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2.2.1 Power

VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated
lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as
practical to suppress high-frequency noise. The MC9S08DN60 Series has two VDD pins except on the
32-pin package. Each pin must have a bypass capacitor for best noise suppression.

VDDA and VSSA are the analog power supply pins for the MCU. This voltage source supplies power to the
ADC module. A 0.1-μF ceramic bypass capacitor should be located as near to the MCU power pins as
practical to suppress high-frequency noise.

2.2.2 Oscillator

Immediately after reset, the MCU uses an internally generated clock provided by the multi-purpose clock
generator (MCG) module. For more information on the MCG, see Chapter 8, “Multi-Purpose Clock
Generator (S08MCGV1).”

The oscillator (XOSC) in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic
resonator. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL
input pin.

Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance
resistors such as carbon composition resistors. Wire-wound resistors and some metal film resistors have
too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically
designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value
is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity, and
lower values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance
which is the series combination of C1 and C2 (which are usually the same size). As a first-order
approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin
(EXTAL and XTAL).

2.2.3 RESET

RESET is a dedicated pin with a pull-up device built in. It has input hysteresis, a high current output driver,
and no output slew rate control. Internal power-on reset and low-voltage reset circuitry typically make
external reset circuitry unnecessary. This pin is normally connected to the standard 6-pin background
debug connector so a development system can directly reset the MCU system. If desired, a manual external
reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset).
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0xFFD2:0xFFD3 Port A, Port B, Port D Vport

0xFFD4:0xFFD9 Reserved —

0xFFDA:0xFFDB SCI1 Transmit Vsci1tx

0xFFDC:0xFFDD SCI1 Receive Vsci1rx

0xFFDE:0xFFDF SCI1 Error Vsci1err

0xFFE0:0xFFE1 SPI Vspi

0xFFE2:0xFFE3 TPM2 Overflow Vtpm2ovf

0xFFE4:0xFFE5 TPM2 Channel 1 Vtpm2ch1

0xFFE6:0xFFE7 TPM2 Channel 0 Vtpm2ch0

0xFFE8:0xFFE9 TPM1 Overflow Vtpm1ovf

0xFFEA:0xFFEB TPM1 Channel 5 Vtpm1ch5

0xFFEC:0xFFED TPM1 Channel 4 Vtpm1ch4

0xFFEE:0xFFEF TPM1 Channel 3 Vtpm1ch3

0xFFF0:0xFFF1 TPM1 Channel 2 Vtpm1ch2

0xFFF2:0xFFF3 TPM1 Channel 1 Vtpm1ch1

0xFFF4:0xFFF5 TPM1 Channel 0 Vtpm1ch0

0xFFF6:0xFFF7 MCG Loss of lock Vlol

0xFFF8:0xFFF9 Low-Voltage Detect Vlvd

0xFFFA:0xFFFB IRQ Virq

0xFFFC:0xFFFD SWI Vswi

0xFFFE:0xFFFF Reset Vreset

Table 4-1. Reset and Interrupt Vectors

Address
(High/Low)

Vector Vector Name
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4.5.10 EEPROM Mapping

Only half of the EEPROM is in the memory map. The EPGSEL bit in FCNFG register selects which half
of the array can be accessed in foreground while the other half can not be accessed in background. There
are two mapping mode options that can be selected to configure the 8-byte EEPROM sectors: 4-byte mode
and 8-byte mode. Each mode is selected by the EPGMOD bit in the FOPT register.

In 4-byte sector mode (EPGMOD = 0), each 8-byte sector splits four bytes on foreground and four bytes
on background but on the same addresses. The EPGSEL bit selects which four bytes can be accessed.
During a sector erase, the entire 8-byte sector (four bytes in foreground and four bytes in background) is
erased.

In 8-byte sector mode (EPGMOD = 1), each entire 8-byte sector is in a single page. The EPGSEL bit
selects which sectors are on background. During a sector erase, the entire 8-byte sector in foreground is
erased.

