

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

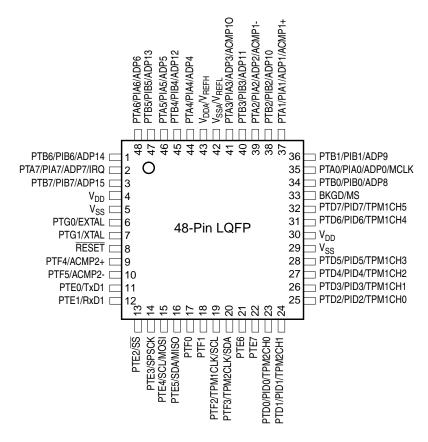
E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08dn60amlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters


Title

Page

Chapter 1	Device Overview
Chapter 2	Pins and Connections23
Chapter 3	Modes of Operation
Chapter 4	Memory
Chapter 5	Resets, Interrupts, and General System Control63
Chapter 6	Parallel Input/Output Control79
Chapter 7	Central Processor Unit (S08CPUV3)109
Chapter 8	Multi-Purpose Clock Generator (S08MCGV1)
Chapter 9	Analog Comparator (S08ACMPV3)161
Chapter 10	Analog-to-Digital Converter (S08ADC12V1)167
Chapter 11	Inter-Integrated Circuit (S08IICV2)193
Chapter 12	Serial Peripheral Interface (S08SPIV3)213
Chapter 13	Serial Communications Interface (S08SCIV4)229
Chapter 14	Real-Time Counter (S08RTCV1)
Chapter 15	Timer Pulse-Width Modulator (S08TPMV3)259
Chapter 16	Development Support
Appendix A	Electrical Characteristics
Appendix B	Timer Pulse-Width Modulator (TPMV2)
Appendix C	Ordering Information and Mechanical Drawings

Chapter 2 Pins and Connections



Figure 2-2. 48-Pin LQFP

NOTE

To avoid extra current drain from floating input pins, the reset initialization routine in the application program should either enable on-chip pull-up devices or change the direction of unused or non-bonded pins to outputs so they do not float.

4.4 RAM

The MC9S08DN60 Series includes static RAM. The locations in RAM below 0x0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred.

The RAM retains data while the MCU is in low-power wait, stop2, or stop3 mode. At power-on the contents of RAM are uninitialized. RAM data is unaffected by any reset if the supply voltage does not drop below the minimum value for RAM retention (V_{RAM}).

For compatibility with M68HC05 MCUs, the HCS08 resets the stack pointer to 0x00FF. In the MC9S08DN60 Series, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM in the Freescale Semiconductor equate file).

LDHX #RamLast+1 ;point one past RAM TXS ;SP<-(H:X-1)

When security is enabled, the RAM is considered a secure memory resource and is not accessible through BDM or code executing from non-secure memory. See Section 4.5.9, "Security", for a detailed description of the security feature.

4.5 Flash and EEPROM

MC9S08DN60 Series devices include Flash and EEPROM memory intended primarily for program and data storage. In-circuit programming allows the operating program and data to be loaded into Flash and EEPROM, respectively, after final assembly of the application product. It is possible to program the arrays through the single-wire background debug interface. Because no special voltages are needed for erase and programming operations, in-application programming is also possible through other software-controlled communication paths. For a more detailed discussion of in-circuit and in-application programming, refer to the *HCS08 Family Reference Manual, Volume I*, Freescale Semiconductor document order number HCS08RMv1.

4.5.1 Features

Features of the Flash and EEPROM memory include:

- Array size (see Table 1-1 for exact array sizes)
- Flash sector size: 768 bytes
- EEPROM sector size: selectable 4-byte or 8-byte sector mapping operation
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 100,000 program/erase cycles at typical voltage and temperature
- Flexible block protection and vector redirection
- Security feature for Flash, EEPROM, and RAM

Table 4-14. FSTAT	Register Field	Descriptions	(continued)
-------------------	-----------------------	--------------	-------------

Field	Description
4 FACCERR	Access Error Flag — FACCERR is set automatically when the proper command sequence is not obeyed exactly (the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register has been initialized, or if the MCU enters stop while a command was in progress. For a more detailed discussion of the exact actions that are considered access errors, see Section 4.5.6, "Access Errors." FACCERR is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect. 0 No access error. 1 An access error has occurred.
2 FBLANK	 Verified as All Blank (erased) Flag — FBLANK is set automatically at the conclusion of a blank check command if the entire Flash or EEPROM array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a new valid command. Writing to FBLANK has no meaning or effect. O After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the Flash or EEPROM array is not completely erased. 1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the Flash or EEPROM array is completely erased (all 0xFFF).

