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Background commands are of two types:

• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD/MS pin while the MCU is in
run mode; non-intrusive commands can also be executed when the MCU is in the active
background mode. Non-intrusive commands include:

— Memory access commands

— Memory-access-with-status commands

— BDC register access commands

— The BACKGROUND command

• Active background commands, which can only be executed while the MCU is in active background
mode. Active background commands include commands to:

— Read or write CPU registers

— Trace one user program instruction at a time

— Leave active background mode to return to the user application program (GO)

The active background mode is used to program a bootloader or user application program into the Flash
program memory before the MCU is operated in run mode for the first time. When the MC9S08DN60
Series is shipped from the Freescale Semiconductor factory, the Flash program memory is erased by
default unless specifically noted so there is no program that could be executed in run mode until the Flash
memory is initially programmed. The active background mode can also be used to erase and reprogram
the Flash memory after it has been previously programmed.

For additional information about the active background mode, refer to the Development Support chapter.

3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.

While the MCU is in wait mode, there are some restrictions on which background debug commands can
be used. Only the BACKGROUND command and memory-access-with-status commands are available
when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND
command can be used to wake the MCU from wait mode and enter active background mode.
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if PRDIV8 = 0 — fFCLK = fBus ÷ (DIV + 1) Eqn. 4-1

if PRDIV8 = 1 — fFCLK = fBus ÷ (8 × (DIV + 1)) Eqn. 4-2

Table 4-7 shows the appropriate values for PRDIV8 and DIV for selected bus frequencies.

4.5.11.2 Flash and EEPROM Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from Flash into FOPT. To change
the value in this register, erase and reprogram the NVOPT location in Flash memory as usual and then issue
a new MCU reset.

Table 4-6. FCDIV Register Field Descriptions

Field Description

7
DIVLD

Divisor Loaded Status Flag — When set, this read-only status flag indicates that the FCDIV register has been
written since reset. Reset clears this bit and the first write to this register causes this bit to become set regardless
of the data written.
0 FCDIV has not been written since reset; erase and program operations disabled for Flash and EEPROM.
1 FCDIV has been written since reset; erase and program operations enabled for Flash and EEPROM.

6
PRDIV8

Prescale (Divide) Flash and EEPROM Clock by 8 (This bit is write once.)
0 Clock input to the Flash and EEPROM clock divider is the bus rate clock.
1 Clock input to the Flash and EEPROM clock divider is the bus rate clock divided by 8.

5:0
DIV

Divisor for Flash and EEPROM Clock Divider — These bits are write once. The Flash and EEPROM clock
divider divides the bus rate clock (or the bus rate clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit DIV
field plus one. The resulting frequency of the internal Flash and EEPROM clock must fall within the range of
200 kHz to 150 kHz for proper Flash and EEPROM operations. Program/Erase timing pulses are one cycle of
this internal Flash and EEPROM clock which corresponds to a range of 5 μs to 6.7 μs. The automated
programming logic uses an integer number of these pulses to complete an erase or program operation. See
Equation 4-1 and Equation 4-2.

Table 4-7. Flash and EEPROM Clock Divider Settings

fBus
PRDIV8
(Binary)

DIV
(Decimal)

fFCLK
Program/Erase Timing Pulse

(5 μs Min, 6.7 μs Max)

20 MHz 1 12 192.3 kHz 5.2 μs

10 MHz 0 49 200 kHz 5 μs

8 MHz 0 39 200 kHz 5 μs

4 MHz 0 19 200 kHz 5 μs

2 MHz 0 9 200 kHz 5 μs

1 MHz 0 4 200 kHz 5 μs

200 kHz 0 0 200 kHz 5 μs

150 kHz 0 0 150 kHz 6.7 μs
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4.5.11.6 Flash and EEPROM Command Register (FCMD)

Only six command codes are recognized in normal user modes, as shown in Table 4-15. All other
command codes are illegal and generate an access error. Refer to Section 4.5.3, “Program and Erase
Command Execution,” for a detailed discussion of Flash and EEPROM programming and erase
operations.

It is not necessary to perform a blank check command after a mass erase operation. Only blank check is
required as part of the security unlocking mechanism.