4.5.11 Flash and EEPROM Registers and Control Bits

The Flash and EEPROM modules have seven 8-bit registers in the high-page register space and three
locations in the nonvolatile register space in Flash memory. Two of those locations are copied into two
corresponding high-page control registers at reset. There is also an 8-byte comparison key in Flash
memory. Refer to Table 4-3 and Table 4-4 for the absolute address assignments for all Flash and EEPROM
registers. This section refers to registers and control bits only by their names. A Freescale
Semiconductor-provided equate or header file normally is used to translate these names into the
appropriate absolute addresses.

4.5.11.1 Flash and EEPROM Clock Divider Register (FCDIV)

Bit 7 of this register is a read-only flag. Bits 6:0 may be read at any time but can be written only one time.
Before any erase or programming operations are possible, write to this register to set the frequency of the
clock for the nonvolatile memory system within acceptable limits.

7 6 5 4 3 2 1 0

R DIVLD
PRDIV8 DIV

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-5. Flash and EEPROM Clock Divider Register (FCDIV)
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4.5.11.5 Flash and EEPROM Status Register (FSTAT)

0x1B 0x2800–0xFFFF 54K 72

0x1A 0x2200–0xFFFF 55.5K 74

0x19 0x1C00–0xFFFF 57K 76

0x18–0x00 0x0000–0xFFFF 64K 86

7 6 5 4 3 2 1 0

R
FCBEF

FCCF
FPVIOL FACCERR

0 FBLANK 0 0

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-9. Flash and EEPROM Status Register (FSTAT)

Table 4-14. FSTAT Register Field Descriptions

Field Description

7
FCBEF

Command Buffer Empty Flag — The FCBEF bit is used to launch commands. It also indicates that the
command buffer is empty so that a new command sequence can be executed when performing burst
programming. The FCBEF bit is cleared by writing a 1 to it or when a burst program command is transferred to
the array for programming. Only burst program commands can be buffered.
0 Command buffer is full (not ready for additional commands).
1 A new burst program command can be written to the command buffer.

6
FCCF

Command Complete Flag — FCCF is set automatically when the command buffer is empty and no command
is being processed. FCCF is cleared automatically when a new command is started (by writing 1 to FCBEF to
register a command). Writing to FCCF has no meaning or effect.
0 Command in progress
1 All commands complete

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when a command that attempts to erase or program
a location in a protected block is launched (the erroneous command is ignored). FPVIOL is cleared by writing a
1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

Table 4-13. Flash Block Protection (continued)

FPS Address Area Protected Memory Size Protected (bytes) Number of Sectors Protected
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5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine
(ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other
than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond unless the local interrupt enable is a 1 to enable the interrupt and the I bit in the CCR
is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which
prevents all maskable interrupt sources. The user program initializes the stack pointer and performs other
system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and
consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
other than the most experienced programmers because it can lead to subtle program errors that are difficult
to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR,
A, X, and PC registers to their pre-interrupt values by reading the previously saved information from the
stack.

NOTE
For compatibility with M68HC08 devices, the H register is not
automatically saved and restored. It is good programming practice to push
H onto the stack at the start of the interrupt service routine (ISR) and restore
it immediately before the RTI that is used to return from the ISR.

If more than one interrupt is pending when the I bit is cleared, the highest priority source is serviced first
(see Table 5-1).
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BPL rel Branch if Plus (if N = 0) REL 2A rr 3 ppp – 1 1 – – – – –

BRA rel Branch Always (if I = 1) REL 20 rr 3 ppp – 1 1 – – – – –

BRCLR n,opr8a,rel Branch if Bit n in Memory Clear (if (Mn) = 0)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp

– 1 1 – – – – ↕

BRN rel Branch Never (if I = 0) REL 21 rr 3 ppp – 1 1 – – – – –

BRSET n,opr8a,rel Branch if Bit n in Memory Set (if (Mn) = 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp
rpppp

– 1 1 – – – – ↕

BSET n,opr8a Set Bit n in Memory (Mn ← 1)