4.5.11.6 Flash and EEPROM Command Register (FCMD)

Only six command codes are recognized in normal user modes, as shown in Table 4-15. All other command codes are illegal and generate an access error. Refer to Section 4.5.3, "Program and Erase Command Execution," for a detailed discussion of Flash and EEPROM programming and erase operations.

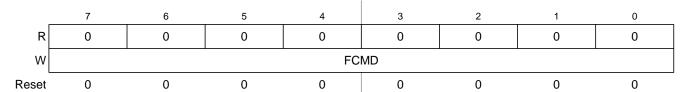
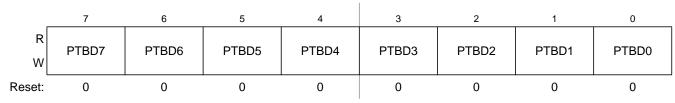


Figure 4-10. Flash and EEPROM Command Register (FCMD)

Command	FCMD	Equate File Label
Blank check	0x05	mBlank
Byte program	0x20	mByteProg
Burst program	0x25	mBurstProg
Sector erase	0x40	mSectorErase
Mass erase	0x41	mMassErase
Sector erase abort	0x47	mEraseAbort

It is not necessary to perform a blank check command after a mass erase operation. Only blank check is required as part of the security unlocking mechanism.



Chapter 6 Parallel Input/Output Control

6.5.2 Port B Registers

Port B is controlled by the registers listed below.

6.5.2.1 Port B Data Register (PTBD)

Figure 6-11. Port B Data Register (PTBD)

Table 6-9. PTBD Register Field Descriptions

Field	Description
7:0 PTBD[7:0]	Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTBD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6.5.2.2 Port B Data Direction Register (PTBDD)

	7	6	5	4	3	2	1	0
R W	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
Reset:	0	0	0	0	0	0	0	0

Figure 6-12. Port B Data Direction Register (PTBDD)

Table 6-10. PTBDD Register Field Descriptions

Field	Description
	Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for PTBD reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.

