### NXP USA Inc. - S9S08DN32F1MLH Datasheet





#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                               |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | S08                                                                    |
| Core Size                  | 8-Bit                                                                  |
| Speed                      | 40MHz                                                                  |
| Connectivity               | I <sup>2</sup> C, LINbus, SCI, SPI                                     |
| Peripherals                | LVD, POR, PWM, WDT                                                     |
| Number of I/O              | 53                                                                     |
| Program Memory Size        | 32KB (32K x 8)                                                         |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | 1K x 8                                                                 |
| RAM Size                   | 1.5K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                            |
| Data Converters            | A/D 16x12b                                                             |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 64-LQFP                                                                |
| Supplier Device Package    | 64-LQFP (10x10)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s08dn32f1mlh |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Chapter 1 Device Overview

# 1.2 MCU Block Diagram

Figure 1-1 is the MC9S08DN60 Series system-level block diagram.





MC9S08DN60 Series Data Sheet, Rev 3



Chapter 4 Memory

| Address           | Register Name | Bit 7  | 6      | 5      | 4                     | 3      | 2      | 1      | Bit 0  |  |
|-------------------|---------------|--------|--------|--------|-----------------------|--------|--------|--------|--------|--|
| 0x1806            | SDIDH         | _      | _      | —      | —                     | ID11   | ID10   | ID9    | ID8    |  |
| 0x1807            | SDIDL         | ID7    | ID6    | ID5    | ID4                   | ID3    | ID2    | ID1    | ID0    |  |
| 0x1808            | Reserved      | _      | —      |        | —                     | _      | —      | —      | _      |  |
| 0x1809            | SPMSC1        | LVWF   | LVWACK | LVWIE  | LVDRE                 | LVDSE  | LVDE   | 0      | BGBE   |  |
| 0x180A            | SPMSC2        | 0      | 0      | LVDV   | LVWV                  | PPDF   | PPDACK | 0      | PPDC   |  |
| 0x180B–<br>0x180F | Reserved      | _      | _      | _      | _                     | _      | _      | _      | _      |  |
| 0x1810            | DBGCAH        | Bit 15 | 14     | 13     | 12                    | 11     | 10     | 9      | Bit 8  |  |
| 0x1811            | DBGCAL        | Bit 7  | 6      | 5      | 4                     | 3      | 2      | 1      | Bit 0  |  |
| 0x1812            | DBGCBH        | Bit 15 | 14     | 13     | 12                    | 11     | 10     | 9      | Bit 8  |  |
| 0x1813            | DBGCBL        | Bit 7  | 6      | 5      | 4                     | 3      | 2      | 1      | Bit 0  |  |
| 0x1814            | DBGFH         | Bit 15 | 14     | 13     | 12                    | 11     | 10     | 9      | Bit 8  |  |
| 0x1815            | DBGFL         | Bit 7  | 6      | 5      | 4                     | 3      | 2      | 1      | Bit 0  |  |
| 0x1816            | DBGC          | DBGEN  | ARM    | TAG    | BRKEN                 | RWA    | RWAEN  | RWB    | RWBEN  |  |
| 0x1817            | DBGT          | TRGSEL | BEGIN  | 0      | 0                     | TRG3   | TRG2   | TRG1   | TRG0   |  |
| 0x1818            | DBGS          | AF     | BF     | ARMF   | 0                     | CNT3   | CNT2   | CNT1   | CNT0   |  |
| 0x1819–<br>0x181F | Reserved      | _      | _      | _      | _                     |        |        | _      | _      |  |
| 0x1820            | FCDIV         | DIVLD  | PRDIV8 |        |                       | D      | IV     |        |        |  |
| 0x1821            | FOPT          | KEYEN  | FNORED | EPGMOD | EPGMOD 0 0 0          |        |        |        |        |  |
| 0x1822            | Reserved      | _      | —      |        | —                     | _      | —      | —      | _      |  |
| 0x1823            | FCNFG         | 0      | EPGSEL | KEYACC | Reserved <sup>1</sup> | 0      | 0      | 0      | 1      |  |
| 0x1824            | FPROT         | EF     | ۶S     |        | FPS                   |        |        |        |        |  |
| 0x1825            | FSTAT         | FCBEF  | FCCF   | FPVIOL | FACCERR               | 0      | FBLANK | 0      | 0      |  |
| 0x1826            | FCMD          |        |        |        | FC                    |        |        |        |        |  |
| 0x1827–<br>0x183F | Reserved      | _      |        | _      | _                     | _      | _      | _      | _      |  |
| 0x1840            | PTAPE         | PTAPE7 | PTAPE6 | PTAPE5 | PTAPE4                | PTAPE3 | PTAPE2 | PTAPE1 | PTAPE0 |  |
| 0x1841            | PTASE         | PTASE7 | PTASE6 | PTASE5 | PTASE4                | PTASE3 | PTASE2 | PTASE1 | PTASE0 |  |
| 0x1842            | PTADS         | PTADS7 | PTADS6 | PTADS5 | PTADS4                | PTADS3 | PTADS2 | PTADS1 | PTADS0 |  |
| 0x1843            | Reserved      | _      | —      |        | —                     | —      | —      | —      | _      |  |
| 0x1844            | PTASC         | 0      | 0      | 0      | 0                     | PTAIF  | PTAACK | PTAIE  | PTAMOD |  |
| 0x1845            | PTAPS         | PTAPS7 | PTAPS6 | PTAPS5 | PTAPS4                | PTAPS3 | PTAPS2 | PTAPS1 | PTAPS0 |  |
| 0x1846            | PTAES         | PTAES7 | PTAES6 | PTAES5 | PTAES4                | PTAES3 | PTAES2 | PTAES1 | PTAES0 |  |
| 0x1847            | Reserved      | _      | —      |        | —                     | —      | —      | —      | _      |  |
| 0x1848            | PTBPE         | PTBPE7 | PTBPE6 | PTBPE5 | PTBPE4                | PTBPE3 | PTBPE2 | PTBPE1 | PTBPE0 |  |
| 0x1849            | PTBSE         | PTBSE7 | PTBSE6 | PTBSE5 | PTBSE4                | PTBSE3 | PTBSE2 | PTBSE1 | PTBSE0 |  |
| 0x184A            | PTBDS         | PTBDS7 | PTBDS6 | PTBDS5 | PTBDS4                | PTBDS3 | PTBDS2 | PTBDS1 | PTBDS0 |  |
| 0x184B            | Reserved      | —      | _      | —      | —                     | —      | —      | —      | —      |  |
| 0x184C            | PTBSC         | 0      | 0      | 0      | 0                     | PTBIF  | PTBACK | PTBIE  | PTBMOD |  |