4
FACCERR

Access Error Flag — FACCERR is set automatically when the proper command sequence is not obeyed exactly
(the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register has
been initialized, or if the MCU enters stop while a command was in progress. For a more detailed discussion of
the exact actions that are considered access errors, see Section 4.5.6, “Access Errors.” FACCERR is cleared by
writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect.
0 No access error.
1 An access error has occurred.

2
FBLANK

Verified as All Blank (erased) Flag — FBLANK is set automatically at the conclusion of a blank check command
if the entire Flash or EEPROM array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a
new valid command. Writing to FBLANK has no meaning or effect.
0 After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the Flash or EEPROM array

is not completely erased.
1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the Flash or EEPROM array

is completely erased (all 0xFFFF).

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W FCMD

Reset 0 0 0 0 0 0 0 0

Figure 4-10. Flash and EEPROM Command Register (FCMD)

Table 4-15. Flash and EEPROM Commands

Command FCMD Equate File Label

Blank check 0x05 mBlank

Byte program 0x20 mByteProg

Burst program 0x25 mBurstProg

Sector erase 0x40 mSectorErase

Mass erase 0x41 mMassErase

Sector erase abort 0x47 mEraseAbort

Table 4-14. FSTAT Register Field Descriptions  (continued)

Field Description
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6.5.6 Port F Registers

Port F is controlled by the registers listed below.

6.5.6.1 Port F Data Register (PTFD)

6.5.6.2 Port F Data Direction Register (PTFDD)

7 6 5 4 3 2 1 0

R
PTFD7 PTFD6 PTFD5 PTFD4 PTFD3 PTFD2 PTFD1 PTFD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-37. Port F Data Register (PTFD)

Table 6-35. PTFD Register Field Descriptions

Field Description

7:0
PTFD[7:0]

Port F Data Register Bits — For port F pins that are inputs, reads return the logic level on the pin. For port F
pins that are configured as outputs, reads return the last value written to this register.
Writes are latched into all bits of this register. For port F pins that are configured as outputs, the logic level is
driven out the corresponding MCU pin.
Reset forces PTFD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures
all port pins as high-impedance inputs with pull-ups disabled.

7 6 5 4 3 2 1 0

R
PTFDD7 PTFDD6 PTFDD5 PTFDD4 PTFDD3 PTFDD2 PTFDD1 PTFDD0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-38. Port F Data Direction Register (PTFDD)

Table 6-36. PTFDD Register Field Descriptions

Field Description

7:0
PTFDD[7:0]

Data Direction for Port F Bits — These read/write bits control the direction of port F pins and what is read for
PTFD reads.
0 Input (output driver disabled) and reads return the pin value.
1 Output driver enabled for port F bit n and PTFD reads return the contents of PTFDn.
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8.3.3 MCG Trim Register (MCGTRM)

7 6 5 4 3 2 1 0

R
TRIM

W

POR: 1 0 0 0 0 0 0 0

Reset: U U U U U U U U

Figure 8-5. MCG Trim Register (MCGTRM)

Table 8-3. MCG Trim Register Field Descriptions

Field Description

7:0
TRIM

MCG Trim Setting — Controls the internal reference clock frequency by controlling the internal reference clock
period. The TRIM bits are binary weighted (i.e., bit 1 will adjust twice as much as bit 0). Increasing the binary
value in TRIM will increase the period, and decreasing the value will decrease the period.

An additional fine trim bit is available in MCGSC as the FTRIM bit.

If a TRIM[7:0] value stored in nonvolatile memory is to be used, it’s the user’s responsibility to copy that value
from the nonvolatile memory location to this register.
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c) MCGC1 = 0xB8 (%10111000)

– CLKS (bits 7 and 6) set to %10 in order to select external reference clock as system clock
source

– RDIV (bits 5-3) set to %111, or divide-by-128 because 4 MHz / 128 = 31.25 kHz which is
in the 31.25 kHz to 39.0625 kHz range required by the FLL

– IREFS (bit 2) cleared to 0, selecting the external reference clock

d) Loop until IREFST (bit 4) in MCGSC is 0, indicating the external reference is the current
source for the reference clock

e) Loop until CLKST (bits 3 and 2) in MCGSC are %10, indicating that the external reference
clock is selected to feed MCGOUT