Table 7-5. Opcode Ma										012)					
	ipulation	Branch	Read-Modify-Write						trol	Register/Memory					
00 5		20 3	30 5	40 1	50 1	60 5	70 4	80 9	90 3	A0 2	B0 3	C0 4	D0 4	E0 3	F0 3
BRSET0		BRA	NEG	NEGA	NEGX	NEG	NEG	RTI	BGE	SUB	SUB	SUB	SUB	SUB	SUB
3 DIR		2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
01 5	11 5	21 3	31 5	41 4	51 4	61 5	71 5	81 6	91 3	A1 2	B1 3	C1 4	D1 4	E1 3	F1 3
BRCLR0	BCLR0	BRN	CBEQ	CBEQA	CBEQX	CBEQ	CBEQ	RTS	BLT	CMP	CMP	CMP	CMP	CMP	CMP
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
02 5	12 5	22 3	32 5	42 5	52 6	62 1	72 1	82 5+	92 3	A2 2	B2 3	C2 4	D2 4	E2 3	F2 3
BRSET1	BSET1	BHI	LDHX	MUL	DIV	NSA	DAA	BGND	BGT	SBC	SBC	SBC	SBC	SBC	SBC
3 DIR	2 DIR	2 REL	3 EXT	1 INH	1 INH	1 INH	1 INH	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 4	83 11	93 3	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3
BRCLR1	BCLR1	BLS	COM	COMA	COMX	COM	COM	SWI	BLE	CPX	CPX	CPX	CPX	CPX	CPX
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3
BRSET2	BSET2	BCC	LSR	LSRA	LSRX	LSR	LSR	TAP	TXS	AND	AND	AND	AND	AND	AND
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	95 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2	BCLR2	BCS	STHX	LDHX	LDHX	CPHX	CPHX	TPA	TSX	BIT	BIT	BIT	BIT	BIT	BIT
3 DIR	2 DIR	2 REL	2 DIR	3 IMM	2 DIR	3 IMM	2 DIR	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
06 5	16 5	26 3	36 5	46 1	56 1	66 5	76 4	86 3	96 5	A6 2	B6 3	C6 4	D6 4	E6 3	F6 3
BRSET3	BSET3	BNE	ROR	RORA	RORX	ROR	ROR	PULA	STHX	LDA	LDA	LDA	LDA	LDA	LDA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	3 EXT	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
07 5	17 5	27 3	37 5	47 1	57 1	67 5	77 4	87 2	97 1	A7 2	B7 3	C7 4	D7 4	E7 3	F7 2
BRCLR3	BCLR3	BEQ	ASR	ASRA	ASRX	ASR	ASR	PSHA	TAX	AIS	STA	STA	STA	STA	STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
08 5		28 3	38 5	48 1	58 1	68 5	78 4	88 3	98 1	A8 2	B8 3	C8 4	D8 4	E8 3	F8 3
BRSET4		BHCC	LSL	LSLA	LSLX	LSL	LSL	PULX	CLC	EOR	EOR	EOR	EOR	EOR	EOR
3 DIR		2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
09 5 BRCLR4 3 DIR	19 5	29 3 BHCS 2 REL	39 5 ROL 2 DIR	49 1 ROLA 1 INH	59 1 ROLX 1 INH		79 4 ROL 1 IX	89 2 PSHX 1 INH	99 1 SEC 1 INH	A9 2 ADC 2 IMM		C9 4 ADC 3 EXT		E9 3 ADC 2 IX1	F9 3 ADC 1 IX
0A 5	1A 5	2A 3	3A 5	4A 1	5A 1	6A 5	7A 4	8A 3	9A 1	AA 2	BA 3	CA 4	DA 4	EA 3	FA 3
BRSET5	BSET5	BPL	DEC	DECA	DECX	DEC	DEC	PULH	CLI	ORA	ORA	ORA	ORA	ORA	ORA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0B 5	1B 5	2B 3	3B 7	4B 4	5B 4	6B 7	7B 6	8B 2	9B 1	AB 2	BB 3	CB 4	DB 4	EB 3	FB 3
BRCLR5	BCLR5	BMI	DBNZ	DBNZA	DBNZX	DBNZ	DBNZ	PSHH	SEI	ADD	ADD	ADD	ADD	ADD	ADD
3 DIR	2 DIR	2 REL	3 DIR	2 INH	2 INH	3 IX1	2 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0C 5	1C 5	2C 3	3C 5	4C 1	5C 1	6C 5	7C 4	8C 1	9C 1		BC 3	CC 4	DC 4	EC 3	FC 3
BRSET6	BSET6	BMC	INC	INCA	INCX	INC	INC	CLRH	RSP		JMP	JMP	JMP	JMP	JMP
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH		2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0D 5	1D 5	2D 3	3D 4	4D 1	5D 1	6D 4	7D 3		9D 1	AD 5	BD 5	CD 6	DD 6	ED 5	FD 5
BRCLR6	BCLR6	BMS	TST	TSTA	TSTX	TST	TST		NOP	BSR	JSR	JSR	JSR	JSR	JSR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX		1 INH	2 REL	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
0E 5 BRSET7 3 DIR	1E 5 BSET7 2 DIR	2E 3 BIL 2 REL	3E 6 CPHX 3 EXT	4E 5 MOV 3 DD	5E 5 MOV 2 DIX+	MOV	7E 5 MOV 2 IX+D	8E 2+ STOP 1 INH	^{9E} Page 2	AE 2 LDX 2 IMM	BE 3 LDX 2 DIR	CE 4 LDX 3 EXT	DE 4 LDX 3 IX2	EE 3 LDX 2 IX1	FE 3 LDX 1 IX
0F 5	1F 5	2F 3	3F 5	4F 1	5F 1	6F 5	7F 4	8F 2+	9F 1	AF 2	BF 3	CF 4	DF 4	EF 3	FF 2
BRCLR7	BCLR7	BIH	CLR	CLRA	CLRX	CLR	CLR	WAIT	TXA	AIX	STX	STX	STX	STX	STX
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX

Table 7-3. Opcode Map (Sheet 1 of 2)