Table 4-3. High-Page Register Summary (Sheet 2 of 3)



# Chapter 5 Resets, Interrupts, and General System Control

# 5.1 Introduction

This section discusses basic reset and interrupt mechanisms and their various sources in the MC9S08DN60 Series. Some interrupt sources from peripheral modules are discussed in greater detail within other sections of this data sheet. This section gathers basic information about all reset and interrupt sources in one place for easy reference. A few reset and interrupt sources, including the computer operating properly (COP) watchdog, are not part of on-chip peripheral systems with their own chapters.

## 5.2 Features

Reset and interrupt features include:

- Multiple sources of reset for flexible system configuration and reliable operation
- Reset status register (SRS) to indicate source of most recent reset
- Separate interrupt vector for each module (reduces polling overhead); see Table 5-1

## 5.3 MCU Reset

Resetting the MCU provides a way to start processing from a known set of initial conditions. During reset, most control and status registers are forced to initial values and the program counter is loaded from the reset vector (0xFFFE:0xFFFF). On-chip peripheral modules are disabled and I/O pins are initially configured as general-purpose high-impedance inputs with pull-up devices disabled. The I bit in the condition code register (CCR) is set to block maskable interrupts so the user program has a chance to initialize the stack pointer (SP) and system control settings. (See the CPU chapter for information on the Interrupt (I) bit.) SP is forced to 0x00FF at reset.

The MC9S08DN60 Series has eight sources for reset:

- Power-on reset (POR)
- External pin reset (PIN)
- Computer operating properly (COP) timer
- Illegal opcode detect (ILOP)
- Illegal address detect (ILAD)
- Low-voltage detect (LVD)
- Loss of clock (LOC)
- Background debug forced reset (BDFR)

Each of these sources, with the exception of the background debug forced reset, has an associated bit in the system reset status register (SRS).



The IRQ pin, when enabled, defaults to use an internal pull device (IRQPDD = 0), the device is a pull-up or pull-down depending on the polarity chosen. If the user desires to use an external pull-up or pull-down, the IRQPDD can be written to a 1 to turn off the internal device.

BIH and BIL instructions may be used to detect the level on the IRQ pin when the pin is configured to act as the IRQ input.

### 5.5.2.2 Edge and Level Sensitivity

The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In the edge and level detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be cleared) as long as the IRQ pin remains at the asserted level.

### 5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources. Higher-priority sources are located toward the bottom of the table. The high-order byte of the address for the interrupt service routine is located at the first address in the vector address column, and the low-order byte of the address for the interrupt service routine is located at the next higher address.

