RXEDGIF
ILIE, LBKDIE, RIE,

RXEDGIE
SCI1 receive

16 0xFFDE/0xFFDF Vsci1err SCI1 OR, NF,
FE, PF

ORIE, NFIE,
FEIE, PFIE

SCI1 error

15 0xFFE0/0xFFE1 Vspi SPI SPIF, MODF,
SPTEF

SPIE, SPIE, SPTIE SPI

14 0xFFE2/0xFFE3 Vtpm2ovf TPM2 TOF TOIE TPM2 overflow
13 0xFFE4/0xFFE5 Vtpm2ch1 TPM2 CH1F CH1IE TPM2 channel 1
12 0xFFE6/0xFFE7 Vtpm2ch0 TPM2 CH0F CH0IE TPM2 channel 0
11 0xFFE8/0xFFE9 Vtpm1ovf TPM1 TOF TOIE TPM1 overflow
10 0xFFEA/0xFFEB Vtpm1ch5 TPM1 CH5F CH5IE TPM1 channel 5
9 0xFFEC/0xFFED Vtpm1ch4 TPM1 CH4F CH4IE TPM1 channel 4
8 0xFFEE/0xFFEF Vtpm1ch3 TPM1 CH3F CH3IE TPM1 channel 3
7 0xFFF0/0xFFF1 Vtpm1ch2 TPM1 CH2F CH2IE TPM1 channel 2
6 0xFFF2/0xFFF3 Vtpm1ch1 TPM1 CH1F CH1IE TPM1 channel 1
5 0xFFF4/0xFFF5 Vtpm1ch0 TPM1 CH0F CH0IE TPM1 channel 0
4 0xFFF6/0xFFF7 Vlol MCG LOLS LOLIE MCG loss of lock
3 0xFFF8/0xFFF9 Vlvd System

control
LVWF LVWIE Low-voltage warning

2 0xFFFA/0xFFFB Virq IRQ IRQF IRQIE IRQ pin
1 0xFFFC/0xFFFD Vswi Core SWI Instruction — Software interrupt
0 0xFFFE/0xFFFF Vreset System

control
COP,
LOC,
LVD,

RESET,
ILOP,
ILAD,
POR,
BDFR

COPE
CME

LVDRE
—
—
—
—
—

Watchdog timer
Loss-of-clock

Low-voltage detect
External pin

Illegal opcode
Illegal address
Power-on-reset

BDM-forced reset



Chapter 6 Parallel Input/Output Control

MC9S08DN60 Series Data Sheet, Rev 3

80 Freescale Semiconductor

In general, whenever a pin is shared with both an alternate digital function and an analog function, the
analog function has priority such that if both the digital and analog functions are enabled, the analog
function controls the pin.

It is a good programming practice to write to the port data register before changing the direction of a port
pin to become an output. This ensures that the pin will not be driven momentarily with an old data value
that happened to be in the port data register.

Figure 6-1. Parallel I/O Block Diagram

6.2 Pull-up, Slew Rate, and Drive Strength
Associated with the parallel I/O ports is a set of registers located in the high page register space that operate
independently of the parallel I/O registers. These registers are used to control pull-ups, slew rate, and drive
strength for the pins.

An internal pull-up device can be enabled for each port pin by setting the corresponding bit in the pull-up
enable register (PTxPEn). The pull-up device is disabled if the pin is configured as an output by the parallel
I/O control logic or any shared peripheral function regardless of the state of the corresponding pull-up
enable register bit. The pull-up device is also disabled if the pin is controlled by an analog function.

Slew rate control can be enabled for each port pin by setting the corresponding bit in the slew rate control
register (PTxSEn). When enabled, slew control limits the rate at which an output can transition in order to
reduce EMC emissions. Slew rate control has no effect on pins that are configured as inputs.

NOTE
Slew rate reset default values may differ between engineering samples and
final production parts. Always initialize slew rate control to the desired
value to ensure correct operation.

