

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Becano	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SIO, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	74
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	109-TFBGA
Supplier Device Package	109-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/toshiba-semiconductor-and-storage/tmpm366fdxbg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TMPM366FDXBG/FYXBG/FWXBG

The TMPM366FDXBG/FYXBG/FWXBG is a 32-bit RISC microprocessor series with an ARM Cortex[™]-M3 microprocessor core.

Product Name	ROM (FLASH)	RAM	Package
TMPM366FDXBG	512 Kbyte	64 Kbyte	
TMPM366FYXBG	256 Kbyte	48 Kbyte	P-TFBGA109-0909-0.65-002
TMPM366FWXBG	128 Kbyte	32 Kbyte	

Features of the TMPM366FDXBG/FYXBG/FWXBG are as follows:

1.1 Features

- 1. ARM Cortex-M3 microprocessor core
 - a. Improved code efficiency has been realized through the use of Thumb® -2 instruction.
 - · New 16-bit Thumb instructions for improved program flow
 - · New 32-bit Thumb instructions for improved performance
 - New Thumb mixed 16-/32-bit instruction set can produce faster, more efficient code.
 - b. Both high performance and low power consumption have been achieved.

[High performance]

- A 32-bit multiplication $(32 \times 32 = 32 \text{ bit})$ can be executed with one clock.
- · Division takes between 2 and 12 cycles depending on dividend and devisor

[Low power consumption]

- · Optimized design using a low power consumption library
- Standby function that stops the operation of the micro controller core
- High-speed interrupt response suitable for real-time control

• An interruptible long instruction.

Stack push automatically handled by hardware.

On chip program memory and data memory

- On chip SRAM : 64 Kbyte / 48 Kbyte / 32 Kbyte
- On chip Flash ROM : 512 Kbyte / 256 Kbyte / 128 Kbyte
- 3. External bus interface (EBIF)
 - Up to 16Mbytes access area (Program / Data)
 - External data bus (Separate / Multiplex): 8 /16bit bus width
 - · Chip select / Wait controller: 2 channels
- 4. DMA controller (DMAC) : 2 units 4 channels

The example of warm-up function setup.

Table 8-1 <example> from STOP mode to NORMAL mode transition (internal high-speed oscillator is selected)

CGOSCCR <wuodr[11:0]> = "0x9C4"</wuodr[11:0]>	: Specify the warm-up time
CGOSCCR <wuodr[11:0]> read</wuodr[11:0]>	: Confirm warm-up time reflecting Repaet until the read data is "0x9C4".
CGOSCCR <xen2> = "1"</xen2>	: Internal high-speed oscillator (fosc) enable
CGOSCCR <wueon> = "1"</wueon>	: Start the warm-up timer (WUP)
CGOSCCR <wuef> read</wuef>	: Wait until the state becomes "0" (warm-up is finished)

- Note 1: It is not required the warm-up time in using the external clock to be stabled.
- Note 2: The warm-up timer operates according to the oscillation clock, and it may contain errors if there is any fluctuation in the oscillation frequency. Therefore, the warm-up time should be taken as approximate time.
- Note 3: After setting warm-up count value to OSCCR<WUDOR>, wait until confirming of the value to be reflected, then change to the standby mode by WFI instruction.
- Note 4: When returning from STOP1/STOP2 mode, related bits CGPLLSEL<PLLSEL<, CGOSCCR<HWUPSEL>, <OS-CSEL>, <XEN2>, <XEN1> and <PLLON> are initialized in order to start internal high-speed oscillator and CGOSCCR<WUDOR[11:0]> is not initialized.

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	- >		-
After reset	0	0	0	0	0	0 ((ø	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	$(\overline{\alpha})$	<u> </u>	-
After reset	0	0	0	0	0	0) 0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	$\left(\left(\right) \right)$	-	-
After reset	0	0	0	0	0		0	0
	7	6	5	4	3	2		0
bit symbol	PF7	PF6	PF5	PF4	PE3	PF2	PF1	PF0
After reset	0	0	0	0		0	0	0

