

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08dn32clc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

	15.1.3 Block Diagram	
15.2	Signal Description	
	15.2.1 Detailed Signal Descriptions	
15.3	Register Definition	
	15.3.1 TPM Status and Control Register (TPMxSC)	
	15.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)	
	15.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)	270
	15.3.4 TPM Channel n Status and Control Register (TPMxCnSC)	271
	15.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)	272
15.4	Functional Description	274
	15.4.1 Counter	274
	15.4.2 Channel Mode Selection	276
15.5	Reset Overview	279
	15.5.1 General	279
	15.5.2 Description of Reset Operation	279
15.6	Interrupts	279
	15.6.1 General	279
	15.6.2 Description of Interrupt Operation	
15.7	The Differences from TPM v2 to TPM v3	

Chapter 16 Development Support

16.1	Introduction	
	16.1.1 Forcing Active Background	
	16.1.2 Features	
16.2	Background Debug Controller (BDC)	
	16.2.1 BKGD Pin Description	
	16.2.2 Communication Details	
	16.2.3 BDC Commands	
	16.2.4 BDC Hardware Breakpoint	
16.3	On-Chip Debug System (DBG)	
	16.3.1 Comparators A and B	
	16.3.2 Bus Capture Information and FIFO Operation	
	16.3.3 Change-of-Flow Information	
	16.3.4 Tag vs. Force Breakpoints and Triggers	
	16.3.5 Trigger Modes	
	16.3.6 Hardware Breakpoints	
16.4	Register Definition	
	16.4.1 BDC Registers and Control Bits	
	16.4.2 System Background Debug Force Reset Register (SBDFR)	
	16.4.3 DBG Registers and Control Bits	

MC9S08DN60 Series Data Sheet, Rev 3

Chapter 3 Modes of Operation

3.6.1.2 Active BDM Enabled in Stop3 Mode

Entry into the active background mode from run mode is enabled if ENBDM in BDCSCR is set. This register is described in Chapter 16, "Development Support." If ENBDM is set when the CPU executes a STOP instruction, the system clocks to the background debug logic remain active when the MCU enters stop mode. Because of this, background debug communication remains possible. In addition, the voltage regulator does not enter its low-power standby state but maintains full internal regulation.

Most background commands are not available in stop mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from stop and enter active background mode if the ENBDM bit is set. After entering background debug mode, all background commands are available.

3.6.2 Stop2 Mode

Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most of the internal circuitry of the MCU is powered off in stop2 with the exception of the RAM. Upon entering stop2, all I/O pin control signals are latched so that the pins retain their states during stop2.

Exit from stop2 is performed by asserting RESET. On 3M05C or older masksets only, exit from stop2 can also be performed by asserting PTA7/ADP7/IRQ.

NOTE

On 3M05C or older masksets only, PTA7/ADP7/IRQ is an active low wake-up and must be configured as an input prior to executing a STOP instruction to avoid an immediate exit from stop2. PTA7/ADP7/IRQ can be disabled as a wake-up if it is configured as a high driven output. For lowest power consumption in stop2, this pin should not be left open when configured as input (enable the internal pullup; or tie an external pullup/down device; or set pin as output).

In addition, the real-time counter (RTC) can wake the MCU from stop2, if enabled.

Upon wake-up from stop2 mode, the MCU starts up as from a power-on reset (POR):

- All module control and status registers are reset
- The LVD reset function is enabled and the MCU remains in the reset state if V_{DD} is below the LVD trip point (low trip point selected due to POR)
- The CPU takes the reset vector

In addition to the above, upon waking up from stop2, the PPDF bit in SPMSC2 is set. This flag is used to direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched until a 1 is written to PPDACK in SPMSC2.