When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR) is 0, the CPU will finish the current instruction; stack the PCL, PCH, X, A, and CCR CPU registers; set the I bit; and then fetch the interrupt vector for the highest priority pending interrupt. Processing then continues in the interrupt service routine.



| Vector<br>No. | Address<br>(High/Low)           | Vector<br>Name | Module            | Source                                           | Enable                              | Description                                                                                                |
|---------------|---------------------------------|----------------|-------------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|
| 31            | 0xFFC0/0xFFC1                   | Vacmp2         | ACMP2             | ACF                                              | ACIE                                | Analog comparator 2                                                                                        |
| 30            | 0xFFC2/0xFFC3                   | Vacmp1         | ACMP1             | ACF                                              | ACIE                                | Analog comparator 1                                                                                        |
| 29–26         | 0xFFC4/0xFFC5–<br>0xFFCA/0xFFCB |                |                   |                                                  |                                     | (Reserved)                                                                                                 |
| 25            | 0xFFCC/0xFFCD                   | Vrtc           | RTC               | RTIF                                             | RTIE                                | Real-time interrupt                                                                                        |
| 24            | 0xFFCE/0xFFCF                   | Viic           | IIC               | IICIS                                            | IICIE                               | IIC control                                                                                                |
| 23            | 0xFFD0/0xFFD1                   | Vadc           | ADC               | COCO                                             | AIEN                                | ADC                                                                                                        |
| 22            | 0xFFD2/0xFFD3                   | Vport          | Port A,B,D        | PTAIF, PTBIF,<br>PTDIF                           | PTAIE, PTBIE, PTDIE                 | Port Pins                                                                                                  |
| 21–19         | 0xFFD4/0xFFD5–<br>0xFFD8/0xFFD9 |                |                   |                                                  |                                     | (Reserved)                                                                                                 |
| 18            | 0xFFDA/0xFFDB                   | Vsci1tx        | SCI1              | TDRE, TC                                         | TIE, TCIE                           | SCI1 transmit                                                                                              |
| 17            | 0xFFDC/0xFFDD                   | Vsci1rx        | SCI1              | IDLE, LBKDIF,<br>RDRF, RXEDGIF                   | ILIE, LBKDIE, RIE,<br>RXEDGIE       | SCI1 receive                                                                                               |
| 16            | 0xFFDE/0xFFDF                   | Vsci1err       | SCI1              | OR, NF,<br>FE, PF                                | ORIE, NFIE,<br>FEIE, PFIE           | SCI1 error                                                                                                 |
| 15            | 0xFFE0/0xFFE1                   | Vspi           | SPI               | SPIF, MODF,<br>SPTEF                             | SPIE, SPIE, SPTIE                   | SPI                                                                                                        |
| 14            | 0xFFE2/0xFFE3                   | Vtpm2ovf       | TPM2              | TOF                                              | TOIE                                | TPM2 overflow                                                                                              |
| 13            | 0xFFE4/0xFFE5                   | Vtpm2ch1       | TPM2              | CH1F                                             | CH1IE                               | TPM2 channel 1                                                                                             |
| 12            | 0xFFE6/0xFFE7                   | Vtpm2ch0       | TPM2              | CH0F                                             | CH0IE                               | TPM2 channel 0                                                                                             |
| 11            | 0xFFE8/0xFFE9                   | Vtpm1ovf       | TPM1              | TOF                                              | TOIE                                | TPM1 overflow                                                                                              |
| 10            | 0xFFEA/0xFFEB                   | Vtpm1ch5       | TPM1              | CH5F                                             | CH5IE                               | TPM1 channel 5                                                                                             |
| 9             | 0xFFEC/0xFFED                   | Vtpm1ch4       | TPM1              | CH4F                                             | CH4IE                               | TPM1 channel 4                                                                                             |
| 8             | 0xFFEE/0xFFEF                   | Vtpm1ch3       | TPM1              | CH3F                                             | CH3IE                               | TPM1 channel 3                                                                                             |
| 7             | 0xFFF0/0xFFF1                   | Vtpm1ch2       | TPM1              | CH2F                                             | CH2IE                               | TPM1 channel 2                                                                                             |
| 6             | 0xFFF2/0xFFF3                   | Vtpm1ch1       | TPM1              | CH1F                                             | CH1IE                               | TPM1 channel 1                                                                                             |
| 5             | 0xFFF4/0xFFF5                   | Vtpm1ch0       | TPM1              | CH0F                                             | CH0IE                               | TPM1 channel 0                                                                                             |
| 4             | 0xFFF6/0xFFF7                   | Vlol           | MCG               | LOLS                                             | LOLIE                               | MCG loss of lock                                                                                           |
| 3             | 0xFFF8/0xFFF9                   | Vlvd           | System control    | LVWF                                             | LVWIE                               | Low-voltage warning                                                                                        |
| 2             | 0xFFFA/0xFFFB                   | Virq           | IRQ               | IRQF                                             | IRQIE                               | IRQ pin                                                                                                    |
| 1             | 0xFFFC/0xFFFD                   | Vswi           | Core              | SWI Instruction                                  | —                                   | Software interrupt                                                                                         |
| 0             | 0xFFFE/0xFFFF                   | Vreset         | System<br>control | COP,<br>LOC,<br>LVD,<br>RESET,<br>ILOP,<br>ILAD, | COPE<br>CME<br>LVDRE<br>—<br>—<br>— | Watchdog timer<br>Loss-of-clock<br>Low-voltage detect<br>External pin<br>Illegal opcode<br>Illegal address |
|               |                                 |                |                   | POR,<br>BDFR                                     | —                                   | Power-on-reset<br>BDM-forced reset                                                                         |