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp
rfwpp

– 1 1 – – – – –

BSR rel

Branch to Subroutine
PC ← (PC) + $0002

 push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

REL AD rr 5 ssppp – 1 1 – – – – –

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and... Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E 61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

rpppp
pppp
pppp
rpppp
rfppp
prpppp

– 1 1 – – – – –

CLC Clear Carry Bit (C ← 0) INH 98 1 p – 1 1 – – – – 0

CLI Clear Interrupt Mask Bit (I ← 0) INH 9A 1 p – 1 1 – 0 – – –

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E 6F

dd

ff

ff

5
1
1
1
5
4
6

rfwpp
p
p
p
rfwpp
rfwp
prfwpp

0 1 1 – – 0 1 –

Table 7-2. Instruction Set Summary (Sheet 3 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
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RSP
Reset Stack Pointer (Low Byte)
SPL ← $FF
(High Byte Not Affected)

INH 9C 1 p – 1 1 – – – – –

RTI

Return from Interrupt
SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)
SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

INH 80 9 uuuuufppp ↕ 1 1 ↕ ↕ ↕  ↕  ↕

RTS
Return from Subroutine
SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL)

INH 81 5 ufppp – 1 1 – – – – –

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC  ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry
A ← (A) – (M) – (C)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9E D2
9E E2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

↕ 1 1 – – ↕  ↕  ↕

SEC
Set Carry Bit
(C ← 1)

INH 99 1 p – 1 1 – – – – 1

SEI
Set Interrupt Mask Bit
(I ← 1)

INH 9B 1 p – 1 1 – 1 – – –

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA  ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in Memory
M ← (A)

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9E D7
9E E7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

wpp
pwpp
pwpp
wpp
wp
ppwpp
pwpp

0 1 1 – – ↕  ↕ –

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.)
(M:M + $0001) ← (H:X)

DIR
EXT
SP1

35
96

9E FF

dd
hh ll
ff

4
5
5

wwpp
pwwpp
pwwpp

0 1 1 – – ↕  ↕ –

STOP
Enable Interrupts: Stop Processing
Refer to MCU Documentation
I bit ← 0; Stop Processing

INH 8E 2 fp... – 1 1 – 0 – – –

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX  ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of Index Register)
in Memory
M ← (X)

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9E DF
9E EF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

wpp
pwpp
pwpp
wpp
wp
ppwpp
pwpp

0 1 1 – – ↕  ↕ –

Table 7-2. Instruction Set Summary (Sheet 7 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
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• LP bit is written to 0

In FLL bypassed internal mode, the MCGOUT clock is derived from the internal reference clock. The FLL
clock is controlled by the internal reference clock, and the FLL clock frequency locks to 1024 times the
reference frequency, as selected by the RDIV bits. The MCGLCLK is derived from the FLL and the PLL
is disabled in a low power state.

8.4.1.4 FLL Bypassed External (FBE)

In FLL bypassed external (FBE) mode, the MCGOUT clock is derived from the external reference clock
and the FLL is operational but its output clock is not used. This mode is useful to allow the FLL to acquire
its target frequency while the MCGOUT clock is driven from the external reference clock.

The FLL bypassed external mode is entered when all the following conditions occur:

• CLKS bits are written to 10

• IREFS bit is written to 0

• PLLS bit is written to 0

• RDIV bits are written to divide reference clock to be within the range of 31.25 kHz to 39.0625 kHz

• LP bit is written to 0

In FLL bypassed external mode, the MCGOUT clock is derived from the external reference clock. The
external reference clock which is enabled can be an external crystal/resonator or it can be another external
clock source.The FLL clock is controlled by the external reference clock, and the FLL clock frequency
locks to 1024 times the reference frequency, as selected by the RDIV bits. The MCGLCLK is derived from
the FLL and the PLL is disabled in a low power state.

NOTE
It is possible to briefly operate in FBE mode with an FLL reference clock
frequency that is greater than the specified maximum frequency. This can be
necessary in applications that operate in PEE mode using an external crystal
with a frequency above 5 MHz. Please see 8.5.2.4, “Example # 4: Moving
from FEI to PEE Mode: External Crystal = 8 MHz, Bus Frequency = 8 MHz
for a detailed example.