10.2.6.2 PFDATA (Port F data register)

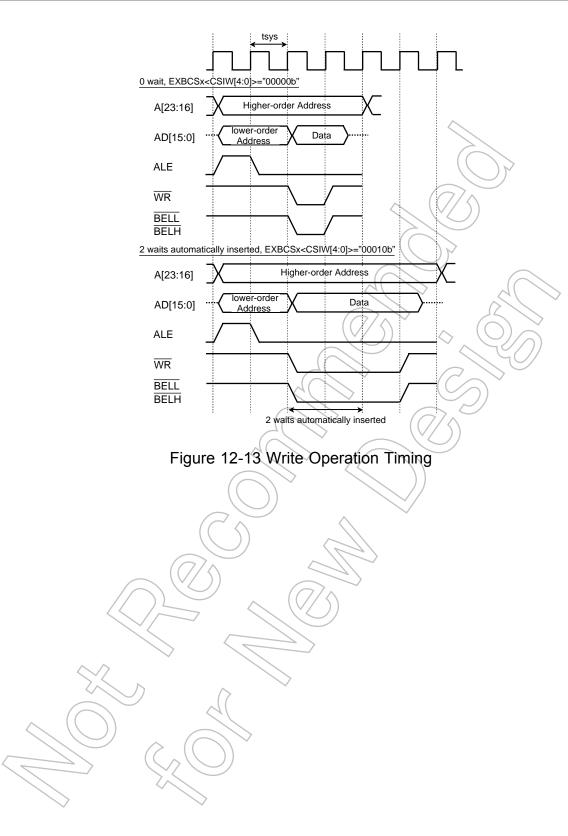
Bit	Bit Symbol	Туре		Function	
31-8	-	R	Read as "0".		(
7-0	PF7-PF0	R/W	Port F data register		

10.2.6.3 PFCR (Port F output control register)

						\sim		
	31	30	29	28	27	26	25	24
bit symbol	-	-		- <	$\sum_{i=1}^{n}$	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22))21	20	19	18	17	16
bit symbol	- /				-	-	-	-
After reset	0	0	7 0	0	0	0	0	0
	15	14	13	12	11	10	9	8
bit symbol	-	<u> </u>	-		-	-	-	-
After reset	0	0	0	0	0	0	0	0
	7~	5 6	5	4	3	2	1	0
bit symbol	PF7C	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
After reset	(0)	0	0	0	0	0	0	0
	$\overline{)}$	\Diamond (

Bit	Bit Symbol	Туре	Function
31-8	-	R	Read as "0".
7-0	PF7C-PF0C	R/W	Output
			0: Disable
			1: Enable

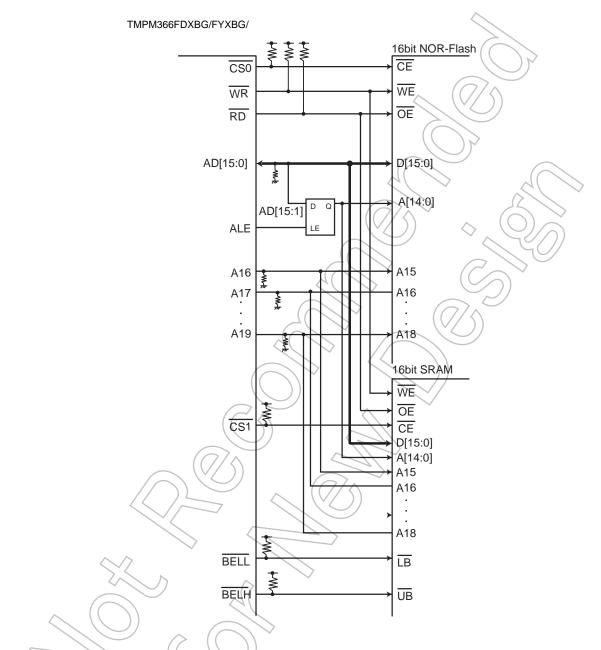
	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0 (Ø	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	$(-\alpha)$	<u> </u>	-
After reset	0	0	0	0	o <	0) 0	0
	15	14	13	12	11	10	9	8
bit symbol	-	-	-	-	-	$\left(\left(\right) \right)$	-	-
After reset	0	0	0	0	0		0	0
	7	6	5	4	3	2		0
bit symbol	PI7F1	PI6F1	PI5F1	PI4F1	PI3F1	PI2F1	PI1F1	PI0F1
After reset	1	1	1	1	(7/	0		0
				G			(LA)	


10.2.9.4 PIFR1(Port I function register 1)

Bit	Bit Symbol	Туре	Function
31-8	-	R	Read as "0".
7	PI7F1	R/W	0: PORT 1: TRST
6	PI6F1	R/W	0: PORT 1: TDI
5	PI5F1	R/W	0: PORT 1: TDO/SWV
4	PI4F1	R/W	0: PORT 1: TMS/SWDJO
3	PI3F1	R/W	0: PORT 1: TCK/SWCLK
2	PI2F1	R/W	0: PORT 1: TRACECLK
1	PI1F1	R/W	0: PORT 1: TRAGEDATA0
0	PI0F1	R/W	0: PORT 1: TRACEDATA1