<sup>1</sup> Vector priority is shown from lowest (first row) to highest (last row). For example, Vreset is the highest priority vector.

# 5.6 Low-Voltage Detect (LVD) System

The MC9S08DN60 Series includes a system to protect against low-voltage conditions in order to protect memory contents and control MCU system states during supply voltage variations. The system is



#### Chapter 6 Parallel Input/Output Control

In general, whenever a pin is shared with both an alternate digital function and an analog function, the analog function has priority such that if both the digital and analog functions are enabled, the analog function controls the pin.

It is a good programming practice to write to the port data register before changing the direction of a port pin to become an output. This ensures that the pin will not be driven momentarily with an old data value that happened to be in the port data register.



Figure 6-1. Parallel I/O Block Diagram

## 6.2 Pull-up, Slew Rate, and Drive Strength

Associated with the parallel I/O ports is a set of registers located in the high page register space that operate independently of the parallel I/O registers. These registers are used to control pull-ups, slew rate, and drive strength for the pins.

An internal pull-up device can be enabled for each port pin by setting the corresponding bit in the pull-up enable register (PTxPEn). The pull-up device is disabled if the pin is configured as an output by the parallel I/O control logic or any shared peripheral function regardless of the state of the corresponding pull-up enable register bit. The pull-up device is also disabled if the pin is controlled by an analog function.

Slew rate control can be enabled for each port pin by setting the corresponding bit in the slew rate control register (PTxSEn). When enabled, slew control limits the rate at which an output can transition in order to reduce EMC emissions. Slew rate control has no effect on pins that are configured as inputs.

### NOTE

Slew rate reset default values may differ between engineering samples and final production parts. Always initialize slew rate control to the desired value to ensure correct operation.



### 6.5.4.5 Port D Drive Strength Selection Register (PTDDS)



Figure 6-28. Drive Strength Selection for Port D Register (PTDDS)

#### Table 6-26. PTDDS Register Field Descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0<br>PTDDS[7:0] | <ul> <li>Output Drive Strength Selection for Port D Bits — Each of these control bits selects between low and high output drive for the associated PTD pin. For port D pins that are configured as inputs, these bits have no effect.</li> <li>0 Low output drive strength selected for port D bit n.</li> <li>1 High output drive strength selected for port D bit n.</li> </ul> |

### 6.5.4.6 Port D Interrupt Status and Control Register (PTDSC)

|        | 7                           | 6 | 5 | 4 | 3     | 2      | 1     | 0      |  |  |  |  |  |
|--------|-----------------------------|---|---|---|-------|--------|-------|--------|--|--|--|--|--|
| R      | 0                           | 0 | 0 | 0 | PTDIF | 0      |       |        |  |  |  |  |  |
| W      |                             |   |   |   |       | PTDACK | FIDIE | FIDMOD |  |  |  |  |  |
| Reset: | 0                           | 0 | 0 | 0 | 0     | 0      | 0     | 0      |  |  |  |  |  |
|        | = Unimplemented or Reserved |   |   |   |       |        |       |        |  |  |  |  |  |

#### Figure 6-29. Port D Interrupt Status and Control Register (PTDSC)

#### Table 6-27. PTDSC Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>PTDIF  | <ul> <li>Port D Interrupt Flag — PTDIF indicates when a port D interrupt is detected. Writes have no effect on PTDIF.</li> <li>0 No port D interrupt detected.</li> <li>1 Port D interrupt detected.</li> </ul>                         |
| 2<br>PTDACK | <b>Port D Interrupt Acknowledge</b> — Writing a 1 to PTDACK is part of the flag clearing mechanism. PTDACK always reads as 0.                                                                                                           |
| 1<br>PTDIE  | <ul> <li>Port D Interrupt Enable — PTDIE determines whether a port D interrupt is requested.</li> <li>0 Port D interrupt request not enabled.</li> <li>1 Port D interrupt request enabled.</li> </ul>                                   |
| 0<br>PTDMOD | <ul> <li>Port A Detection Mode — PTDMOD (along with the PTDES bits) controls the detection mode of the port D interrupt pins.</li> <li>0 Port D pins detect edges only.</li> <li>1 Port D pins detect both edges and levels.</li> </ul> |