QD

QD

1

0

Port Read

PTxDDn

PTxDn

Output Enable

Output Data

Input DataSynchronizer
Data

BUSCLK
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6.5.1.7 Port A Interrupt Pin Select Register (PTAPS)

6.5.1.8 Port A Interrupt Edge Select Register (PTAES)

7 6 5 4 3 2 1 0

R
PTAPS7 PTAPS6 PTAPS5 PTAPS4 PTAPS3 PTAPS2 PTAPS1 PTAPS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-9. Port A Interrupt Pin Select Register (PTAPS)

Table 6-7. PTAPS Register Field Descriptions

Field Description

7:0
PTAPS[7:0]

Port A Interrupt Pin Selects — Each of the PTAPSn bits enable the corresponding port A interrupt pin.
0 Pin not enabled as interrupt.
1 Pin enabled as interrupt.

7 6 5 4 3 2 1 0

R
PTAES7 PTAES6 PTAES5 PTAES4 PTAES3 PTAES2 PTAES1 PTAES0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-10. Port A Edge Select Register (PTAES)

Table 6-8. PTAES Register Field Descriptions

Field Description

7:0
PTAES[7:0]

Port A Edge Selects — Each of the PTAESn bits serves a dual purpose by selecting the polarity of the active
interrupt edge as well as selecting a pull-up or pull-down device if enabled.
0 A pull-up device is connected to the associated pin and detects falling edge/low level for interrupt generation.
1 A pull-down device is connected to the associated pin and detects rising edge/high level for interrupt

generation.
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6.5.6.5 Port F Drive Strength Selection Register (PTFDS)

7 6 5 4 3 2 1 0

R
PTFDS7 PTFDS6 PTFDS5 PTFDS4 PTFDS3 PTFDS2 PTFDS1 PTFDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-41. Drive Strength Selection for Port F Register (PTFDS)

Table 6-39. PTFDS Register Field Descriptions

Field Description

7:0
PTFDS[7:0]

Output Drive Strength Selection for Port F Bits — Each of these control bits selects between low and high
output drive for the associated PTF pin. For port F pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port F bit n.
1 High output drive strength selected for port F bit n.
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7.4.5 BGND Instruction

The BGND instruction is new to the HCS08 compared to the M68HC08. BGND would not be used in
normal user programs because it forces the CPU to stop processing user instructions and enter the active
background mode. The only way to resume execution of the user program is through reset or by a host
debug system issuing a GO, TRACE1, or TAGGO serial command through the background debug
interface.

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the
BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active background
mode rather than continuing the user program.
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The nine states of the MCG are shown as a state diagram and are described below. The arrows indicate the
allowed movements between the states.

8.4.1.1 FLL Engaged Internal (FEI)

FLL engaged internal (FEI) is the default mode of operation and is entered when all the following
conditions occur:

• CLKS bits are written to 00

• IREFS bit is written to 1

• PLLS bit is written to 0

• RDIV bits are written to 000. Since the internal reference clock frequency should already be in the
range of 31.25 kHz to 39.0625 kHz after it is trimmed, no further frequency divide is necessary.

In FLL engaged internal mode, the MCGOUT clock is derived from the FLL clock, which is controlled by
the internal reference clock. The FLL clock frequency locks to 1024 times the reference frequency, as
selected by the RDIV bits. The MCGLCLK is derived from the FLL and the PLL is disabled in a low power
state.

8.4.1.2 FLL Engaged External (FEE)

The FLL engaged external (FEE) mode is entered when all the following conditions occur:

• CLKS bits are written to 00

• IREFS bit is written to 0

• PLLS bit is written to 0

• RDIV bits are written to divide reference clock to be within the range of 31.25 kHz to 39.0625 kHz

In FLL engaged external mode, the MCGOUT clock is derived from the FLL clock which is controlled by
the external reference clock. The external reference clock which is enabled can be an external
crystal/resonator or it can be another external clock source.The FLL clock frequency locks to 1024 times
the reference frequency, as selected by the RDIV bits. The MCGLCLK is derived from the FLL and the
PLL is disabled in a low power state.

8.4.1.3 FLL Bypassed Internal (FBI)

In FLL bypassed internal (FBI) mode, the MCGOUT clock is derived from the internal reference clock
and the FLL is operational but its output clock is not used. This mode is useful to allow the FLL to acquire
its target frequency while the MCGOUT clock is driven from the internal reference clock.