Chapter 4 Memory

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
0x00 56 – 0x00 57	Reserved	_	_	_	_	_	_	_	_
0x00 58	IICA	AD7	AD6	AD5	AD4	AD3	AD2	AD1	0
0x00 59	IICF	ML	JLT			IC	R		
0x00 5A	IICC1	IICEN	IICIE	MST	ТΧ	TXAK	RSTA	0	0
0x00 5B	IICS	TCF	IAAS	BUSY	ARBL	0	SRW	IICIF	RXAK
0x00 5C	IICD				DA	TA			
0x00 5D	IICC2	GCAEN	ADEXT	0	0	0	AD10	AD9	AD8
0x00 5E – 0x00 5F	Reserved	_	_	_	_	_	_	_	_
0x00 60	TPM2SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0
0x00 61	TPM2CNTH	Bit 15	14	13	12	11	10	9	Bit 8
0x00 62	TPM2CNTL	Bit 7	6	5	4	3	2	1	Bit 0
0x00 63	TPM2MODH	Bit 15	14	13	12	11	10	9	Bit 8
0x00 64	TPM2MODL	Bit 7	6	5	4	4 3 2		1	Bit 0
0x00 65	TPM2C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0
0x00 66	TPM2C0VH	Bit 15	14	13	12	11	10	9	Bit 8
0x00 67	TPM2C0VL	Bit 7	6	5	4	3	2	1	Bit 0
0x00 68	TPM2C1SC	CH1F	CH1IE	MS1B	MS1A	ELS1B	ELS1A	0	0
0x00 69	TPM2C1VH	Bit 15	14	13	12	11	10	9	Bit 8
0x00 6A	TPM2C1VL	Bit 7	6	5	4	3	2	1	Bit 0
0x00 6B	Reserved	—	_	_	_	—		—	
0x00 6C	RTCSC	RTIF	RTC	LKS	RTIE		RTC	CPS	
0x00 6D	RTCCNT				RTC	CNT			
0x00 6E	RTCMOD				RTC	MOD			
0x00 6F	Reserved	—	—	—		—	—	—	—
0x00 70 – 0x00 7F	Reserved	_	_	_	_	_	_	_	_

High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers so they have been located outside the direct addressable memory space, starting at 0x1800.

Table 4-3. High-Page Register Summary (Sheet 1 of 3)

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
0x1800	SRS	POR	PIN	COP	ILOP	ILAD	LOCS	LVD	0
0x1801	SBDFR	0	0	0	0	0	0	0	BDFR
0x1802	SOPT1	CO	PT	STOPE	SCI2PS	IICPS	0	0	0
0x1803	SOPT2	COPCLKS	COPW	0	ADHTS	0	MCSEL		
0x1804 — 0x1805	Reserved	_			_	_			_

Chapter 5 Resets, Interrupts, and General System Control

5.8.2 System Reset Status Register (SRS)

This high page register includes read-only status flags to indicate the source of the most recent reset. When a debug host forces reset by writing 1 to BDFR in the SBDFR register, none of the status bits in SRS will be set. Writing any value to this register address causes a COP reset when the COP is enabled except the values 0x55 and 0xAA. Writing a 0x55-0xAA sequence to this address clears the COP watchdog timer without affecting the contents of this register. The reset state of these bits depends on what caused the MCU to reset.

	7	6	5	4	3	2	1	0					
R	POR	PIN	COP	ILOP	ILAD	LOC	LVD	0					
W	Writing 0x55, 0xAA to SRS address clears COP watchdog timer.												
POR:	1	0	0	0	0	0	1	0					
LVD:	u	0	0	0	0	0	1	0					
Any other reset:	0	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	Note ⁽¹⁾	0	0	0					

¹ Any of these reset sources that are active at the time of reset entry will cause the corresponding bit(s) to be set; bits corresponding to sources that are not active at the time of reset entry will be cleared.

Figure 5-3. System Reset Status (SRS)

Table 5-3. SRS Register Field Descriptions

Field	Description
7 POR	 Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold. 0 Reset not caused by POR. 1 POR caused reset.
6 PIN	 External Reset Pin — Reset was caused by an active-low level on the external reset pin. 0 Reset not caused by external reset pin. 1 Reset came from external reset pin.
5 COP	 Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out. This reset source can be blocked by COPE = 0. 0 Reset not caused by COP timeout. 1 Reset caused by COP timeout.
4 ILOP	 Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT register. The BGND instruction is considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register. 0 Reset not caused by an illegal opcode. 1 Reset caused by an illegal opcode.
3 ILAD	 Illegal Address — Reset was caused by an attempt to access either data or an instruction at an unimplemented memory address. 0 Reset not caused by an illegal address. 1 Reset caused by an illegal address.