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

REL IX IX1 IX2 IMD DIX+

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

MC9S08DN60 Series Data Sheet, Rev 3

Opcode in Hexadecimal F0 3 SUB 1 IX Addressing Mode Number of Bytes 1

Chapter 7 Central Processor Unit (S08CPUV3)

Bit-Manipulation	Branch	Read-Modify-Write					Control Register/Memory							
					9E60 6 NEG 3 SP1							9ED0 5 SUB 4 SP2	9EE0 4 SUB 3 SP1	
					9E61 6 CBEQ 4 SP1							9ED1 5	9EE1 4	
												4 SP2 9ED2 5 SBC 4 SP2	3 SP1	
					9E63 6 COM 3 SP1							9ED3 5 CPX 4 SP2 9ED4 5	CPX 3 SP1	9EF3 6 CPHX 3 SP1
					9E64 6 LSR 3 SP1							9ED4 5 AND 4 SP2 9ED5 5 BIT 4 SP2	9EE4 4 AND 3 SP1	
												9ED5 5 BIT 4 SP2 9ED6 5	9EE5 4 BIT 3 SP1	
					9E66 6 ROR 3 SP1 9E67 6									
					ASR 3 SP1							4 SP2 9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
					9E68 6 LSL 3 SP1 9E69 6							9ED8 5 EOR 4 SP2	9EE8 4 EOR 3 SP1	
					ROL 3 SP1							9ED9 5 ADC 4 SP2	ADC 3 SP1	
					9E6A 6 DEC 3 SP1 9E6B 8							9EDA 5 ORA 4 SP2	ORA 3 SP1	
					DBNZ 4 SP1							9EDB 5 ADD 4 SP2	ADD	
					9E6C 6 INC 3 SP1									
					9E6D 5 TST 3 SP1									
									9EAE 5 LDHX 2 IX	LDHX	Іпнх	9EDE 5 LDX 4 SP2 9EDF 5	אחו	
					9E6F 6 CLR 3 SP1							9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR INH IMM DIR EXT DD IX+D

REL IX IX1 IX2 IMD DIX+ Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+ Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+ IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

Chapter 8 Multi-Purpose Clock Generator (S08MCGV1)

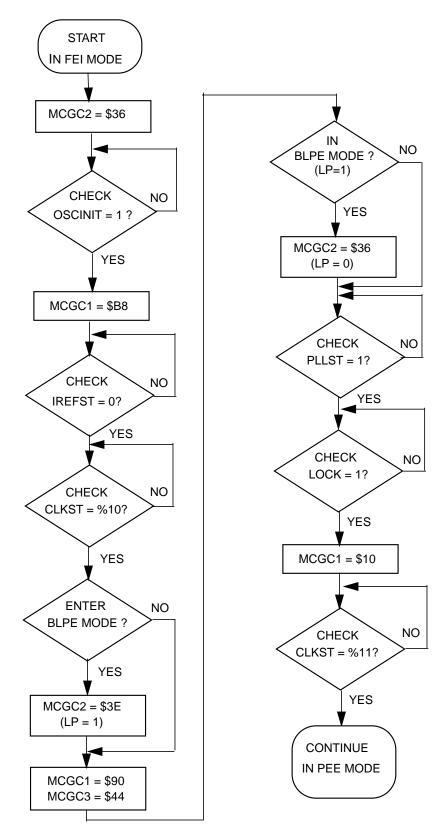


Figure 8-9. Flowchart of FEI to PEE Mode Transition using a 4 MHz crystal

Chapter 11 Inter-Integrated Circuit (S08IICV2)

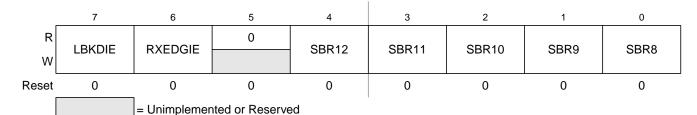
11.7 Initialization/Application Information