8.4.1.5 PLL Engaged External (PEE)

The PLL engaged external (PEE) mode is entered when all the following conditions occur:

• CLKS bits are written to 00

• IREFS bit is written to 0

• PLLS bit is written to 1

• RDIV bits are written to divide reference clock to be within the range of 1 MHz to 2 MHz

In PLL engaged external mode, the MCGOUT clock is derived from the PLL clock which is controlled by
the external reference clock. The external reference clock which is enabled can be an external
crystal/resonator or it can be another external clock source The PLL clock frequency locks to a
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For 12-bit conversions the code transitions only after the full code width is present, so the quantization
error is −1 lsb to 0 lsb and the code width of each step is 1 lsb.

10.6.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2 lsb in 8-bit or 10-bit
modes and 1 lsb in 12-bit mode). If the first conversion is 0x001, the difference between the actual
0x001 code width and its ideal (1 lsb) is used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5 lsb in 8-bit or 10-bit modes and 1LSB in 12-bit
mode). If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its
ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function and includes all forms of error.

10.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
converter yields the lower code (and vice-versa). However, even small amounts of system noise can cause
the converter to be indeterminate (between two codes) for a range of input voltages around the transition
voltage. This range is normally around 1/2lsb in 8-bit or 10-bit mode, or around 2 lsb in 12-bit mode, and
increases with noise.

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the
techniques discussed in Section 10.6.2.3 reduces this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.
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11.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of
read/write formats are possible within a transfer that includes 10-bit addressing.

11.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 11-9). When a 10-bit address follows a start condition,
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own
address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match
and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the
second byte of the slave address with its own address. Only one slave finds a match and generates an
acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition
(P) or a repeated start condition (Sr) followed by a different slave address.

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

11.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/W bit (see Table 11-10). Up to and including
acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a
slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed
before. This slave then checks whether the first seven bits of the first byte of the slave address following
Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there
is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3.
The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition
(Sr) followed by a different slave address.

After a repeated start condition (Sr), all other slave devices also compare the first seven bits of the first byte
of the slave address with their own addresses and test the eighth (R/W) bit. However, none of them are
addressed because R/W = 1 (for 10-bit devices) or the 11110XX slave address (for 7-bit devices) does not
match.

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.

S
Slave Address 1st 7 bits R/W

A1
Slave Address 2nd byte

A2 Data A ... Data A/A P
11110 + AD10 + AD9 0 AD[8:1]

Table 11-9. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

S

Slave Address
1st 7 bits

R/W
A1

Slave Address
2nd byte A2 Sr

Slave Address
1st 7 bits

R/W
A3 Data A ... Data A P

11110 + AD10 + AD9 0 AD[8:1] 11110 + AD10 + AD9 1

Table 11-10. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address
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Figure 12-3. SPI Module Block Diagram

12.1.3 SPI Baud Rate Generation

As shown in Figure 12-4, the clock source for the SPI baud rate generator is the bus clock. The three
prescale bits (SPPR2:SPPR1:SPPR0) choose a prescale divisor of 1, 2, 3, 4, 5, 6, 7, or 8. The three rate
select bits (SPR2:SPR1:SPR0) divide the output of the prescaler stage by 2, 4, 8, 16, 32, 64, 128, or 256
to get the internal SPI master mode bit-rate clock.
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12.5 Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPID) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.

During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was in
the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data were
shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data byte is
moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read by
reading SPID. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is moved
into the shifter, SPTEF is set, and a new transfer is started.

Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.

When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Section 12.5.1, “SPI Clock Formats” for more details.

Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPID) before the next transfer is finished or a receive overrun error results.

In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.

12.5.1 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.

Figure 12-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after
the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending
on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms
applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the
MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output
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in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a
specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input
of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a
master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies
to the slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes
to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after
the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a
slave.

Figure 12-11. SPI Clock Formats (CPHA = 0)

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB
depending on LSBFE) when SS goes to active low. The first SPSCK edge causes both the master and the
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between
transfers.
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13.2.7 SCI Data Register (SCI1D)

This register is actually two separate registers. Reads return the contents of the read-only receive data
buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also
involved in the automatic flag clearing mechanisms for the SCI status flags.