## 7.4.5 BGND Instruction

The BGND instruction is new to the HCS08 compared to the M68HC08. BGND would not be used in normal user programs because it forces the CPU to stop processing user instructions and enter the active background mode. The only way to resume execution of the user program is through reset or by a host debug system issuing a GO, TRACE1, or TAGGO serial command through the background debug interface.

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active background mode rather than continuing the user program.



# 8.3.2 MCG Control Register 2 (MCGC2)



Figure 8-4. MCG Control Register 2 (MCGC2)

| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6<br>BDIV   | Bus Frequency Divider — Selects the amount to divide down the clock source selected by the CLKS bits in the MCGC1 register. This controls the bus frequency.         00       Encoding 0 — Divides selected clock by 1         01       Encoding 1 — Divides selected clock by 2 (reset default)         10       Encoding 2 — Divides selected clock by 4         11       Encoding 3 — Divides selected clock by 8 |
| 5<br>RANGE    | <ul> <li>Frequency Range Select — Selects the frequency range for the external oscillator or external clock source.</li> <li>1 High frequency range selected for the external oscillator of 1 MHz to 16 MHz (1 MHz to 40 MHz for external clock source)</li> <li>0 Low frequency range selected for the external oscillator of 32 kHz to 100 kHz (32 kHz to 1 MHz for external clock source)</li> </ul>              |
| 4<br>HGO      | <ul> <li>High Gain Oscillator Select — Controls the external oscillator mode of operation.</li> <li>Configure external oscillator for high gain operation</li> <li>Configure external oscillator for low power operation</li> </ul>                                                                                                                                                                                  |
| 3<br>LP       | <ul> <li>Low Power Select — Controls whether the FLL (or PLL) is disabled in bypassed modes.</li> <li>1 FLL (or PLL) is disabled in bypass modes (lower power).</li> <li>0 FLL (or PLL) is not disabled in bypass modes.</li> </ul>                                                                                                                                                                                  |
| 2<br>EREFS    | <ul> <li>External Reference Select — Selects the source for the external reference clock.</li> <li>1 Oscillator requested</li> <li>0 External Clock Source requested</li> </ul>                                                                                                                                                                                                                                      |
| 1<br>ERCLKEN  | <ul> <li>External Reference Enable — Enables the external reference clock for use as MCGERCLK.</li> <li>1 MCGERCLK active</li> <li>0 MCGERCLK inactive</li> </ul>                                                                                                                                                                                                                                                    |
| 0<br>EREFSTEN | <ul> <li>External Reference Stop Enable — Controls whether or not the external reference clock remains enabled when the MCG enters stop mode.</li> <li>1 External reference clock stays enabled in stop if ERCLKEN is set or if MCG is in FEE, FBE, PEE, PBE, or BLPE mode before entering stop</li> <li>0 External reference clock is disabled in stop</li> </ul>                                                   |



Chapter 8 Multi-Purpose Clock Generator (S08MCGV1)

# 8.4.7 Fixed Frequency Clock

The MCG presents the divided reference clock as MCGFFCLK for use as an additional clock source. The MCGFFCLK frequency must be no more than 1/4 of the MCGOUT frequency to be valid. Because of this requirement, the MCGFFCLK is not valid in bypass modes for the following combinations of BDIV and RDIV values:

- BDIV=00 (divide by 1), RDIV < 010
- BDIV=01 (divide by 2), RDIV < 011

When MCGFFCLK is valid then MCGFFCLKVALID is set to 1. When MCGFFCLK is not valid then MCGFFCLKVALID is set to 0.

# 8.5 Initialization / Application Information

This section describes how to initialize and configure the MCG module in application. The following sections include examples on how to initialize the MCG and properly switch between the various available modes.

## 8.5.1 MCG Module Initialization Sequence

The MCG comes out of reset configured for FEI mode with the BDIV set for divide-by-2. The internal reference will stabilize in  $t_{irefst}$  microseconds before the FLL can acquire lock. As soon as the internal reference is stable, the FLL will acquire lock in  $t_{fll}$  lock milliseconds.

Upon POR, the internal reference will require trimming to guarantee an accurate clock. Freescale recommends using FLASH location 0xFFAE for storing the fine trim bit, FTRIM in the MCGSC register, and 0xFFAF for storing the 8-bit trim value in the MCGTRM register. The MCU will not automatically copy the values in these FLASH locations to the respective registers. Therefore, user code must copy these values from FLASH to the registers.