		Medule Initialization (Slove)					
1.	1. Write: IICC2						
1.		nable or disable general call					
		elect 10-bit or 7-bit addressing mode					
2.	Write: IIC	-					
	— to se	et the slave address					
3.	Write: IIC	CC1					
		nable IIC and interrupts					
4.		RAM variables (IICEN = 1 and IICIE = 1) for transmit data					
5.	Initialize	RAM variables used to achieve the routine shown in Figure 11-12					
		Module Initialization (Master)					
1.	Write: IIC						
		et the IIC baud rate (example provided in this chapter)					
2.	Write: IIC						
	— to er	nable IIC and interrupts					
3.		RAM variables (IICEN = 1 and IICIE = 1) for transmit data					
4.		RAM variables used to achieve the routine shown in Figure 11-12					
5.	Write: IIC						
~	— to er						
6.	Write: IIC						
7.	Write: IIC	nable MST (master mode)					
1.		the address of the target slave. (The lsb of this byte determines whether the communication is					
		ter receive or transmit.)					
		Module Use					
	The routi	ne shown in Figure 11-12 can handle both master and slave IIC operations. For slave operation, an					
	incoming	IIC message that contains the proper address begins IIC communication. For master operation,					
	commun	ication must be initiated by writing to the IICD register.					
	· · · · · · · · · · · · · · · · · · ·						
		Register Model					
	IICA	AD[7:1] 0					
		When addressed as a slave (in slave mode), the module responds to this address					
	IICF	MULT					
	Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))						
	IICC1	IICEN IICIE MST TX TXAK RSTA 0 0					
		Module configuration					
	IICS	TCF IAAS BUSY ARBL 0 SRW IICIF RXAK					
	Module status flags						
	IICD	DATA					
	Data register; Write to transmit IIC data read to read IIC data						
	IICC2	GCAEN ADEXT 0 0 0 AD10 AD9 AD8					
	Address configuration						

Figure 11-11. IIC Module Quick Start

Chapter 13 Serial Communications Interface (S08SCIV4)

13.2 Register Definition


The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all SCI registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

13.2.1 SCI Baud Rate Registers (SCI1BDH, SCI1BDL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud rate setting [SBR12:SBR0], first write to SCI1BDH to buffer the high half of the new value and then write to SCI1BDL. The working value in SCI1BDH does not change until SCI1BDL is written.

SCI1BDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first time the receiver or transmitter is enabled (RE or TE bits in SCI1C2 are written to 1).

Figure 13-4. SCI Baud Rate Register (SCI1BDH)

Field	Description
7 LBKDIE	 LIN Break Detect Interrupt Enable (for LBKDIF) 0 Hardware interrupts from LBKDIF disabled (use polling). 1 Hardware interrupt requested when LBKDIF flag is 1.
6 RXEDGIE	RxD Input Active Edge Interrupt Enable (for RXEDGIF)0Hardware interrupts from RXEDGIF disabled (use polling).1Hardware interrupt requested when RXEDGIF flag is 1.
4:0 SBR[12:8]	Baud Rate Modulo Divisor — The 13 bits in SBR[12:0] are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 13-2.

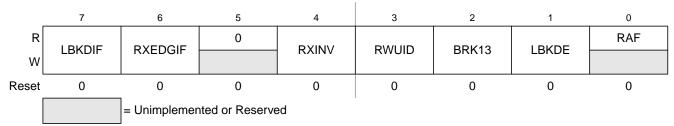


Table 13-5. SCI1S1 Field Descriptions (continued)

Field	Description		
1 FE	 Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read SCI1S1 with FE = 1 and then read the SCI data register (SCI1D). 0 No framing error detected. This does not guarantee the framing is correct. 1 Framing error. 		
0 PF	 Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in the received character does not agree with the expected parity value. To clear PF, read SCI1S1 and then read the SCI data register (SCI1D). 0 No parity error. 1 Parity error. 		

13.2.5 SCI Status Register 2 (SCI1S2)

This register has one read-only status flag.

Figure 13-9. SCI Status Register 2 (SCI1S2)

Table 13-6. SCI1S2 Field Descriptions

Field	Description
7 LBKDIF	LIN Break Detect Interrupt Flag — LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break character is detected. LBKDIF is cleared by writing a "1" to it. 0 No LIN break character has been detected. 1 LIN break character has been detected.
6 RXEDGIF	RxD Pin Active Edge Interrupt Flag — RXEDGIF is set when an active edge (falling if RXINV = 0, rising if RXINV=1) on the RxD pin occurs. RXEDGIF is cleared by writing a "1" to it. 0 No active edge on the receive pin has occurred. 1 An active edge on the receive pin has occurred.
4 RXINV ¹	Receive Data Inversion — Setting this bit reverses the polarity of the received data input. 0 Receive data not inverted 1 Receive data inverted
3 RWUID	 Receive Wake Up Idle Detect— RWUID controls whether the idle character that wakes up the receiver sets the IDLE bit. 0 During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. 1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character.
2 BRK13	 Break Character Generation Length — BRK13 is used to select a longer transmitted break character length. Detection of a framing error is not affected by the state of this bit. 0 Break character is transmitted with length of 10 bit times (11 if M = 1) 1 Break character is transmitted with length of 13 bit times (14 if M = 1)