13.3 Functional Description
The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote
devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block.
The transmitter and receiver operate independently, although they use the same baud rate generator. During
normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and processes
received data. The following describes each of the blocks of the SCI.

13.3.1 Baud Rate Generation

As shown in Figure 13-12, the clock source for the SCI baud rate generator is the bus-rate clock.

4
TXINV1

Transmit Data Inversion — Setting this bit reverses the polarity of the transmitted data output.
0 Transmit data not inverted
1 Transmit data inverted

3
ORIE

Overrun Interrupt Enable — This bit enables the overrun flag (OR) to generate hardware interrupt requests.
0 OR interrupts disabled (use polling).
1 Hardware interrupt requested when OR = 1.

2
NEIE

Noise Error Interrupt Enable — This bit enables the noise flag (NF) to generate hardware interrupt requests.
0 NF interrupts disabled (use polling).
1 Hardware interrupt requested when NF = 1.

1
FEIE

Framing Error Interrupt Enable — This bit enables the framing error flag (FE) to generate hardware interrupt
requests.
0 FE interrupts disabled (use polling).
1 Hardware interrupt requested when FE = 1.

0
PEIE

Parity Error Interrupt Enable — This bit enables the parity error flag (PF) to generate hardware interrupt
requests.
0 PF interrupts disabled (use polling).
1 Hardware interrupt requested when PF = 1.

1 Setting TXINV inverts the TxD output for all cases: data bits, start and stop bits, break, and idle.

7 6 5 4 3 2 1 0

R R7 R6 R5 R4 R3 R2 R1 R0

W T7 T6 T5 T4 T3 T2 T1 T0

Reset 0 0 0 0 0 0 0 0

Figure 13-11. SCI Data Register (SCI1D)

Table 13-7. SCI1C3 Field Descriptions (continued)

Field Description
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14.3.2 RTC Counter Register (RTCCNT)

RTCCNT is the read-only value of the current RTC count of the 8-bit counter.

14.3.3 RTC Modulo Register (RTCMOD)

14.4 Functional Description
The RTC is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector,
and a prescaler block with binary-based and decimal-based selectable values. The module also contains
software selectable interrupt logic.

After any MCU reset, the counter is stopped and reset to 0x00, the modulus register is set to 0x00, and the
prescaler is off. The 1-kHz internal oscillator clock is selected as the default clock source. To start the
prescaler, write any value other than zero to the prescaler select bits (RTCPS).

Three clock sources are software selectable: the low power oscillator clock (LPO), the external clock
(ERCLK), and the internal clock (IRCLK). The RTC clock select bits (RTCLKS) select the desired clock
source. If a different value is written to RTCLKS, the prescaler and RTCCNT counters are reset to 0x00.

7 6 5 4 3 2 1 0

R RTCCNT

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-4. RTC Counter Register (RTCCNT)

Table 14-4. RTCCNT Field Descriptions

Field Description

7:0
RTCCNT

RTC Count. These eight read-only bits contain the current value of the 8-bit counter. Writes have no effect to this
register. Reset, writing to RTCMOD, or writing different values to RTCLKS and RTCPS clear the count to 0x00.

7 6 5 4 3 2 1 0

R
RTCMOD

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-5. RTC Modulo Register (RTCMOD)

Table 14-5. RTCMOD Field Descriptions

Field Description

7:0
RTCMOD

RTC Modulo. These eight read/write bits contain the modulo value used to reset the count to 0x00 upon a compare
match and set the RTIF status bit. A value of 0x00 sets the RTIF bit on each rising edge of the prescaler output.
Writing to RTCMOD resets the prescaler and the RTCCNT counters to 0x00. Reset sets the modulo to 0x00.
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A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in
comparator B

A Then B — Trigger when the address matches the value in comparator B but only after the address for
another cycle matched the value in comparator A. There can be any number of cycles after the A match
and before the B match.