### NOTE

The BDIV value should not be changed to divide-by-1 without first trimming the internal reference. Failure to do so could result in the MCU running out of specification.

### 8.5.1.1 Initializing the MCG

Because the MCG comes out of reset in FEI mode, the only MCG modes which can be directly switched to upon reset are FEE, FBE, and FBI modes (see Figure 8-8). Reaching any of the other modes requires first configuring the MCG for one of these three initial modes. Care must be taken to check relevant status bits in the MCGSC register reflecting all configuration changes within each mode.

To change from FEI mode to FEE or FBE modes, follow this procedure:

- 1. Enable the external clock source by setting the appropriate bits in MCGC2.
- 2. Write to MCGC1 to select the clock mode.



Chapter 8 Multi-Purpose Clock Generator (S08MCGV1)

- 4. Lastly, FBI transitions into BLPI mode.
  - a) MCGC2 = 0x08 (%00001000)
    - LP (bit 3) in MCGSC is 1





MC9S08DN60 Series Data Sheet, Rev 3



external crystal and a maximum reference divider factor of 128, the resulting frequency of the reference clock for the FLL is 62.5 kHz (greater than the 39.0625 kHz maximum allowed).

Care must be taken in the software to minimize the amount of time spent in this state where the FLL is operating in this condition.

The following code sequence describes how to move from FEI mode to PEE mode until the 8 MHz crystal reference frequency is set to achieve a bus frequency of 8 MHz. Because the MCG is in FEI mode out of reset, this example also shows how to initialize the MCG for PEE mode out of reset. First, the code sequence will be described. Then a flowchart will be included which illustrates the sequence.

- 1. First, FEI must transition to FBE mode:
  - a) MCGC2 = 0x36 (%00110110)
    - BDIV (bits 7 and 6) set to %00, or divide-by-1
    - RANGE (bit 5) set to 1 because the frequency of 8 MHz is within the high frequency range
    - HGO (bit 4) set to 1 to configure external oscillator for high gain operation
    - EREFS (bit 2) set to 1, because a crystal is being used
    - ERCLKEN (bit 1) set to 1 to ensure the external reference clock is active
  - b) Loop until OSCINIT (bit 1) in MCGSC is 1, indicating the crystal selected by the EREFS bit has been initialized.
  - c) Block Interrupts (If applicable by setting the interrupt bit in the CCR).
  - d) MCGC1 = 0xB8 (% 10111000)
    - CLKS (bits 7 and 6) set to %10 in order to select external reference clock as system clock source
    - RDIV (bits 5-3) set to %111, or divide-by-128.

### NOTE

8 MHz / 128 = 62.5 kHz which is greater than the 31.25 kHz to 39.0625 kHz range required by the FLL. Therefore after the transition to FBE is complete, software must progress through to BLPE mode immediately by setting the LP bit in MCGC2.

- IREFS (bit 2) cleared to 0, selecting the external reference clock
- e) Loop until IREFST (bit 4) in MCGSC is 0, indicating the external reference is the current source for the reference clock
- f) Loop until CLKST (bits 3 and 2) in MCGSC are %10, indicating that the external reference clock is selected to feed MCGOUT
- 2. Then, FBE mode transitions into BLPE mode:
  - a) MCGC2 = 0x3E (%00111110)
    - LP (bit 3) in MCGC2 to 1 (BLPE mode entered)

### NOTE

There must be no extra steps (including interrupts) between steps 1d and 2a.

b) Enable Interrupts (if applicable by clearing the interrupt bit in the CCR).

#### MC9S08DN60 Series Data Sheet, Rev 3



In 10-bit mode, the ADCCVH register holds the upper two bits of the 10-bit compare value (ADCV[9:8]). These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled.

In 8-bit mode, ADCCVH is not used during compare.

## 10.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 12-bit or 10-bit compare value or all 8 bits of the 8-bit compare value. When the compare function is enabled, bits ADCV[7:0] are compared to the lower 8 bits of the result following a conversion in 12-bit, 10-bit or 8-bit mode.





### **10.3.7** Configuration Register (ADCCFG)

ADCCFG selects the mode of operation, clock source, clock divide, and configures for low power and long sample time.