The FLL bypassed internal mode is entered when all the following conditions occur:

• CLKS bits are written to 01

• IREFS bit is written to 1

• PLLS bit is written to 0

• RDIV bits are written to 000. Since the internal reference clock frequency should already be in the
range of 31.25 kHz to 39.0625 kHz after it is trimmed, no further frequency divide is necessary.
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• LP bit is written to 0

In FLL bypassed internal mode, the MCGOUT clock is derived from the internal reference clock. The FLL
clock is controlled by the internal reference clock, and the FLL clock frequency locks to 1024 times the
reference frequency, as selected by the RDIV bits. The MCGLCLK is derived from the FLL and the PLL
is disabled in a low power state.

8.4.1.4 FLL Bypassed External (FBE)

In FLL bypassed external (FBE) mode, the MCGOUT clock is derived from the external reference clock
and the FLL is operational but its output clock is not used. This mode is useful to allow the FLL to acquire
its target frequency while the MCGOUT clock is driven from the external reference clock.

The FLL bypassed external mode is entered when all the following conditions occur:

• CLKS bits are written to 10

• IREFS bit is written to 0

• PLLS bit is written to 0

• RDIV bits are written to divide reference clock to be within the range of 31.25 kHz to 39.0625 kHz

• LP bit is written to 0

In FLL bypassed external mode, the MCGOUT clock is derived from the external reference clock. The
external reference clock which is enabled can be an external crystal/resonator or it can be another external
clock source.The FLL clock is controlled by the external reference clock, and the FLL clock frequency
locks to 1024 times the reference frequency, as selected by the RDIV bits. The MCGLCLK is derived from
the FLL and the PLL is disabled in a low power state.

NOTE
It is possible to briefly operate in FBE mode with an FLL reference clock
frequency that is greater than the specified maximum frequency. This can be
necessary in applications that operate in PEE mode using an external crystal
with a frequency above 5 MHz. Please see 8.5.2.4, “Example # 4: Moving
from FEI to PEE Mode: External Crystal = 8 MHz, Bus Frequency = 8 MHz
for a detailed example.

8.4.1.5 PLL Engaged External (PEE)

The PLL engaged external (PEE) mode is entered when all the following conditions occur:

• CLKS bits are written to 00

• IREFS bit is written to 0

• PLLS bit is written to 1

• RDIV bits are written to divide reference clock to be within the range of 1 MHz to 2 MHz

In PLL engaged external mode, the MCGOUT clock is derived from the PLL clock which is controlled by
the external reference clock. The external reference clock which is enabled can be an external
crystal/resonator or it can be another external clock source The PLL clock frequency locks to a
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9.4 Functional Description
The analog comparator can compare two analog input voltages applied to ACMPx+ and ACMPx−, or it
can compare an analog input voltage applied to ACMPx− with an internal bandgap reference voltage.
ACBGS selects between the bandgap reference voltage or the ACMPx+ pin as the input to the
non-inverting input of the analog comparator. The comparator output is high when the non-inverting input
is greater than the inverting input, and is low when the non-inverting input is less than the inverting input.
ACMOD selects the condition that causes ACF to be set. ACF can be set on a rising edge of the comparator
output, a falling edge of the comparator output, or a rising or a falling edge (toggle). The comparator output
can be read directly through ACO. The comparator output can be driven onto the ACMPxO pin using
ACOPE.

3
ACO

Analog Comparator Output. Reading ACO returns the current value of the analog comparator output. ACO is
reset to a 0 and reads as a 0 when the ACMP is disabled (ACME = 0).

2
ACOPE

Analog Comparator Output Pin Enable. Enables the comparator output to be placed onto the external pin,
ACMPxO.
0 Analog comparator output not available on ACMPxO
1 Analog comparator output is driven out on ACMPxO

1:0
ACMOD

Analog Comparator Mode. ACMOD selects the type of compare event which sets ACF.
00 Encoding 0 — Comparator output falling edge
01 Encoding 1 — Comparator output rising edge
10 Encoding 2 — Comparator output falling edge
11 Encoding 3 — Comparator output rising or falling edge

Table 9-3. ACMPxSC Field Descriptions (continued)

Field Description
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7 6 5 4 3 2 1 0

R COCO
AIEN ADCO ADCH

W

Reset: 0 0 0 1 1 1 1 1

Figure 10-3.  Status and Control Register (ADCSC1)