10.4.7 Port G Setting

Table 10-12 Port Setting List (Port G)


Pin	Port Type	Function	After reset	PGCR	PGFR1	PGFR2	PGFR3	PGFR4	PGFR5	PGOD	PGPUP	PGIE
	туре	Input Port	10301	0	0	0	0	0	_0	$\overrightarrow{\mathbf{x}}$	x	1
	FT1	Output Port		1	0	0	0	0		×	x	0
		SDA0 (Input/Output)		1	1	0	0	0	$\langle \rangle$	1	x	1
PG0	FT1	SO0 (Output)		1	1	0	0	0	0	x	x	0
FGU	FT9	A3 (Output)		1	0	1	0			x	x	0
	115	TX02 (Output)		1	0	0	0		0			0
	FT1	IROUT (Output)		1	0	0	0	1	1	×	X	0
		,								×	×	
	FT1	Input Port		0	0	0		>0	0	×	×	1
		Output Port		1	0	0	/0)	0	0	$\langle \mathbf{x} \rangle$	β	0
	FT1	SCL0 (Input/Output)		1	1	0	0	0	0	19	×	1
PG1		SI0 (Input)		0	1	0	>0	0	0	×	x	1
-	FT9	A4 (Output)		1	0		0	0	Ø)) x	x	0
		TB3IN0 (Input)		0	0	0	1	-0		x	x	1
	FT1	RX02 (Input)		0	- 0	>0	0	4	0)	х	x	1
		IRIN (Input)		0	0	0	0	0	_1	x	x	1
	FT1	Input Port		0	B	0 <	0	0	0	х	x	1
		Output Port		$\left(\left(1 \right) \right)$	0	0	0	0	0	х	x	0
	FT1	SCK0 (Input)		0	/ 1	0	0	<u>\</u> 0	0	х	x	1
PG2		SCK0 (Output)		$\langle \gamma \rangle$	1	0	0	0	0	х	x	0
	FT9	A5 (Output)	\sim	7	0	1	0	0	0	х	x	0
	FT1	TB3IN1 (Input)	$7/\Lambda$	0	0	0	1	0	0	х	x	1
		CTS2 (Input)	\bigcirc	0	0	0	~ 0	1	0	x	x	1
	FT1	Input Port	~	0	0)	0	0	0	х	x	1
	FII	Output Port		1	ø	0	0	0	0	х	x	0
DOD	FT4	INT0 (Input)	4	6	H	0	0	0	0	х	x	1
PG3	FT9	A6 (Output)		1	0	1	0	0	0	х	x	0
Í	FT1	TB4IN0 (Input)	~	0	0	0	1	0	0	х	x	1
Í	FT1	RIN2 (Input)		0	0	0	0	1	0	х	x	1
\frown		Input Port		0	0	0	0	0	0	х	x	1
	Ft1	Output Port	\bigcirc	Y	0	0	0	0	0	х	x	0
PG4	FT9	A7 (Output)	\bigcirc) 0	0	1	0	0	0	х	x	0
		TB4IN1 (Input)	$\overline{}$	0	0	0	1	0	0	x	x	1
	FT1	RTS2 (Input)	\searrow	1	0	0	0	1	0	x	x	0
	~	Input Port		0	0	0	0	0	0	х	х	1
	FT1	Output Port		1	0	0	0	0	0	x	x	0
PG5	FT4	INT1 (Input)		0	1	0	0	0	0	x	x	1
	FT4	USBPON (Input)		0	0	0	0	1	0	x	x	1

	31	30	29	28	27	26	25	24
bit symbol	C	SR		WRR		RDR		
After reset	0	1	0	0	1	0 ((0	1
	23	22	21	20	19	18	17	16
bit symbol	-	-	AL	EW	w	rs (7/4	RI	DS
After reset	0	0	0	1	0		0	1
	15	14	13	12	11	10	9	8
bit symbol	-	-	-			CSIW	-	
After reset	0	0	0	0	0	0	1	0
	7	6	5	4	3	2	()	0
bit symbol	-	-	-	-		CS	sw 2	CSW0
After reset	0	0	0	0		0		0
				G			YO)