Figure 10-9. Configuration Register (ADCCFG)

#### Table 10-6. ADCCFG Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>ADLPC  | <ul> <li>Low-Power Configuration. ADLPC controls the speed and power configuration of the successive approximation converter. This optimizes power consumption when higher sample rates are not required.</li> <li>0 High speed configuration</li> <li>1 Low power configuration: The power is reduced at the expense of maximum clock speed.</li> </ul>                                                                                        |
| 6:5<br>ADIV | Clock Divide Select. ADIV selects the divide ratio used by the ADC to generate the internal clock ADCK.<br>Table 10-7 shows the available clock configurations.                                                                                                                                                                                                                                                                                 |
| 4<br>ADLSMP | Long Sample Time Configuration. ADLSMP selects between long and short sample time. This adjusts the sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required.<br>0 Short sample time<br>1 Long sample time |



Chapter 10 Analog-to-Digital Converter (S08ADC12V1)

# 10.4.1 Clock Select and Divide Control

One of four clock sources can be selected as the clock source for the ADC module. This clock source is then divided by a configurable value to generate the input clock to the converter (ADCK). The clock is selected from one of the following sources by means of the ADICLK bits.

- The bus clock, which is equal to the frequency at which software is executed. This is the default selection following reset.
- The bus clock divided by two. For higher bus clock rates, this allows a maximum divide by 16 of the bus clock.
- ALTCLK, as defined for this MCU (See module section introduction).
- The asynchronous clock (ADACK). This clock is generated from a clock source within the ADC module. When selected as the clock source, this clock remains active while the MCU is in wait or stop3 mode and allows conversions in these modes for lower noise operation.

Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the available clocks are too slow, the ADC do not perform according to specifications. If the available clocks are too fast, the clock must be divided to the appropriate frequency. This divider is specified by the ADIV bits and can be divide-by 1, 2, 4, or 8.

## 10.4.2 Input Select and Pin Control

The pin control registers (APCTL3, APCTL2, and APCTL1) disable the I/O port control of the pins used as analog inputs. When a pin control register bit is set, the following conditions are forced for the associated MCU pin:

- The output buffer is forced to its high impedance state.
- The input buffer is disabled. A read of the I/O port returns a zero for any pin with its input buffer disabled.
- The pullup is disabled.

### 10.4.3 Hardware Trigger

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when the ADTRG bit is set. This source is not available on all MCUs. Consult the module introduction for information on the ADHWT source specific to this MCU.

When ADHWT source is available and hardware trigger is enabled (ADTRG=1), a conversion is initiated on the rising edge of ADHWT. If a conversion is in progress when a rising edge occurs, the rising edge is ignored. In continuous convert configuration, only the initial rising edge to launch continuous conversions is observed. The hardware trigger function operates in conjunction with any of the conversion modes and configurations.

## 10.4.4 Conversion Control

Conversions can be performed in 12-bit mode, 10-bit mode, or 8-bit mode as determined by the MODE bits. Conversions can be initiated by a software or hardware trigger. In addition, the ADC module can be



# 11.3.4 IIC Status Register (IICS)



#### Figure 11-6. IIC Status Register (IICS)

#### Table 11-6. IICS Field Descriptions

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>TCF   | <ul> <li>Transfer Complete Flag. This bit is set on the completion of a byte transfer. This bit is only valid during or immediately following a transfer to the IIC module or from the IIC module. The TCF bit is cleared by reading the IICD register in receive mode or writing to the IICD in transmit mode.</li> <li>0 Transfer in progress</li> <li>1 Transfer complete</li> </ul>                                                 |
| 6<br>IAAS  | <ul> <li>Addressed as a Slave. The IAAS bit is set when the calling address matches the programmed slave address or when the GCAEN bit is set and a general call is received. Writing the IICC register clears this bit.</li> <li>0 Not addressed</li> <li>1 Addressed as a slave</li> </ul>                                                                                                                                            |
| 5<br>BUSY  | <ul> <li>Bus Busy. The BUSY bit indicates the status of the bus regardless of slave or master mode. The BUSY bit is set when a start signal is detected and cleared when a stop signal is detected.</li> <li>0 Bus is idle</li> <li>1 Bus is busy</li> </ul>                                                                                                                                                                            |
| 4<br>ARBL  | <ul> <li>Arbitration Lost. This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be cleared by software by writing a 1 to it.</li> <li>0 Standard bus operation</li> <li>1 Loss of arbitration</li> </ul>                                                                                                                                                                                               |
| 2<br>SRW   | <ul> <li>Slave Read/Write. When addressed as a slave, the SRW bit indicates the value of the R/W command bit of the calling address sent to the master.</li> <li>0 Slave receive, master writing to slave</li> <li>1 Slave transmit, master reading from slave</li> </ul>                                                                                                                                                               |
| 1<br>IICIF | <ul> <li>IIC Interrupt Flag. The IICIF bit is set when an interrupt is pending. This bit must be cleared by software, by writing a 1 to it in the interrupt routine. One of the following events can set the IICIF bit: <ul> <li>One byte transfer completes</li> <li>Match of slave address to calling address</li> <li>Arbitration lost</li> </ul> </li> <li>O No interrupt pending <ul> <li>Interrupt pending</li> </ul> </li> </ul> |
| 0<br>RXAK  | <ul> <li>Receive Acknowledge. When the RXAK bit is low, it indicates an acknowledge signal has been received after the completion of one byte of data transmission on the bus. If the RXAK bit is high it means that no acknowledge signal is detected.</li> <li>0 Acknowledge received</li> <li>1 No acknowledge received</li> </ul>                                                                                                   |