A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally)
must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte
of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of
comparator B is not used.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low
half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within
the same bus cycle to cause a trigger.

In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.

Event-Only B (Store Data) — Trigger events occur each time the address matches the value in
comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the
FIFO becomes full.

A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger
event occurs each time the address matches the value in comparator B. Trigger events cause the data to be
captured into the FIFO. The debug run ends when the FIFO becomes full.

Inside Range (A ≤ Address ≤ B) — A trigger occurs when the address is greater than or equal to the value
in comparator A and less than or equal to the value in comparator B at the same time.

Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than
the value in comparator A or greater than the value in comparator B.
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Appendix B
Timer Pulse-Width Modulator (TPMV2)

NOTE
This chapter refers to S08TPM version 2, which applies to the 3M05C and
older mask sets of this device. )M74K and newer mask set devices use
S08TPM version 3. If your device uses mask 0M74K or newer, please refer
to Chapter 15, “Timer Pulse-Width Modulator (S08TPMV3) for
information pertaining to that module.

The TPM uses one input/output (I/O) pin per channel, TPMxCHn where x is the TPM number (for
example, 1 or 2) and n is the channel number (for example, 0–4). The TPM shares its I/O pins with
general-purpose I/O port pins (refer to the Pins and Connections chapter for more information).

B.0.1 Features

The TPM has the following features:

• Each TPM may be configured for buffered, center-aligned pulse-width modulation (CPWM) on all
channels

• Clock sources independently selectable per TPM (multiple TPMs device)

• Selectable clock sources (device dependent): bus clock, fixed system clock, external pin

• Clock prescaler taps for divide by 1, 2, 4, 8, 16, 32, 64, or 128

• 16-bit free-running or up/down (CPWM) count operation

• 16-bit modulus register to control counter range

• Timer system enable

• One interrupt per channel plus a terminal count interrupt for each TPM module (multiple TPMs
device)

• Channel features:

— Each channel may be input capture, output compare, or buffered edge-aligned PWM

— Rising-edge, falling-edge, or any-edge input capture trigger

— Set, clear, or toggle output compare action

— Selectable polarity on PWM outputs

B.0.2 Block Diagram

Figure B-1 shows the structure of a TPM. Some MCUs include more than one TPM, with various numbers
of channels.
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B.2.2 Timer Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter.
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where
they remain latched until the other byte is read. This allows coherent 16-bit reads in either order. The
coherency mechanism is automatically restarted by an MCU reset, a write of any value to TPMxCNTH or
TPMxCNTL, or any write to the timer status/control register (TPMxSC).

Reset clears the TPM counter registers.

Table B-2. TPM Clock Source Selection

 CLKSB:CLKSA  TPM Clock Source to Prescaler Input

0:0 No clock selected (TPMx disabled)

0:1 Bus rate clock (BUSCLK)

1:0 Fixed system clock (XCLK)

1:1 External source (TPMxCLK)1,2

1 The maximum frequency that is allowed as an external clock is one-fourth of the bus
frequency.

2 If the external clock input is shared with channel n and is selected as the TPM clock source,
the corresponding ELSnB:ELSnA control bits should be set to 0:0 so channel n does not try
to use the same pin for a conflicting function.

Table B-3. Prescale Divisor Selection

 PS2:PS1:PS0  TPM Clock Source Divided-By

0:0:0 1

0:0:1 2

0:1:0 4

0:1:1 8

1:0:0 16

1:0:1 32

1:1:0 64

1:1:1 128

7 6 5 4 3 2 1 0

R Bit 15 14 13 12 11 10 9 Bit 8

W Any write to TPMxCNTH clears the 16-bit counter.

Reset 0 0 0 0 0 0 0 0

Figure B-3. Timer Counter Register High (TPMxCNTH)
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Table C-2. Package Descriptions

 Pin Count   Type  Abbreviation  Designator  Document No.

64 Low Quad Flat Package LQFP LH 98ASS23234W

48 Low Quad Flat Package LQFP LF 98ASH00962A

32 Low Quad Flat Package LQFP LC 98ASH70029A