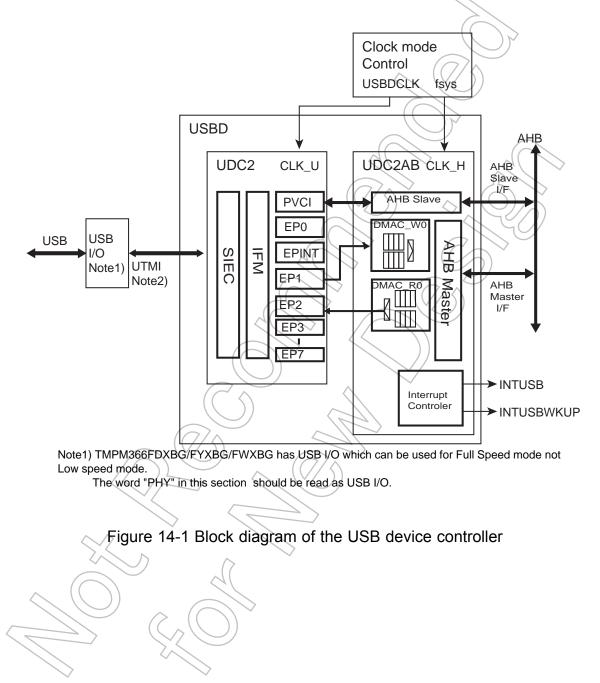
12.6.4 EXBCSx (External Bus Chip Select Control Register)

Bit	Bit Symbol	Туре	Function
31-30	CSR[1:0]	R/W	Chip select (CSx) Recovery cycle 00: None, 01: 1 cycle, 10: 2 cycles, 11: 4 cycles
29-27	WRR[2:0]	R/W	Write (WR) Recovery cycle 000: None, 001: 1 cycle, 010: 2 cycles, 011: 3 cycles, 100: 4 cycles, 101: 5 cycles, 110: 6 cycles, 111: 8 cycles
26-24	RDR[2:0]	R/W	Read (RD) Recovery cycle 000: None, 001: 1 cycle, 010: 2 cycles, 011: 3 cycles, 100: 4 cycles, 101: 5 cycles, 110: 6 cycles, 111: 8 cycles
23-22	-	R	Read as 0.
21-20	ALEW[1:0]	R/W	ALE wait cycle for multiplex bus 000: None, 001: 1 cycle, 010: 2 cycles, 011: 4 cycles
19-18	WRS[1:0]	R/W	Write (WR) Setup cycle 000: None, 001: 1 cycle, 010: 2 cycles, 011: 4 cycles
17-16	RDS[1:0]	R/W	Read (RD) Setup cycle 000: None, 001: 1 cycle, 010: 2 cycles, 011: 4 cycles
15-13	-	R	Read as 0.
12-8	CSIW[4:0]	R/W	Internal Wait (Automatically insertion) 0000: 0 wait, 0001: 1 wait, 0010: 2 waits, 0011: 3 waits, 0100: 4 waits, 0101: 5 waits, 0110: 6 waits, 0111: 7 waits, 1000: 8 waits, 1001: 9 waits, 1010: 10 waits, 1011: 11 waits, 1100: 12 waits, 1101: 13 waits, 1110: 14 waits, 1111: 15 waits
7-4	$\langle (() \rangle$	R	Read as 0.
3		R/W	Always write to "0"
2-1	CSW[2:1]	R/W	Data bus width 00: 8-bit, 01: 16-bit, Others: Prohibited
0	CSWO	R/W	CS Enable 0: Disable, 1: Enable

12.7.2 Connection Example for external 16-bit SRAM and NOR-Flash (Multiplex bus)

Figure 12-20 Connection Example for external 16-bit SRAM and NOR-Flash (Multiplex bus)