2. Then, FBE must transition either directly to PBE mode or first through BLPE mode and then to
PBE mode:

a) BLPE: If a transition through BLPE mode is desired, first set LP (bit 3) in MCGC2 to 1.

b) BLPE/PBE: MCGC1 = 0x90 (%10010000)

– RDIV (bits 5-3) set to %010, or divide-by-4 because 4 MHz / 4 = 1 MHz which is in the 1
MHz to 2 MHz range required by the PLL. In BLPE mode, the configuration of the RDIV
does not matter because both the FLL and PLL are disabled. Changing them only sets up the
the dividers for PLL usage in PBE mode

c) BLPE/PBE: MCGC3 = 0x44 (%01000100)

– PLLS (bit 6) set to 1, selects the PLL. In BLPE mode, changing this bit only prepares the
MCG for PLL usage in PBE mode

– VDIV (bits 3-0) set to %0100, or multiply-by-16 because 1 MHz reference * 16 = 16 MHz.
In BLPE mode, the configuration of the VDIV bits does not matter because the PLL is
disabled. Changing them only sets up the multiply value for PLL usage in PBE mode

d) BLPE: If transitioning through BLPE mode, clear LP (bit 3) in MCGC2 to 0 here to switch to
PBE mode

e) PBE: Loop until PLLST (bit 5) in MCGSC is set, indicating that the current source for the
PLLS clock is the PLL

f) PBE: Then loop until LOCK (bit 6) in MCGSC is set, indicating that the PLL has acquired lock

3. Last, PBE mode transitions into PEE mode:

a) MCGC1 = 0x10 (%00010000)

– CLKS (bits7 and 6) in MCGSC1 set to %00 in order to select the output of the PLL as the
system clock source

b) Loop until CLKST (bits 3 and 2) in MCGSC are %11, indicating that the PLL output is selected
to feed MCGOUT in the current clock mode

– Now, With an RDIV of divide-by-4, a BDIV of divide-by-1, and a VDIV of multiply-by-16,
MCGOUT = [(4 MHz / 4) * 16] / 1 = 16 MHz, and the bus frequency is MCGOUT / 2, or 8
MHz
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8.5.3 Calibrating the Internal Reference Clock (IRC)

The IRC is calibrated by writing to the MCGTRM register first, then using the FTRIM bit to “fine tune”
the frequency. We will refer to this total 9-bit value as the trim value, ranging from 0x000 to 0x1FF, where
the FTRIM bit is the LSB.

The trim value after a POR is always 0x100 (MCGTRM = 0x80 and FTRIM = 0). Writing a larger value
will decrease the frequency and smaller values will increase the frequency. The trim value is linear with
the period, except that slight variations in wafer fab processing produce slight non-linearities between trim
value and period. These non-linearities are why an iterative trimming approach to search for the best trim
value is recommended. In Example #5: Internal Reference Clock Trim this approach will be demonstrated.

After a trim value has been found for a device, this value can be stored in FLASH memory to save the
value. If power is removed from the device, the IRC can easily be re-trimmed by copying the saved value
from FLASH to the MCG registers. Freescale identifies recommended FLASH locations for storing the
trim value for each MCU. Consult the memory map in the data sheet for these locations. On devices that
are factory trimmed, the factory trim value will be stored in these locations.

8.5.3.1 Example #5: Internal Reference Clock Trim

For applications that require a tight frequency tolerance, a trimming procedure is provided that will allow
a very accurate internal clock source. This section outlines one example of trimming the internal oscillator.
Many other possible trimming procedures are valid and can be used.

In the example below, the MCG trim will be calibrated for the 9-bit MCGTRM and FTRIM collective
value. This value will be referred to as TRMVAL.
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10.2.1 Analog Power (VDDAD)

The ADC analog portion uses VDDAD as its power connection. In some packages, VDDAD is connected
internally to VDD. If externally available, connect the VDDAD pin to the same voltage potential as VDD.
External filtering may be necessary to ensure clean VDDAD for good results.

10.2.2 Analog Ground (VSSAD)

The ADC analog portion uses VSSAD as its ground connection. In some packages, VSSAD is connected
internally to VSS. If externally available, connect the VSSAD pin to the same voltage potential as VSS.