Chapter 7 Central Processor Unit (S08CPUV3)

Figure 7-2. Condition Code Register

Table 7-1. CCR Register Field Descriptions

Field	Description
7 V	 Two's Complement Overflow Flag — The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. No overflow Overflow
4 H	 Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the result to a valid BCD value. 0 No carry between bits 3 and 4 1 Carry between bits 3 and 4
3	Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service routine is executed. Interrupts are not recognized at the instruction boundary after any instruction that clears I (CLI or TAP). This ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening interrupt, provided I was set. 0 Interrupts enabled 1 Interrupts disabled
2 N	 Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value causes N to be set if the most significant bit of the loaded or stored value was 1. 0 Non-negative result 1 Negative result
1 Z	 Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the loaded or stored value was all 0s. 0 Non-zero result 1 Zero result
0 C	 Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 0 No carry out of bit 7 1 Carry out of bit 7

Source	Operation	dress ode	Object Code	cles	Cyc-by-Cyc	Affect on CCR		
i onn		βq V		රි	Details	V 1 1 H	INZC	
CMP #opr8i CMP opr8a CMP opr16a CMP oprx16,X CMP oprx8,X CMP ,X CMP oprx16,SP CMP oprx8,SP	Compare Accumulator with Memory A – M (CCR Updated But Operands Not Changed)	IMM DIR EXT IX2 IX1 IX SP2 SP1	Al ii Bl dd Cl hh ll Dl ee ff El ff Fl 9E Dl ee ff 9E El ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	↓11 -	- ↓ ↓ ↓	
COM opr8a COMA COMX COM oprx8,X COM ,X COM oprx8,SP	$\begin{array}{ll} \mbox{Complement} & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ (\mbox{One's Complement}) & \mbox{A} \leftarrow (\overline{A}) = \$ FF - (A) \\ & \mbox{X} \leftarrow (\overline{X}) = \$ FF - (X) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \end{array}$	DIR INH INH IX1 IX SP1	33 dd 43 53 63 ff 73 9E 63 ff	5 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	011-	- ↓ ↓ 1	
CPHX opr16a CPHX #opr16i CPHX opr8a CPHX oprx8,SP	Compare Index Register (H:X) with Memory (H:X) – (M:M + \$0001) (CCR Updated But Operands Not Changed)	EXT IMM DIR SP1	3E hh ll 65 jj kk 75 dd 9E F3 ff	6 3 5 6	prrfpp ppp rrfpp prrfpp	↓11-	- ↓ ↓ ↓	
CPX #opr8i CPX opr8a CPX opr16a CPX oprx16,X CPX oprx8,X CPX ,X CPX oprx16,SP CPX oprx8,SP	Compare X (Index Register Low) with Memory X – M (CCR Updated But Operands Not Changed)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A3 ii B3 dd C3 hh ll D3 ee ff E3 ff F3 9E D3 ee ff 9E E3 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	↓11-	- \$ \$ \$	
DAA	Decimal Adjust Accumulator After ADD or ADC of BCD Values	INH	72	1	q	U 1 1 –	- ↓ ↓ ↓	
DBNZ opr8a,rel DBNZA rel DBNZX rel DBNZ oprx8,X,rel DBNZ ,X,rel DBNZ oprx8,SP,rel	Decrement A, X, or M and Branch if Not Zero (if (result) \neq 0) DBNZX Affects X Not H	DIR INH INH IX1 IX SP1	3B dd rr 4B rr 5B rr 6B ff rr 7B rr 9E 6B ff rr	7 4 7 6 8	rfwpppp fppp fppp rfwpppp rfwppp prfwppp	- 1 1 -		
DEC opr8a DECA DECX DEC oprx8,X DEC ,X DEC oprx8,SP	$\begin{array}{llllllllllllllllllllllllllllllllllll$	DIR INH INH IX1 IX SP1	3A dd 4A 5A 6A ff 7A 9E 6A ff	5 1 5 4 6	rfwpp p p rfwpp rfwp prfwpp	↓11-	- \$ \$ -	
DIV	Divide $A \leftarrow (H:A) \div (X); H \leftarrow Remainder$	INH	52	6	fffffp	- 1 1 -	\$\$	
EOR #opr8i EOR opr8a EOR opr16a EOR oprx16,X EOR oprx8,X EOR ,X EOR oprx16,SP EOR oprx8,SP	Exclusive OR Memory with Accumulator $A \leftarrow (A \oplus M)$	IMM DIR EXT IX2 IX1 IX SP2 SP1	A8 ii B8 dd C8 hh ll D8 ee ff E8 ff F8 9E D8 ee ff 9E E8 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	011-	- ‡ ‡ -	

Table 7-2. Instruction	Set	Summary	(She	eet 4	of	9)
------------------------	-----	---------	------	-------	----	----