Table 10-3. ADCSC1 Field Descriptions

Field Description

7
COCO

Conversion Complete Flag. The COCO flag is a read-only bit set each time a conversion is completed when the
compare function is disabled (ACFE = 0). When the compare function is enabled (ACFE = 1), the COCO flag is
set upon completion of a conversion only if the compare result is true. This bit is cleared when ADCSC1 is written
or when ADCRL is read.
0 Conversion not completed
1 Conversion completed

6
AIEN

Interrupt Enable AIEN enables conversion complete interrupts. When COCO becomes set while AIEN is high,
an interrupt is asserted.
0 Conversion complete interrupt disabled
1 Conversion complete interrupt enabled

5
ADCO

Continuous Conversion Enable. ADCO enables continuous conversions.
0 One conversion following a write to the ADCSC1 when software triggered operation is selected, or one

conversion following assertion of ADHWT when hardware triggered operation is selected.
1 Continuous conversions initiated following a write to ADCSC1 when software triggered operation is selected.

Continuous conversions are initiated by an ADHWT event when hardware triggered operation is selected.

4:0
ADCH

Input Channel Select. The ADCH bits form a 5-bit field that selects one of the input channels. The input channels
are detailed in Table 10-4.
The successive approximation converter subsystem is turned off when the channel select bits are all set. This
feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. Terminating
continuous conversions this way prevents an additional, single conversion from being performed. It is not
necessary to set the channel select bits to all ones to place the ADC in a low-power state when continuous
conversions are not enabled because the module automatically enters a low-power state when a conversion
completes.

Table 10-4. Input Channel Select

ADCH Input Select

00000–01111 AD0–15

10000–11011 AD16–27

11100 Reserved

11101 VREFH

11110 VREFL

11111 Module disabled



Chapter 12 Serial Peripheral Interface (S08SPIV3)

MC9S08DN60 Series Data Sheet, Rev 3

224 Freescale Semiconductor

12.5 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPID) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was in
the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data were
shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data byte is
moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read by
reading SPID. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved
into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Section 12.5.1, “SPI Clock Formats” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPID) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.

12.5.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.

Figure 12-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after
the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending
on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms
applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the
MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output
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Instead of hardware interrupts, software polling may be used to monitor the TDRE and TC status flags if
the corresponding TIE or TCIE local interrupt masks are 0s.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCI1D. The RDRF flag is cleared by reading SCI1S1 while RDRF = 1 and then
reading SCI1D.

When polling is used, this sequence is naturally satisfied in the normal course of the user program. If
hardware interrupts are used, SCI1S1 must be read in the interrupt service routine (ISR). Normally, this is
done in the ISR anyway to check for receive errors, so the sequence is automatically satisfied.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the RxD line remains
idle for an extended period of time. IDLE is cleared by reading SCI1S1 while IDLE = 1 and then reading
SCI1D. After IDLE has been cleared, it cannot become set again until the receiver has received at least one
new character and has set RDRF.

If the associated error was detected in the received character that caused RDRF to be set, the error flags —
noise flag (NF), framing error (FE), and parity error flag (PF) — get set at the same time as RDRF. These
flags are not set in overrun cases.

If RDRF was already set when a new character is ready to be transferred from the receive shifter to the
receive data buffer, the overrun (OR) flag gets set instead the data along with any associated NF, FE, or PF
condition is lost.

At any time, an active edge on the RxD serial data input pin causes the RXEDGIF flag to set. The
RXEDGIF flag is cleared by writing a “1” to it. This function does depend on the receiver being enabled
(RE = 1).

13.3.5 Additional SCI Functions

The following sections describe additional SCI functions.

13.3.5.1 8- and 9-Bit Data Modes

The SCI system (transmitter and receiver) can be configured to operate in 9-bit data mode by setting the
M control bit in SCI1C1. In 9-bit mode, there is a ninth data bit to the left of the MSB of the SCI data
register. For the transmit data buffer, this bit is stored in T8 in SCI1C3. For the receiver, the ninth bit is
held in R8 in SCI1C3.

For coherent writes to the transmit data buffer, write to the T8 bit before writing to SCI1D.

If the bit value to be transmitted as the ninth bit of a new character is the same as for the previous character,
it is not necessary to write to T8 again. When data is transferred from the transmit data buffer to the
transmit shifter, the value in T8 is copied at the same time data is transferred from SCI1D to the shifter.