Chapter 13 Serial Communications Interface (S08SCIV4)

14.1.2 Features

Features of the RTC module include:

- 8-bit up-counter
 - 8-bit modulo match limit
 - Software controllable periodic interrupt on match
- Three software selectable clock sources for input to prescaler with selectable binary-based and decimal-based divider values
 - 1-kHz internal low-power oscillator (LPO)
 - External clock (ERCLK)
 - 32-kHz internal clock (IRCLK)

14.1.3 Modes of Operation

This section defines the operation in stop, wait and background debug modes.

14.1.3.1 Wait Mode

The RTC continues to run in wait mode if enabled before executing the appropriate instruction. Therefore, the RTC can bring the MCU out of wait mode if the real-time interrupt is enabled. For lowest possible current consumption, the RTC should be stopped by software if not needed as an interrupt source during wait mode.

14.1.3.2 Stop Modes

The RTC continues to run in stop2 or stop3 mode if the RTC is enabled before executing the STOP instruction. Therefore, the RTC can bring the MCU out of stop modes with no external components, if the real-time interrupt is enabled.

The LPO clock can be used in stop2 and stop3 modes. ERCLK and IRCLK clocks are only available in stop3 mode.

Power consumption is lower when all clock sources are disabled, but in that case, the real-time interrupt cannot wake up the MCU from stop modes.

14.1.3.3 Active Background Mode

The RTC suspends all counting during active background mode until the microcontroller returns to normal user operating mode. Counting resumes from the suspended value as long as the RTCMOD register is not written and the RTCPS and RTCLKS bits are not altered.

Chapter 15 Timer/PWM Module (S08TPMV3)

Chapter 16 Development Support

Figure 16-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The host should sample the bit level about 10 cycles after it started the bit time.