10.2.3 Voltage Reference High (VREFH)

VREFH is the high reference voltage for the converter. In some packages, VREFH is connected internally to
VDDAD. If externally available, VREFH may be connected to the same potential as VDDAD or may be driven
by an external source between the minimum VDDAD spec and the VDDAD potential (VREFH must never
exceed VDDAD).

10.2.4 Voltage Reference Low (VREFL)

VREFL is the low-reference voltage for the converter. In some packages, VREFL is connected internally to
VSSAD. If externally available, connect the VREFL pin to the same voltage potential as VSSAD.

10.2.5 Analog Channel Inputs (ADx)

The ADC module supports up to 28 separate analog inputs. An input is selected for conversion through the
ADCH channel select bits.

10.3 Register Definition

These memory-mapped registers control and monitor operation of the ADC:

• Status and control register, ADCSC1

• Status and control register, ADCSC2

• Data result registers, ADCRH and ADCRL

• Compare value registers, ADCCVH and ADCCVL

• Configuration register, ADCCFG

• Pin control registers, APCTL1, APCTL2, APCTL3

10.3.1 Status and Control Register 1 (ADCSC1)

This section describes the function of the ADC status and control register (ADCSC1). Writing ADCSC1
aborts the current conversion and initiates a new conversion (if the ADCH bits are equal to a value other
than all 1s).
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10.6.1.3 Analog Input Pins

The external analog inputs are typically shared with digital I/O pins on MCU devices. The pin I/O control
is disabled by setting the appropriate control bit in one of the pin control registers. Conversions can be
performed on inputs without the associated pin control register bit set. It is recommended that the pin
control register bit always be set when using a pin as an analog input. This avoids problems with contention
because the output buffer is in its high impedance state and the pullup is disabled. Also, the input buffer
draws DC current when its input is not at VDD or VSS. Setting the pin control register bits for all pins used
as analog inputs should be done to achieve lowest operating current.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise
or when the source impedance is high. Use of 0.01 μF capacitors with good high-frequency characteristics
is sufficient. These capacitors are not necessary in all cases, but when used they must be placed as near as
possible to the package pins and be referenced to VSSA.

For proper conversion, the input voltage must fall between VREFH and VREFL. If the input is equal to or
exceeds VREFH, the converter circuit converts the signal to 0xFFF (full scale 12-bit representation), 0x3FF
(full scale 10-bit representation) or 0xFF (full scale 8-bit representation). If the input is equal to or less
than VREFL, the converter circuit converts it to 0x000. Input voltages between VREFH and VREFL are
straight-line linear conversions. There is a brief current associated with VREFL when the sampling
capacitor is charging. The input is sampled for 3.5 cycles of the ADCK source when ADLSMP is low, or
23.5 cycles when ADLSMP is high.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins should not be
transitioning during conversions.

10.6.2 Sources of Error

Several sources of error exist for A/D conversions. These are discussed in the following sections.

10.6.2.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the
maximum input resistance of approximately 7kΩ and input capacitance of approximately 5.5 pF, sampling
to within 1/4LSB (at 12-bit resolution) can be achieved within the minimum sample window (3.5 cycles @
8 MHz maximum ADCK frequency) provided the resistance of the external analog source (RAS) is kept
below 2 kΩ.

Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase the
sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.

10.6.2.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.
If this error cannot be tolerated by the application, keep RAS lower than VDDAD / (2N*ILEAK) for less than
1/4LSB leakage error (N = 8 in 8-bit, 10 in 10-bit or 12 in 12-bit mode).
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11.4.3 General Call Address

General calls can be requested in 7-bit address or 10-bit address. If the GCAEN bit is set, the IIC matches
the general call address as well as its own slave address. When the IIC responds to a general call, it acts as
a slave-receiver and the IAAS bit is set after the address cycle. Software must read the IICD register after
the first byte transfer to determine whether the address matches is its own slave address or a general call.
If the value is 00, the match is a general call. If the GCAEN bit is clear, the IIC ignores any data supplied
from a general call address by not issuing an acknowledgement.