Select	Clock gear value	Select	Prescaler output clock function				
peripheral clock CGSYSCR <fpsel></fpsel>	CGSYSCR <gear[2:0]></gear[2:0]>	prescaler clock CGSYSCR <prck[2:0]></prck[2:0]>	φΤ1	φΤ4	φT16		
		000 (fperiph/1)	fc/21 (0.04 µs)	fc/2³ (0.17 µs)	fc/2⁵ (0.67 µs)		
		001 (fperiph/2)	fc/2² (0.08 µs)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 μs)		
	000 (5.)	010 (fperiph/4)	fc/2 ³ (0.17 µs)	fc/2 ⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)		
	000 (fc)	011 (fperiph/8)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)		
		100 (fperiph/16)	fc/2⁵ (0.67 μs)	fc/27 (2.67 µs)	fc/2 ⁹ (10.67 μs)		
		101 (fperiph/32)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)	fc/2 ¹⁰ (21.33 µs)		
		000 (fperiph/1)	- ((fc/2 ³ (0.17 μs)	fc/2⁵ (0.67 µs)		
		001 (fperiph/2)	fc/2² (0.08 µs)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 μs)		
	100 (fa/2)	010 (fperiph/4)	fc/2³ (0.17 µs)	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 μs)		
	100 (fc/2)	011 (fperiph/8)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 μs)		
		100 (fperiph/16)	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)	fc/2º (10.67 µs)		
		101 (fperiph/32)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)	fc/2 ¹⁰ (21.33 µs)		
	101 (fc/4)	000 (fperiph/1)		fc/2 ³ (0.17 µs)	√ fc/2⁵ (0.67 μs)		
		001 (fperiph/2)	>-	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)		
1 (fp)		010 (fperiph/4)	fc/2³ (0.17 μs)	fc/2 ⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)		
1 (fc)		011 (fperiph/8)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)		
		100 (fperiph/16)	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 μs)	fc/2 ⁹ (10.67 μs)		
		101 (fperiph/32)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 μs)	fc/2 ¹⁰ (21.33 µs)		
		000 (fperiph/1)	-		fc/2⁵ (0.67 µs)		
	(001 (fperiph/2)	<u> </u>	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)		
	110 (5-10)	010 (fperiph/4)	-	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)		
	110 (fc/8)	011 (fperiph/8)	fc/2⁴ (0.33 µs)	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)		
	111 (fc/16)	100 (fperiph/16)	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)	fc/2 ⁹ (10.67 μs)		
		101 (fperiph/32)	fc/2 ⁶ (1.33 μs)	fc/2 ⁸ (5.33 µs)	fc/2 ¹⁰ (21.33 µs)		
<		000 (fperiph/1)	$\left(\right)$	-	fc/2⁵ (0.67 µs)		
		001 (fperiph/2)	-	-	fc/2 ⁶ (1.33 μs)		
		010 (fperiph/4)	-	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)		
		011 (fperiph/8)	-	fc/2 ⁶ (1.33 µs)	fc/2 ⁸ (5.33 µs)		
		100 (fperiph/16)	fc/2⁵ (0.67 µs)	fc/2 ⁷ (2.67 µs)	fc/2 ⁹ (10.67 μs)		
	_	101 (fperiph/32)	fc/2 ⁶ (1.33 μs)	fc/2 ⁸ (5.33 µs)	fc/2 ¹⁰ (21.33 µs)		


Note 1: The prescaler output clock ϕ Tn must be selected so that ϕ Tn < fsys is satisfied (so that ϕ Tn is slower than fsys). Note 2: Do not change the clock gear while the timer is operating.

Note 3: "-" denotes a setting prohibited.

14.2 System Structure

The USB device controller consists of the USB-Spec2.0 device controller (hereinafter called UDC2) and the bus bridge (hereinafter called UDC2AB) which connects the UDC2 and the AHB bus.

In this section, "14.2.1 AHB Bus Bridge (UDC2AB)" describes the configuration of the UDC2AB, and "14.2.2 Toshiba USB-Spec2.0 Device Controller (UDC2)" describes that of the UDC2.

- f. By detecting Resume on the USB bus, the WAKEUP output signal will be asserted to 0 asynchronously.By WAKEUP output signal, INTUSBWKUP occurs and the low-power consumption mode is cancelled. Then, supply of CLK_H starts.
- g. With the supply of CLK_H, PHYSUSPEND output signal is automatically asserted to "1", and <phy_suspend> is zero-cleared.

Set CGUSBCTL<USBCLKEN> of the clock/mode control circuit to "1" to activate the CLK_U.