Chapter 7 Central Processor Unit (S08CPUV3)

Bit-Mani	pulation	Branch	Rea	d-Modify-W	/rite	Con	trol			Register	/Memory		
					9E60 6 NEG 3 SP1						9ED0 5 SUB 4 SP2	9EE0 4 SUB 3 SP1	
					9E61 6 CBEQ 4 SP1						9ED1 5 CMP 4 SP2	9EE1 4 CMP 3 SP1	
											9ED2 5 SBC 4 SP2	9EE2 4 SBC 3 SP1	
					9E63 6 COM 3 SP1						9ED3 5 CPX 4 SP2	9EE3 4 CPX 3 SP1	9EF3 6 CPHX 3 SP1
					9E64 6 LSR 3 SP1						9ED4 5 AND 4 SP2	9EE4 4 AND 3 SP1	
											9ED5 5 BIT 4 SP2	9EE5 4 BIT 3 SP1	
					9E66 6 ROR 3 SP1						9ED6 5 LDA 4 SP2	9EE6 4 LDA 3 SP1	
					9E67 6 ASR 3 SP1						9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
					9E68 6 LSL 3 SP1						9ED8 5 EOR 4 SP2	9EE8 4 EOR 3 SP1	
					9E69 6 ROL 3 SP1						9ED9 5 ADC 4 SP2	9EE9 4 ADC 3 SP1	
					9E6A 6 DEC 3 SP1						9EDA 5 ORA 4 SP2	9EEA 4 ORA 3 SP1	
					9E6B 8 DBNZ 4 SP1						9EDB 5 ADD 4 SP2	9EEB 4 ADD 3 SP1	
					9E6C 6 INC 3 SP1								
					9E6D 5 TST 3 SP1								
								9EAE 5 LDHX 2 IX	9EBE 6 LDHX 4 IX2	9ECE 5 LDHX 3 IX1	9EDE 5 LDX 4 SP2	9EEE 4 LDX 3 SP1	9EFE 5 LDHX 3 SP1
					9E6F 6 CLR 3 SP1						9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR INH IMM DIR EXT DD IX+D

REL IX IX1 IX2 IMD DIX+ Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+ Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

Chapter 10 Analog-to-Digital Converter (S08ADC12V1)

10.1 Introduction

The 12-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

NOTE

MC9S08DN60 Series devices operate at a higher voltage range (2.7 V to 5.5 V) and do not include stop1 mode. Please ignore references to stop1.

10.1.1 Analog Power and Ground Signal Names

References to V_{DDAD} and V_{SSAD} in this chapter correspond to signals V_{DDA} and V_{SSA} , respectively.

10.1.2 Channel Assignments

NOTE

The ADC channel assignments for the MC9S08DN60 Series devices are shown in Table 10-1. Reserved channels convert to an unknown value.

This chapter shows bits for all S08ADC12V1 channels. MC9S08DN60 Series MCUs do not use all of these channels. All bits corresponding to channels that are not available on a device are reserved.

Chapter 10 Analog-to-Digital Converter (S08ADC12V1)

Figure 10-3. Status and Control Register (ADCSC1)

Table 10-3. ADCSC1 Field Descriptions

Field	Description
7 COCO	Conversion Complete Flag. The COCO flag is a read-only bit set each time a conversion is completed when the compare function is disabled (ACFE = 0). When the compare function is enabled (ACFE = 1), the COCO flag is set upon completion of a conversion only if the compare result is true. This bit is cleared when ADCSC1 is written or when ADCRL is read. 0 Conversion not completed 1 Conversion completed
6 AIEN	Interrupt Enable AIEN enables conversion complete interrupts. When COCO becomes set while AIEN is high, an interrupt is asserted. 0 Conversion complete interrupt disabled 1 Conversion complete interrupt enabled
5 ADCO	 Continuous Conversion Enable. ADCO enables continuous conversions. One conversion following a write to the ADCSC1 when software triggered operation is selected, or one conversion following assertion of ADHWT when hardware triggered operation is selected. Continuous conversions initiated following a write to ADCSC1 when software triggered operation is selected. Continuous conversions are initiated by an ADHWT event when hardware triggered operation is selected.
4:0 ADCH	Input Channel Select. The ADCH bits form a 5-bit field that selects one of the input channels. The input channels are detailed in Table 10-4. The successive approximation converter subsystem is turned off when the channel select bits are all set. This feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way prevents an additional, single conversion from being performed. It is not necessary to set the channel select bits to all ones to place the ADC in a low-power state when continuous conversions are not enabled because the module automatically enters a low-power state when a conversion completes.