### 11.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing.

### 11.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 11-9). When a 10-bit address follows a start condition, each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the second byte of the slave address with its own address. Only one slave finds a match and generates an acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition (P) or a repeated start condition (Sr) followed by a different slave address.



Table 11-9. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this interrupt.

### 11.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second  $R/\overline{W}$  bit (see Table 11-10). Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed before. This slave then checks whether the first seven bits of the first byte of the slave address following Sr are the same as they were after the start condition (S) and tests whether the eighth ( $R/\overline{W}$ ) bit is 1. If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition (Sr) followed by a different slave address.

After a repeated start condition (Sr), all other slave devices also compare the first seven bits of the first byte of the slave address with their own addresses and test the eighth  $(R/\overline{W})$  bit. However, none of them are addressed because  $R/\overline{W} = 1$  (for 10-bit devices) or the 11110XX slave address (for 7-bit devices) does not match.

| s | Slave Address<br>1st 7 bits | R/W | A1 | Slave Address<br>2nd byte | A2 | Sr | Slave Address<br>1st 7 bits | R/W | A3 | Data | А | <br>Data | А | Р |
|---|-----------------------------|-----|----|---------------------------|----|----|-----------------------------|-----|----|------|---|----------|---|---|
|   | 11110 + AD10 + AD9          | 0   |    | AD[8:1]                   |    |    | 11110 + AD10 + AD9          | 1   |    |      |   |          |   |   |

 Table 11-10. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an IIC interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this interrupt.



Chapter 13 Serial Communications Interface (S08SCIV4)



Chapter 15 Timer/PWM Module (S08TPMV3)



**Appendix A Electrical Characteristics** 



NOTES:

1.  $\overline{SS}$  output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.







1.  $\overline{SS}$  output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.



MC9S08DN60 Series Data Sheet, Rev 3



Appendix B Timer Pulse-Width Modulator (TPMV2)

the value in the TPMxCNTH:TPMxCNTL counter is 0x0000. (The new duty cycle does not take effect until the next full period.)

## B.3.3 Center-Aligned PWM Mode

This type of PWM output uses the up-/down-counting mode of the timer counter (CPWMS = 1). The output compare value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM signal and the period is determined by the value in TPMxMODH:TPMxMODL. TPMxMODH:TPMxMODL should be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous results. ELSnA will determine the polarity of the CPWM output.

```
pulse width = 2 x (TPMxCnVH:TPMxCnVL) Eqn. 16-1
```

### period = 2 x (TPMxMODH:TPMxMODL); for TPMxMODH:TPMxMODL = 0x0001–0x7FFF

If the channel value register TPMxCnVH:TPMxCnVL is zero or negative (bit 15 set), the duty cycle will be 0%. If TPMxCnVH:TPMxCnVL is a positive value (bit 15 clear) and is greater than the (nonzero) modulus setting, the duty cycle will be 100% because the duty cycle compare will never occur. This implies the usable range of periods set by the modulus register is 0x0001 through 0x7FFE (0x7FFF if generation of 100% duty cycle is not necessary). This is not a significant limitation because the resulting period is much longer than required for normal applications.

TPMxMODH:TPMxMODL = 0x0000 is a special case that should not be used with center-aligned PWM mode. When CPWMS = 0, this case corresponds to the counter running free from 0x0000 through 0xFFFF, but when CPWMS = 1 the counter needs a valid match to the modulus register somewhere other than at 0x0000 in order to change directions from up-counting to down-counting.

Figure B-11 shows the output compare value in the TPM channel registers (multiplied by 2), which determines the pulse width (duty cycle) of the CPWM signal. If ELSnA = 0, the compare match while counting up forces the CPWM output signal low and a compare match while counting down forces the output high. The counter counts up until it reaches the modulo setting in TPMxMODH:TPMxMODL, then counts down until it reaches zero. This sets the period equal to two times TPMxMODH:TPMxMODL.



Figure B-11. CPWM Period and Pulse Width (ELSnA = 0)

Center-aligned PWM outputs typically produce less noise than edge-aligned PWMs because fewer I/O pin transitions are lined up at the same system clock edge. This type of PWM is also required for some types of motor drives.

Eqn. 16-2