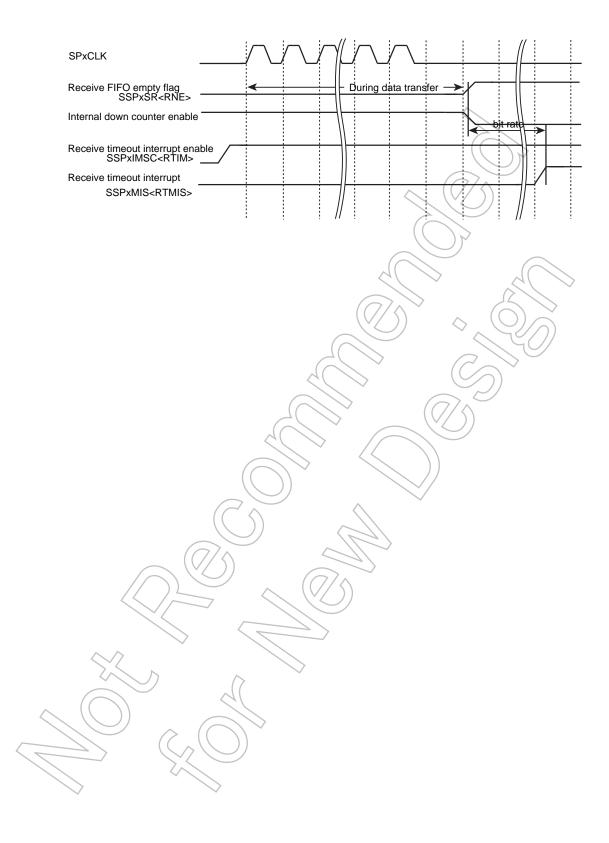
- h. 2.5 s after the interrupt is asserted (time required for the signal to stabilize when VBUS is disconnected) and check UDFSPWCTL<pw_detect>. If the UDFSPWCTL<pw_detect> is "1", WAKEUP is asserted by Resume. If UDFSPWCTL<pw_detect> is "0", WAKEUP is asserted by disconnection of the VBUS.
- i. To resume, perform the sequences below. To disconnect, perform the sequences of the "14.5.7.3 Resuming from the suspend state (disconnect)".
- j. Clears the interrupt factor and <wakeup_en> to deassert the WAKEUP output signal. Set <suspend_resume_en> to "1".
- k. Resumes from the suspended state.

15.4 Registers Description

15.4.12 SCxRST (RX FIFO Status Register)

	31	30	29	28	27	26	25	24
bit symbol	-	-	-	-	-	-	-	-
After reset	0	0	0	0	0	0	0	0
	23	22	21	20	19	18	17	16
bit symbol	-	-	-	-	-	- ((3	-
After reset	0	0	0	0	0	0	0	0
	15	14	13	12	11	(107/	9	8
bit symbol	-	-	-	-) -	-
After reset	0	0	0	0	0	6	0	0
	7	6	5	4	3	2	1	0
bit symbol	ROR	-	-	-	- (RLVL	
After reset	0	0	0	0	Q	0	0	0

Bit	Bit Symbol	Туре	(/Function
31-8	-	R	Read as 0.
7	ROR	R	RX FIFO Overrun (Note) 0: Not generated
			1: Generated
6-3	-	R	Read as 0.
2-0	RLVL[2:0]	R	Status of RX FIFO fill level. 000: Empty 001: 1 byte 010: 2 byte 011: 3 byte 100: 4 byte


Note: The <ROR> bit is cleared to "0" when receive data is read from the SCxBUF register.

Overview

16.1

(1) UART transmit / receive data format.

START DATA (LSB - MSB) PARITY STOP (2)Receive FIFO data format Bit Number Receive 8-bit data Receive 6-bit data Receive 6-bit data Receive data format			Transmit / recei	ve data forma	at		
(2)Receive FIFO data format $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		START		P	ARITY	STOP	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I		(LOD → NIOD)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(2)Receive FIFO data f	ormat					52
Bit Number 0 1 2 3 4 5 6 7 Receive 8-bit data 1<		ormat			~	(7)	
Bit Number 0 1 2 3 4 5 6 7 Receive 8-bit data 1<		F	Receive data	Framing	Parity er	rror Break error	Overrun
Receive 8-bit data 1 0							
Receive 7-bi data 1 1 1 1 1 1 0 Receive 6-bit data 1 1 1 1 1 0 0						\bigcirc	
Receive 6-bit data 1 1 1 1 1 1 0 0					\mathcal{A}		
					\nearrow		
				(()	7/^	1	$\langle \rangle \rangle$
					\bigcirc		ZUN)
				$ \leq $	<u> </u>		
					\checkmark	(C_{\sim})	\sim
			<	$\langle \ \rangle$)
			$(\ \)$	\searrow		(7)	
				\searrow	\frown	(\bigcirc)	
				> /		\backslash	
				\langle			
			(())			//	
				\wedge			
		(()				
					\leq		
		(7/		$\langle \gamma \rangle$			
		\mathcal{Y}) (i	77^	7		
				$\langle \rangle \rangle$			
		\searrow		\geq			
	$\sim \sim \sim$	÷					
	Z/ N		\sim				
			$\mathcal{A}($				
	(())						
		$\sim (c$	$\sqrt{2}$				
		$\mathcal{I}_{\mathcal{O}}$	\bigcirc				
	\sim		7				

18.5.6 Configuring the SBI as a Transmitter or a Receiver

Setting SBIxCR2<TRX> to "1" configures the SBI as a transmitter. Setting <TRX> to "0" configures the SBI as a receiver.