11.5 Resets
The IIC is disabled after reset. The IIC cannot cause an MCU reset.

11.6 Interrupts
The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 11-11 occur, provided the IICIE bit
is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC
control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt routine. You
can determine the interrupt type by reading the status register.

11.6.1 Byte Transfer Interrupt

The TCF (transfer complete flag) bit is set at the falling edge of the ninth clock to indicate the completion
of byte transfer.

11.6.2 Address Detect Interrupt

When the calling address matches the programmed slave address (IIC address register) or when the
GCAEN bit is set and a general call is received, the IAAS bit in the status register is set. The CPU is
interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode accordingly.

11.6.3 Arbitration Lost Interrupt

The IIC is a true multi-master bus that allows more than one master to be connected on it. If two or more
masters try to control the bus at the same time, the relative priority of the contending masters is determined
by a data arbitration procedure. The IIC module asserts this interrupt when it loses the data arbitration
process and the ARBL bit in the status register is set.

Table 11-11. Interrupt Summary

Interrupt Source Status Flag Local Enable

Complete 1-byte transfer TCF IICIF IICIE

Match of received calling address IAAS IICIF IICIE

Arbitration Lost ARBL IICIF IICIE
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12.4.5 SPI Data Register (SPID)

Reads of this register return the data read from the receive data buffer. Writes to this register write data to
the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data buffer
initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag (SPTEF)
is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPID any time after SPRF is set and before another transfer is finished. Failure to
read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition
and the data from the new transfer is lost.

Table 12-7. SPIS Register Field Descriptions

Field Description

7
SPRF

SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may
be read from the SPI data register (SPID). SPRF is cleared by reading SPRF while it is set, then reading the SPI
data register.
0 No data available in the receive data buffer
1 Data available in the receive data buffer

5
SPTEF

SPI Transmit Buffer Empty Flag — This bit is set when there is room in the transmit data buffer. It is cleared by
reading SPIS with SPTEF set, followed by writing a data value to the transmit buffer at SPID. SPIS must be read
with SPTEF = 1 before writing data to SPID or the SPID write will be ignored. SPTEF generates an SPTEF CPU
interrupt request if the SPTIE bit in the SPIC1 is also set. SPTEF is automatically set when a data byte transfers
from the transmit buffer into the transmit shift register. For an idle SPI (no data in the transmit buffer or the shift
register and no transfer in progress), data written to SPID is transferred to the shifter almost immediately so
SPTEF is set within two bus cycles allowing a second 8-bit data value to be queued into the transmit buffer. After
completion of the transfer of the value in the shift register, the queued value from the transmit buffer will
automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the transmit
buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from the
buffer to the shifter.
0 SPI transmit buffer not empty
1 SPI transmit buffer empty

4
MODF

Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes
low, indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input
only when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by
reading MODF while it is 1, then writing to SPI control register 1 (SPIC1).
0 No mode fault error
1 Mode fault error detected

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 12-9. SPI Data Register (SPID)
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When using an internal oscillator in a LIN system, it is necessary to raise the break detection threshold by
one bit time. Under the worst case timing conditions allowed in LIN, it is possible that a 0x00 data
character can appear to be 10.26 bit times long at a slave which is running 14% faster than the master. This
would trigger normal break detection circuitry which is designed to detect a 10 bit break symbol. When
the LBKDE bit is set, framing errors are inhibited and the break detection threshold changes from 10 bits
to 11 bits, preventing false detection of a 0x00 data character as a LIN break symbol.

13.2.6 SCI Control Register 3 (SCI1C3)

1
LBKDE

LIN Break Detection Enable— LBKDE is used to select a longer break character detection length. While
LBKDE is set, framing error (FE) and receive data register full (RDRF) flags are prevented from setting.
0 Break character is detected at length of 10 bit times (11 if M = 1).
1 Break character is detected at length of 11 bit times (12 if M = 1).

0
RAF

Receiver Active Flag — RAF is set when the SCI receiver detects the beginning of a valid start bit, and RAF is
cleared automatically when the receiver detects an idle line. This status flag can be used to check whether an
SCI character is being received before instructing the MCU to go to stop mode.
0 SCI receiver idle waiting for a start bit.
1 SCI receiver active (RxD input not idle).