ADCH	Input Select
00000–01111	AD0–15
10000–11011	AD16–27
11100	Reserved
11101	V _{REFH}
11110	V _{REFL}
11111	Module disabled

Table 10-4. Input Channel Select

In 10-bit mode, the ADCCVH register holds the upper two bits of the 10-bit compare value (ADCV[9:8]). These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled.

In 8-bit mode, ADCCVH is not used during compare.

10.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 12-bit or 10-bit compare value or all 8 bits of the 8-bit compare value. When the compare function is enabled, bits ADCV[7:0] are compared to the lower 8 bits of the result following a conversion in 12-bit, 10-bit or 8-bit mode.

10.3.7 Configuration Register (ADCCFG)

ADCCFG selects the mode of operation, clock source, clock divide, and configures for low power and long sample time.

Figure 10-9. Configuration Register (ADCCFG)

Table 10-6. ADCCFG Register Field Descriptions

Field	Description				
7 ADLPC	 Low-Power Configuration. ADLPC controls the speed and power configuration of the successive approximation converter. This optimizes power consumption when higher sample rates are not required. 0 High speed configuration 1 Low power configuration: The power is reduced at the expense of maximum clock speed. 				
6:5 ADIV	Clock Divide Select. ADIV selects the divide ratio used by the ADC to generate the internal clock ADCK. Table 10-7 shows the available clock configurations.				
4 ADLSMP	Long Sample Time Configuration. ADLSMP selects between long and short sample time. This adjusts the sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required. 0 Short sample time 1 Long sample time				

Chapter 11 Inter-Integrated Circuit (S08IICV2)

Refer to the direct-page register summary in the memory chapter of this document for the absolute address assignments for all IIC registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

11.3.1 IIC Address Register (IICA)

Figure 11-3. IIC Address Register (IICA)

Table	11-1.	IICA	Field	Descriptions
-------	-------	------	-------	--------------

Field	Description
7–1 AD[7:1]	Slave Address. The AD[7:1] field contains the slave address to be used by the IIC module. This field is used on the 7-bit address scheme and the lower seven bits of the 10-bit address scheme.

11.3.2 IIC Frequency Divider Register (IICF)

Figure 11-4. IIC Frequency Divider Register (IICF)

Field	Description					
7–6 MULT	IIC Multiplier Factor . The MULT bits define the multiplier factor, mul. This factor, along with the SCL divider, generates the IIC baud rate. The multiplier factor mul as defined by the MULT bits is provided below. 00 mul = 01 01 mul = 02 10 mul = 04 11 Reserved					
5–0 ICR	IIC Clock Rate . The ICR bits are used to prescale the bus clock for bit rate selection. These bits an bits determine the IIC baud rate, the SDA hold time, the SCL Start hold time, and the SCL Stop hol Table 11-4 provides the SCL divider and hold values for corresponding values of the ICR.	d the MULT d time.				
	The SCL divider multiplied by multiplier factor mul generates IIC baud rate.					
	IIC baud rate = $\frac{\text{bus speed (Hz)}}{\text{mul} \times \text{SCLdivider}}$	Eqn. 11-1				
	SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data	ı).				
	SDA hold time = bus period (s) \times mul \times SDA hold value	Eqn. 11-2				
	SCL start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start cond falling edge of SCL (IIC clock).	lition) to the				
	SCL Start hold time = bus period (s) \times mul \times SCL Start hold value	Eqn. 11-3				
	SCL stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA SDA (IIC data) while SCL is high (Stop condition).					
	SCL Stop hold time = bus period (s) \times mul \times SCL Stop hold value	Eqn. 11-4				

Table 11-2. IICF Field Descriptions

For example, if the bus speed is 8 MHz, the table below shows the possible hold time values with different ICR and MULT selections to achieve an IIC baud rate of 100kbps.