At the slave mode:

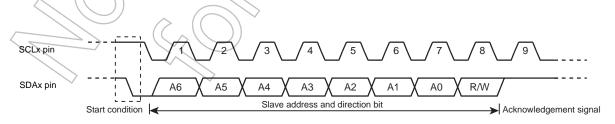
- when data is transmitted in the addressing format.
- when the received slave address matches the value specified at SBIxI2CAR.
- when a general-call address is received; i.e., the eight bits following the start condition are all zeros.

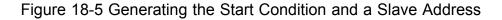
If the value of the direction bit (R/\overline{W}) is "1", $\langle TRX \rangle$ is set to "1" by the hardware. If the bit is "0", $\langle TRX \rangle$ is set to "0".

As a master device, the SBI receives acknowledgement from a slave device. If the direction bit of "1" is transmitted, <TRX> is set to "0" by the hardware. If the direction bit is "0", <TRX> changes to "1". If the SBI does not receive acknowledgement, <TRX> retains the previous value.

<TRX> is cleared to "0" by the hardware when it detects the stop condition on the bus or the arbitration lost.

If SBI is used in free data format, <TRX> is not changed by the hardware.


18.5.7 Configuring the SBI as a Master or a Slave


Setting SBIxCR2<MST> to "1" configures the SBI to operate as a master device.

Setting <MST> to "0" configures the SBI as a slave device. <MST> is cleared to "0" by the hardware when it detects the stop condition on the bus or the arbitration lost.

18.5.8 Generating Start and Stop Conditions

When SBIxSR<BB> is "0", writing "1" to SBIxCR2<MST, TRX, BB, PIN> causes the SBI to start a sequence for generating the start condition and to output the slave address and the direction bit prospectively written in the data buffer register. <ACK> must be set to "1" in advance.

When <BB> is "1", writing "1" to <MST, TRX, PIN> and "0" to <BB> causes the SBI to start a sequence for generating the stop condition on the bus. The contents of <MST, TRX, BB, PIN> should not be altered until the stop condition appears on the bus.

19.2 Configuration

Figure 19-1 shows the block diagram of the AD converter.

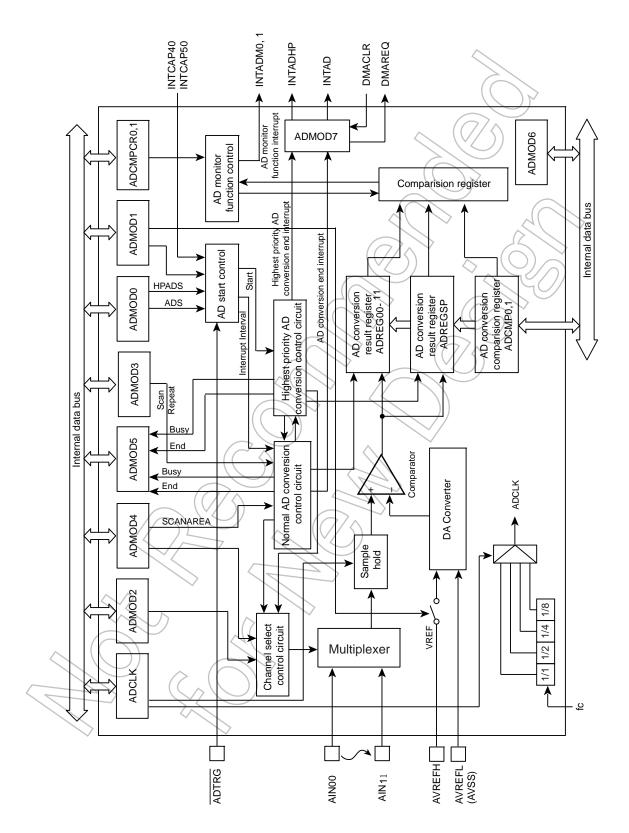
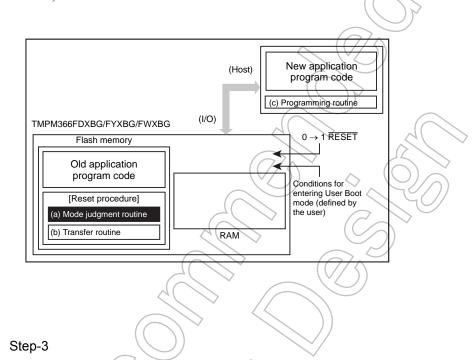
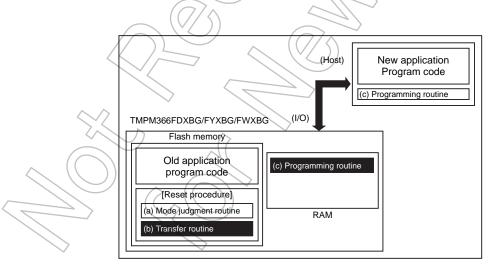
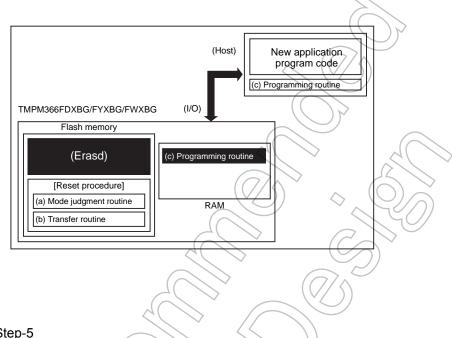