1 Setting RXINV inverts the RxD input for all cases: data bits, start and stop bits, break, and idle.

7 6 5 4 3 2 1 0

R R8
T8 TXDIR TXINV ORIE NEIE FEIE PEIE

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-10. SCI Control Register 3 (SCI1C3)

Table 13-7. SCI1C3 Field Descriptions

Field Description

7
R8

Ninth Data Bit for Receiver — When the SCI is configured for 9-bit data (M = 1), R8 can be thought of as a
ninth receive data bit to the left of the MSB of the buffered data in the SCI1D register. When reading 9-bit data,
read R8 before reading SCI1D because reading SCI1D completes automatic flag clearing sequences which
could allow R8 and SCI1D to be overwritten with new data.

6
T8

Ninth Data Bit for Transmitter — When the SCI is configured for 9-bit data (M = 1), T8 may be thought of as a
ninth transmit data bit to the left of the MSB of the data in the SCI1D register. When writing 9-bit data, the entire
9-bit value is transferred to the SCI shift register after SCI1D is written so T8 should be written (if it needs to
change from its previous value) before SCI1D is written. If T8 does not need to change in the new value (such
as when it is used to generate mark or space parity), it need not be written each time SCI1D is written.

5
TXDIR

TxD Pin Direction in Single-Wire Mode — When the SCI is configured for single-wire half-duplex operation
(LOOPS = RSRC = 1), this bit determines the direction of data at the TxD pin.
0 TxD pin is an input in single-wire mode.
1 TxD pin is an output in single-wire mode.

Table 13-6. SCI1S2 Field Descriptions (continued)

Field Description
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When BDM is active, the timer counter is frozen (this is the value that will be read by user); the coherency
mechanism is frozen such that the buffer latches remain in the state they were in when the BDM became
active, even if one or both counter halves are read while BDM is active. This assures that if the user was
in the middle of reading a 16-bit register when BDM became active, it will read the appropriate value from
the other half of the 16-bit value after returning to normal execution.

In BDM mode, writing any value to TPMxSC, TPMxCNTH or TPMxCNTL registers resets the read
coherency mechanism of the TPMxCNTH:L registers, regardless of the data involved in the write.

15.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM
counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and
the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and
overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000
which results in a free running timer counter (modulo disabled).

Writing to either byte (TPMxMODH or TPMxMODL) latches the value into a buffer and the registers are
updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:

• If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written

• If (CLKSB:CLKSA not = 0:0), then the registers are updated after both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
the TPM counter is a free-running counter, the update is made when the TPM counter changes from
0xFFFE to 0xFFFF

The latching mechanism may be manually reset by writing to the TPMxSC address (whether BDM is
active or not).

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register)
such that the buffer latches remain in the state they were in when the BDM became active, even if one or
both halves of the modulo register are written while BDM is active. Any write to the modulo registers
bypasses the buffer latches and directly writes to the modulo register while BDM is active.

7 6 5 4 3 2 1 0

R Bit 7 6 5 4 3 2 1 Bit 0

W Any write to TPMxCNTL clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 15-9. TPM Counter Register Low (TPMxCNTL)
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R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 15-10. TPM Counter Modulo Register High (TPMxMODH)
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TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to $0000.

— Center-Aligned PWM (Section 15.4.2.4, “Center-Aligned PWM Mode)

In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer after that the both bytes were written and when the
TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to (TPMxMODH:L - 1).

5. Center-Aligned PWM (Section 15.4.2.4, “Center-Aligned PWM Mode)

— TPMxCnVH:L = TPMxMODH:L [SE110-TPM case 1]

In this case, the TPM v3 produces 100% duty cycle. Instead, the TPM v2 produces 0% duty
cycle.

— TPMxCnVH:L = (TPMxMODH:L - 1) [SE110-TPM case 2]

In this case, the TPM v3 produces almost 100% duty cycle. Instead, the TPM v2 produces 0%
duty cycle.

— TPMxCnVH:L is changed from 0x0000 to a non-zero value [SE110-TPM case 3 and 5]

In this case, the TPM v3 waits for the start of a new PWM period to begin using the new duty
cycle setting. Instead, the TPM v2 changes the channel output at the middle of the current
PWM period (when the count reaches 0x0000).