мшт	ICP	Hold Times (µs)				
MOLI		SDA	SCL Start	SCL Stop		
0x2	0x00	3.500	3.000	5.500		
0x1	0x07	2.500	2.500 4.000 5.250			
0x1	0x0B	2.250	2.250 4.000 5.2			
0x0	0x14	2.125	5 4.250 5.12			
0x0	0x18	1.125 4.750 5.125				

Table 11-3. Hold Time Values for 8 MHz Bus Speed

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SDA Hold (Stop) Value
00	20	7	6	11
01	22	7	7	12
02	24	8	8 8	
03	26	8	9	14
04	28	9	10	15
05	30	9	11	16
06	34	10	13	18
07	40	10	16	21
08	28	7	10	15
09	32	7	12	17
0A	36	9	14	19
0B	40	9	16	21
0C	44	11	18	23
0D	48	11	20	25
0E	56	13	24	29
0F	68	13	30	35
10	48	9	18	25
11	56	9	22	29
12	64	13	26	33
13	72	13	30	37
14	80	17	34	41
15	88	17	38	45
16	104	21	46	53
17	128	21	58	65
18	80	9	38	41
19	96	9	46	49
1A	112	17	54	57
1B	128	17	62	65
1C	144	25	70	73
1D	160	25	78	81
1E	192	33	94	97
1F	240	33	118	121

Table 11-4. IIC Divider and Hold Value
--

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SCL Hold (Stop) Value	
20	160	17	78	81	
21	192	17	94	97	
22	224	33	110	113	
23	256	33	126	129	
24	288	49	142	145	
25	320	49	158	161	
26	384	65	190	193	
27	480	65	238	241	
28	320	33	158	161	
29	384	33	190	193	
2A	448	65	222	225	
2B	512	65	254	257	
2C	576	97	286	289	
2D	640	97	318	321	
2E	768	129	382	385	
2F	960	129	478	481	
30	640	65	318	321	
31	768	65	382	385	
32	896	129	446	449	
33	1024	129	510	513	
34	1152	193	574	577	
35	1280	193	638	641	
36	1536	257	766	769	
37	1920	257	958	961	
38	1280	129	638	641	
39	1536	129	766	769	
3A	1792	257	894	897	
3B	2048	257	1022	1025	
3C	2304	385	1150	1153	
3D	2560	385	1278	1281	
3E	3072	513	1534	1537	
3F	3840	513	1918	1921	

Chapter 11 Inter-Integrated Circuit (S08IICV2)

11.4.3 General Call Address

General calls can be requested in 7-bit address or 10-bit address. If the GCAEN bit is set, the IIC matches the general call address as well as its own slave address. When the IIC responds to a general call, it acts as a slave-receiver and the IAAS bit is set after the address cycle. Software must read the IICD register after the first byte transfer to determine whether the address matches is its own slave address or a general call. If the value is 00, the match is a general call. If the GCAEN bit is clear, the IIC ignores any data supplied from a general call address by not issuing an acknowledgement.

11.5 Resets

The IIC is disabled after reset. The IIC cannot cause an MCU reset.

11.6 Interrupts

The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 11-11 occur, provided the IICIE bit is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt routine. You can determine the interrupt type by reading the status register.

Interrupt Source	Status	Flag	Local Enable
Complete 1-byte transfer	TCF	IICIF	IICIE
Match of received calling address	IAAS	licif	IICIE
Arbitration Lost	ARBL	licif	IICIE

Table 11-11. Interrupt Summary

11.6.1 Byte Transfer Interrupt

The TCF (transfer complete flag) bit is set at the falling edge of the ninth clock to indicate the completion of byte transfer.

11.6.2 Address Detect Interrupt

When the calling address matches the programmed slave address (IIC address register) or when the GCAEN bit is set and a general call is received, the IAAS bit in the status register is set. The CPU is interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode accordingly.

11.6.3 Arbitration Lost Interrupt

The IIC is a true multi-master bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, the relative priority of the contending masters is determined by a data arbitration procedure. The IIC module asserts this interrupt when it loses the data arbitration process and the ARBL bit in the status register is set.

Chapter 12 Serial Peripheral Interface (S08SPIV3)

12.2 External Signal Description

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that are not controlled by the SPI.

12.2.1 SPSCK — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master, this pin is the serial clock output.

12.2.2 MOSI — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

12.2.3 MISO — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

12.2.4 SS — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select output (SSOE = 1).

Chapter 12 Serial Peripheral Interface (S08SPIV3)

in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB depending on LSBFE) when \overline{SS} goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 0, the slave's \overline{SS} input must go to its inactive high level between transfers.

message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next message.

13.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared automatically when the receiver detects a full character time of the idle-line level. The M control bit selects 8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character time (10 or 11 bit times because of the start and stop bits).