9-bit data mode typically is used in conjunction with parity to allow eight bits of data plus the parity in the
ninth bit. Or it is used with address-mark wakeup so the ninth data bit can serve as the wakeup bit. In
custom protocols, the ninth bit can also serve as a software-controlled marker.
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The bus rate clock is the main system bus clock for the MCU. This clock source requires no
synchronization because it is the clock that is used for all internal MCU activities including operation of
the CPU and buses.

In MCUs that have no PLL and FLL or the PLL and FLL are not engaged, the fixed system clock source
is the same as the bus-rate-clock source, and it does not go through a synchronizer. When a PLL or FLL
is present and engaged, a synchronizer is required between the crystal divided-by two clock source and the
timer counter so counter transitions will be properly aligned to bus-clock transitions. A synchronizer will
be used at chip level to synchronize the crystal-related source clock to the bus clock.

The external clock source may be connected to any TPM channel pin. This clock source always has to pass
through a synchronizer to assure that counter transitions are properly aligned to bus clock transitions. The
bus-rate clock drives the synchronizer; therefore, to meet Nyquist criteria even with jitter, the frequency of
the external clock source must not be faster than the bus rate divided-by four. With ideal clocks the external
clock can be as fast as bus clock divided by four.

When the external clock source shares the TPM channel pin, this pin should not be used for other channel
timing functions. For example, it would be ambiguous to configure channel 0 for input capture when the
TPM channel 0 pin was also being used as the timer external clock source. (It is the user’s responsibility
to avoid such settings.) The TPM channel could still be used in output compare mode for software timing
functions (pin controls set not to affect the TPM channel pin).

15.4.1.2 Counter Overflow and Modulo Reset

An interrupt flag and enable are associated with the 16-bit main counter. The flag (TOF) is a
software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE=0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE=1) where a static hardware interrupt is generated whenever the TOF flag is equal to one.

The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned
PWM (CPWMS=1). In the simplest mode, there is no modulus limit and the TPM is not in CPWMS=1
mode. In this case, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the TPM is in center-aligned PWM mode (CPWMS=1), the TOF flag gets set as the counter changes
direction at the end of the count value set in the modulus register (that is, at the transition from the value
set in the modulus register to the next lower count value). This corresponds to the end of a PWM period
(the 0x0000 count value corresponds to the center of a period).

Table 15-7. TPM Clock Source Selection

CLKSB:CLKSA TPM Clock Source to Prescaler Input

00 No clock selected (TPM counter disabled)

01 Bus rate clock

10 Fixed system clock

11 External source
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Figure 16-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive
before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level about 10 cycles after it started the bit time.

Figure 16-3. BDC Target-to-Host Serial Bit Timing (Logic 1)
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A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in
comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for
another cycle matched the value in comparator A. There can be any number of cycles after the A match
and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally)
must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte
of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of
comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low
half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within
the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in
comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the
FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger
event occurs each time the address matches the value in comparator B. Trigger events cause the data to be
captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range (A ≤ Address ≤ B) — A trigger occurs when the address is greater than or equal to the value
in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than
the value in comparator A or greater than the value in comparator B.
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When background mode is active, the timer counter and the coherency mechanism are frozen such that the
buffer latches remain in the state they were in when the background mode became active even if one or
both bytes of the counter are read while background mode is active.

B.2.3 Timer Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM
counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock
(CPWMS = 0) or starts counting down (CPWMS = 1), and the overflow flag (TOF) becomes set. Writing
to TPMxMODH or TPMxMODL inhibits TOF and overflow interrupts until the other byte is written. Reset
sets the TPM counter modulo registers to 0x0000, which results in a free-running timer counter (modulo
disabled).

It is good practice to wait for an overflow interrupt so both bytes of the modulo register can be written well
before a new overflow. An alternative approach is to reset the TPM counter before writing to the TPM
modulo registers to avoid confusion about when the first counter overflow will occur.

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure B-4. Timer Counter Register Low (TPMxCNTL)
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R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure B-5. Timer Counter Modulo Register High (TPMxMODH)
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R
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Figure B-6. Timer Counter Modulo Register Low (TPMxMODL)