— TPMxCnVH:L is changed from a non-zero value to 0x0000 [SE110-TPM case 4]

In this case, the TPM v3 finishes the current PWM period using the old duty cycle setting.
Instead, the TPM v2 finishes the current PWM period using the new duty cycle setting.

6. Write to TPMxMODH:L registers in BDM mode (Section 15.3.3, “TPM Counter Modulo
Registers (TPMxMODH:TPMxMODL))

In the TPM v3 a write to TPMxSC register in BDM mode clears the write coherency mechanism
of TPMxMODH:L registers. Instead, in the TPM v2 this coherency mechanism is not cleared when
there is a write to TPMxSC register.

7. Update of EPWM signal when CLKSB:CLKSA = 00

In the TPM v3 if CLKSB:CLKSA = 00, then the EPWM signal in the channel output is not update
(it is frozen while CLKSB:CLKSA = 00). Instead, in the TPM v2 the EPWM signal is updated at
the next rising edge of bus clock after a write to TPMxCnSC register.

The Figure 0-1 and Figure 0-2 show when the EPWM signals generated by TPM v2 and TPM v3
after the reset (CLKSB:CLKSA = 00) and if there is a write to TPMxCnSC register.
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16.3.6 Hardware Breakpoints

The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions
described in Section 16.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the
CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a
force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction
queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active
background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to
finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command
through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background
mode.

16.4 Register Definition

This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute
address assignments for all DBG registers. This section refers to registers and control bits only by their
names. A Freescale-provided equate or header file is used to translate these names into the appropriate
absolute addresses.

16.4.1 BDC Registers and Control Bits

The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status
bits for the background debug controller.

• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.

These registers are accessed with dedicated serial BDC commands and are not located in the memory
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written
at any time. For example, the ENBDM control bit may not be written while the MCU is in active
background mode. (This prevents the ambiguous condition of the control bit forbidding active background
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS,
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
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Figure A-7. SPI Master Timing (CPHA = 0)

Figure A-8. SPI Master Timing (CPHA = 1)
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All TPM channels are programmable independently as input capture, output compare, or buffered
edge-aligned PWM channels.

B.1 External Signal Description
When any pin associated with the timer is configured as a timer input, a passive pullup can be enabled.
After reset, the TPM modules are disabled and all pins default to general-purpose inputs with the passive
pullups disabled.

B.1.1 External TPM Clock Sources

When control bits CLKSB:CLKSA in the timer status and control register are set to 1:1, the prescaler and
consequently the 16-bit counter for TPMx are driven by an external clock source, TPMxCLK, connected
to an I/O pin. A synchronizer is needed between the external clock and the rest of the TPM. This
synchronizer is clocked by the bus clock so the frequency of the external source must be less than one-half
the frequency of the bus rate clock. The upper frequency limit for this external clock source is specified to
be one-fourth the bus frequency to conservatively accommodate duty cycle and phase-locked loop (PLL)
or frequency-locked loop (FLL) frequency jitter effects.

On some devices the external clock input is shared with one of the TPM channels. When a TPM channel
is shared as the external clock input, the associated TPM channel cannot use the pin. (The channel can still
be used in output compare mode as a software timer.) Also, if one of the TPM channels is used as the
external clock input, the corresponding ELSnB:ELSnA control bits must be set to 0:0 so the channel is not
trying to use the same pin.

B.1.2 TPMxCHn — TPMx Channel n I/O Pins

Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the
configuration of the channel. In some cases, no pin function is needed so the pin reverts to being controlled
by general-purpose I/O controls. When a timer has control of a port pin, the port data and data direction
registers do not affect the related pin(s). See the Pins and Connections chapter for additional information
about shared pin functions.

B.2 Register Definition
The TPM includes:

• An 8-bit status and control register (TPMxSC)

• A 16-bit counter (TPMxCNTH:TPMxCNTL)

• A 16-bit modulo register (TPMxMODH:TPMxMODL)

Each timer channel has:

• An 8-bit status and control register (TPMxCnSC)

• A 16-bit channel value register (TPMxCnVH:TPMxCnVL)

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all TPM registers. This section refers to registers and control bits only by their names. A