When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE flag. The receiver wakes up and waits for the first data character of the next message which will set the RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

13.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is received and sets the RDRF flag. In this case the character with the MSB set is received even though the receiver was sleeping during most of this character time.

13.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events. Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events, and a third vector is used for OR, NF, FE, and PF error conditions. Each of these ten interrupt sources can be separately masked by local interrupt enable masks. The flags can still be polled by software when the local masks are cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit data register empty (TDRE) indicates when there is room in the transmit data buffer to write another transmit character to SCI1D. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is often used in systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt enable (TCIE) bit is set, a hardware TC = 1.

Chapter 15 Timer/PWM Module (S08TPMV3)

• Non-intrusive commands can be executed at any time even while the user's program is running. Non-intrusive commands allow a user to read or write MCU memory locations or access status and control registers within the background debug controller.

Typically, a relatively simple interface pod is used to translate commands from a host computer into commands for the custom serial interface to the single-wire background debug system. Depending on the development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, or some other type of communications such as a universal serial bus (USB) to communicate between the host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET, and sometimes V_{DD} . An open-drain connection to reset allows the host to force a target system reset, which is useful to regain control of a lost target system or to control startup of a target system before the on-chip nonvolatile memory has been programmed. Sometimes V_{DD} can be used to allow the pod to use power from the target system to avoid the need for a separate power supply. However, if the pod is powered separately, it can be connected to a running target system without forcing a target system reset or otherwise disturbing the running application program.

Figure 16-1. BDM Tool Connector

16.2.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. The primary function of this pin is for bidirectional serial communication of active background mode commands and data. During reset, this pin is used to select between starting in active background mode or starting the user's application program. This pin is also used to request a timed sync response pulse to allow a host development tool to determine the correct clock frequency for background debug serial communications.

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of microcontrollers. This protocol assumes the host knows the communication clock rate that is determined by the target BDC clock rate. All communication is initiated and controlled by the host that drives a high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit first (MSB first). For a detailed description of the communications protocol, refer to Section 16.2.2, "Communication Details."

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC command may be sent to the target MCU to request a timed sync response signal from which the host can determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required. Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts. Refer to Section 16.2.2, "Communication Details," for more detail.

Appendix A Electrical Characteristics

- ³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes
- ⁴ Based on input pad leakage current. Refer to pad electricals.

A.10 External Oscillator (XOSC) Characteristics

Table A-11. Oscillator Electrical Specifications (Temperature Range = -40 to 125°C Ambient)

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
		Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1					
		Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz
	С	High range (RANGE = 1) FEE or FBE mode 2	f _{hi-fll}	1	_	5	MHz
1		High range (RANGE = 1) PEE or PBE mode ³	f _{hi-pll}	1	—	16	MHz
		High range (RANGE = 1, HGO = 1) BLPE mode	f _{hi-hgo}	1	—	16	MHz
		High range (RANGE = 1, HGO = 0) BLPE mode	f _{hi-Ip}	1	_	8	MHz
2			C ₁	See	crystal o	r resonat	or
2			C ₂	manufact	manufacturer's recommendation		
		Feedback resistor					
3	—	Low range (32 kHz to 100 kHz)	R _F	_	10	—	MΩ
		High range (1 MHz to 16 MHz)		—	1	—	MΩ
		Series resistor					
		Low range, low gain (RANGE = 0, HGO = 0)		—	0		
		Low range, high gain (RANGE = 0, HGO = 1)		—	100	—	
4		High range, low gain (RANGE = 1, HGO = 0)	R _S	—	0	—	kΩ
		High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$			0	0	
		4 MHz		_	0	10	
		1 MHz			0	20	
		Crystal start-up time ⁴					
		Low range, low gain (RANGE = 0, HGO = 0)	t CSTL-LP		200	—	
5	Т	Low range, high gain (RANGE = 0, HGO = 1)	t CSTL-HGO		400	—	
		High range, low gain (RANGE = 1, HGO = $0)^5$	t CSTH-LP		5	—	ms
		High range, high gain (RANGE = 1, HGO = 1) ⁴	^t CSTH-HGO		15	—	
		Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)					
6	Т	FEE or FBE mode ²		0.03125		5	
		PEE or PBE mode ³	f _{extal}	1		16	MHz
		BLPE mode		0	—	40	

¹ Typical data was characterized at 3.0 V, 25°C or is recommended value.

² When MCG is configured for FEE or FBE mode, the input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

- ³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.
- ⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁵ 4 MHz crystal.