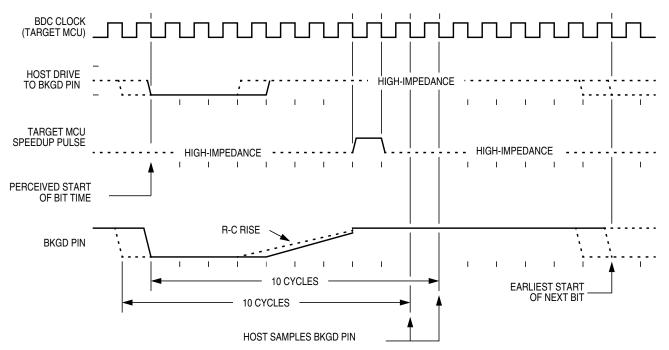


Figure 16-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

Command Mnemonic	Active BDM/ Non-intrusive	Coding Structure	Description	
SYNC	Non-intrusive	n/a ¹	Request a timed reference pulse to determine target BDC communication speed	
ACK_ENABLE	Non-intrusive	D5/d	Enable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.	
ACK_DISABLE	Non-intrusive	D6/d	Disable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.	
BACKGROUND	Non-intrusive	90/d	Enter active background mode if enabled (ignore if ENBDM bit equals 0)	
READ_STATUS	Non-intrusive	E4/SS	Read BDC status from BDCSCR	
WRITE_CONTROL	Non-intrusive	C4/CC	Write BDC controls in BDCSCR	
READ_BYTE	Non-intrusive	E0/AAAA/d/RD	Read a byte from target memory	
READ_BYTE_WS	Non-intrusive	E1/AAAA/d/SS/RD	Read a byte and report status	
READ_LAST	Non-intrusive	E8/SS/RD	Re-read byte from address just read and report status	
WRITE_BYTE	Non-intrusive	C0/AAAA/WD/d	Write a byte to target memory	
WRITE_BYTE_WS	Non-intrusive	C1/AAAA/WD/d/SS	Write a byte and report status	
READ_BKPT	Non-intrusive	E2/RBKP	Read BDCBKPT breakpoint register	
WRITE_BKPT	Non-intrusive	C2/WBKP	Write BDCBKPT breakpoint register	
GO	Active BDM	08/d	Go to execute the user application program starting at the address currently in the PC	
TRACE1	Active BDM	10/d	Trace 1 user instruction at the address in the PC, then return to active background mode	
TAGGO	Active BDM	18/d	Same as GO but enable external tagging (HCS08 devices have no external tagging pin)	
READ_A	Active BDM	68/d/RD	Read accumulator (A)	
READ_CCR	Active BDM	69/d/RD	Read condition code register (CCR)	
READ_PC	Active BDM	6B/d/RD16	Read program counter (PC)	
READ_HX	Active BDM	6C/d/RD16	Read H and X register pair (H:X)	
READ_SP	Active BDM	6F/d/RD16	Read stack pointer (SP)	
READ_NEXT	Active BDM	70/d/RD	Increment H:X by one then read memory byte located at H:X	
READ_NEXT_WS	Active BDM	71/d/SS/RD	Increment H:X by one then read memory byte located at H:X. Report status and data.	
WRITE_A	Active BDM	48/WD/d	Write accumulator (A)	
WRITE_CCR	Active BDM	49/WD/d	Write condition code register (CCR)	
WRITE_PC	Active BDM	4B/WD16/d	Write program counter (PC)	
WRITE_HX	Active BDM	4C/WD16/d	Write H and X register pair (H:X)	
WRITE_SP	Active BDM	4F/WD16/d	Write stack pointer (SP)	
WRITE_NEXT	Active BDM	50/WD/d	Increment H:X by one, then write memory byte located at H:X	
WRITE_NEXT_WS	Active BDM	51/WD/d/SS	Increment H:X by one, then write memory byte located at H:X. Also report status.	

Table 16-1. BDC Command Summa

¹ The SYNC command is a special operation that does not have a command code.

Appendix A Electrical Characteristics

A.1 Introduction

This section contains the most accurate electrical and timing information for the MC9S08DN60 Series of microcontrollers available at the time of publication.

A.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.			
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.			
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.			
D	Those parameters are derived mainly from simulations.			

Table A-1. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

A.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table A-2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

Appendix B Timer Pulse-Width Modulator (TPMV2)

As an up-counter, the main 16-bit counter counts from 0x0000 through its terminal count and then continues with 0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts upward from 0x0000 through its terminal count and then counts downward to 0x0000 where it returns to up-counting. Both 0x0000 and the terminal count value (value in TPMxMODH:TPMxMODL) are normal length counts (one timer clock period long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is a software-accessible indication that the timer counter has overflowed. The enable signal selects between software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation (TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In up-counting mode, the main 16-bit counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When the main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction at the transition from the value set in the modulus register and the next lower count value. This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center of a period.)

Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter for read operations. Whenever either byte of the counter is read (TPMxCNTH or TPMxCNTL), both bytes are captured into a buffer so when the other byte is read, the value will represent the other byte of the count at the time the first byte was read. The counter continues to count normally, but no new value can be read from either byte until both bytes of the old count have been read.

The main timer counter can be reset manually at any time by writing any value to either byte of the timer count TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism in case only one byte of the counter was read before resetting the count.

B.3.2 Channel Mode Selection

Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits in the channel n status and control registers determine the basic mode of operation for the corresponding channel. Choices include input capture, output compare, and buffered edge-aligned PWM.

B.3.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter into the channel value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge may be chosen as the active edge that triggers an input capture.

When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to the channel status/control register (TPMxCnSC).

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994.

 $\overline{3}$ datums a, b, and d to be determined at datum plane h.

 $\overline{/4.}$ dimensions to be determined at seating plane datum c.

<u>/5</u> DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM.

<u>6</u> DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

 $\overline{/7.}$ exact shape of each corner is optional.

 $\overline{/8.}$ These dimensions apply to the flat section of the lead between 0.1 MM and 0.25 MM from the lead tip.

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NE	1: 98ASH70029A	RE∨∶D	
LOW PROFILE QUAD FLAT PA	CASE NUMBER: 873A-03 19 MAY 200		19 MAY 2005	
32 LEAD, 0.8 PITCH (7 X	STANDARD: JE	DEC MS-026 BBA		