Figure 19-1 AD Converter Block Diagram

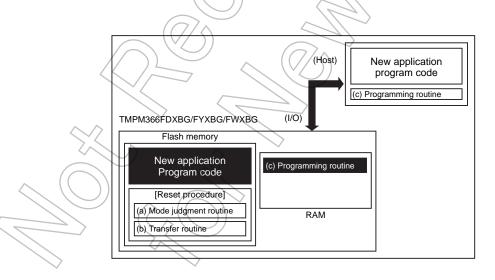

(2) Step-2

(3)

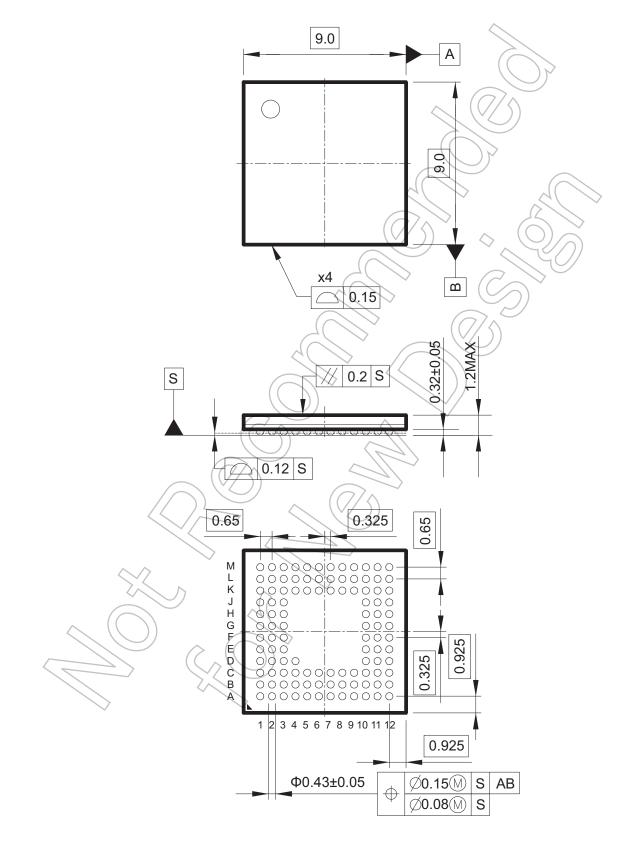
After RESET is released, the reset procedure determines whether to put the TMPM366FDXBG/ FYXBG/FWXBG flash memory in User Boot mode. If mode switching conditions are met, the flash memory enters User Boot mode. (All interrupts including NMI must be disabled while in User Boot mode).



Once User Boot mode is entered, execute the transfer routine (b) to download the flash programming routine (c) from the host controller to the TMPM366FDXBG/FYXBG/FWXBG on-chip RAM.


(4) Step-4

Jump program execution to the flash programming routine in the on-chip RAM to erase a flash block containing the old application program code.


(5) Step-5

Continue executing the flash programming routine to download new program code from the host controller and program it into the erased flash block. When the programming is completed, the writing or erase protection of that flash block in the user program area must be set.

24. Package Dimensions

Type: P-TFBGA109-0909-0.65-002 Unit:mm

