

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	16.5MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	DMA
Number of I/O	56
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.21x24.21)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia80c152jb-jdplc68ir1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LIST OF FIGURES

Figure 1.	JA/JC Versions Package Diagram	10
Figure 2.	JB/JD Versions Package Diagram	13
Figure 3.	Package Dimensions	16
Figure 4.	Functional Block Diagram	22
Figure 5.	Memory Space	24
Figure 6.	External Program Memory Read Cycle	44
Figure 7.	External Data Memory Read Cycle	44
Figure 8.	External Data Memory Write Cycle	45
Figure 9.	External Clock Drive Waveform	46
Figure 10	Shift Register Mode Timing Waveforms	47
Figure 11	. GSC Receiver Timings (Internal Baud Rate Generator)	48
Figure 12	. GSC Transmit Timings (Internal Baud Rate Generator)	48
-	. GSC Timings (External Clock)	

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 5 of 61

- CSMA/CD
- SDLC/HDLC
- User Definable
- Separate Transmit & Receive FIFOs
- Special Protocol Features:
 - Up to 2.0625 Mbps Serial Operation
 - CSMA and SDLC Frame Formats with CRC Checking
 - Manchester, NRZ, & NRZI Data Encoding
 - Collision Detection & Resolution in CSMA Mode
- Selectable Full/Half Duplex

2. Packaging, Pin Descriptions, and Physical Dimensions

Information on the packages and pin descriptions is provided in this chapter.

2.1 Packages and Pinouts

The IA80C152 is available in the following packages:

- 68-Pin PLCC pinout JA/JC versions
- 68-Pin PLCC pinout JB/JD versions

2.1.1 JA/JC

The pinout for the JA/JC package is as shown in Figure 1. The corresponding numeric and alphabetic pin listings are provided in Tables 2 and 3.

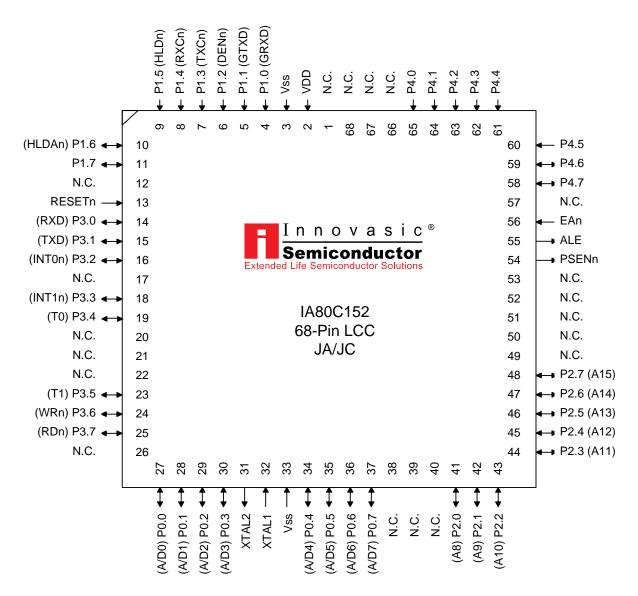
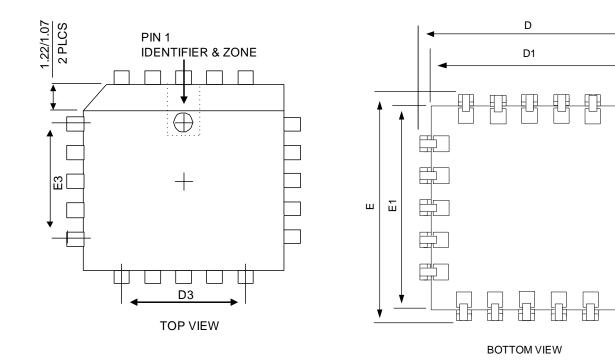
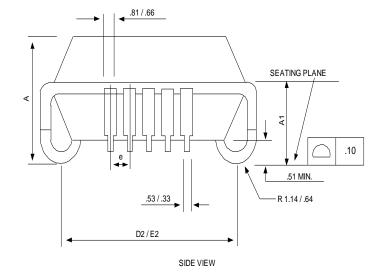


Figure 1. JA/JC Versions Package Diagram


IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 10 of 61


nirr-Gitt

÷

2.1.3 Physical Dimensions

The package dimensions are as shown in Figure 3.

Legend:					
	68 (in Millimeters)				
Symbol	Min	Max			
А	4.20	5.08			
A1	2.29	3.30			
D1	24.13	24.33			
D2	22.61	23.62			
D3	20.32 BSC				
E1	24.13	24.33			
E2	22.61	23.62			
E3	20.32	BSC			
е	1.27	BSC			
D	25.02	25.27			
E	25.02	25.27			

Figure 3. Package Dimensions

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 16 of 61 http://www.Innovasic.com Customer Support: 1-888-824-4184

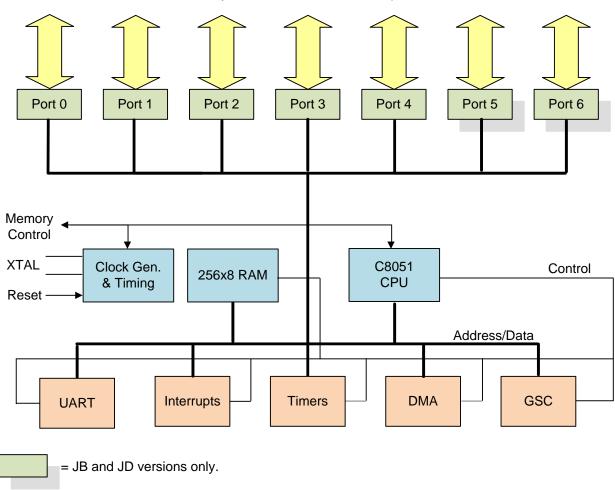
Signal Name	Description
P1.0 - GRXD, GSC	Port 1—8-bit bi-directional port that is bit addressable. To use a port signal
Receive	as an input, write a 1 to the port location. Internal pull-ups pull the input
P1.1 - GTXD, GSC	high and source current when the input is driven low. To use a port signal
Transmit	as an output, a 1 or 0 written to the port location is presented at the output.
P1.2 - DENn, Driver Enable	
P1.3 - TXCn, External	Port signals in this port also serve as I/O for IA80C152 functions. These I/O
Transmit Clock	signals are defined next to the port name.
P1.4 - RXCn, External	
Receive Clock	
P1.5 - HLDn, DMA Hold	
P1.6 - HLDAn, DMA Hold	
Acknowledge	
P1.7	
P2.0	Port 2—8-bit bi-directional port that is bit addressable. To use a port signal
P2.1	as an input, write a 1 to the port location. Internal pull-ups pull the input
P2.2	high and source current when the input is driven low. To use a port signal
P2.3	as an output, a 1 or 0 written to the port location is presented at the output.
P2.4	
P2.5	This port also provides the high-byte of the multiplexed address and data
P2.6	bus depending on the state of EBEN.
P2.7	
	Port 3—8-bit bi-directional port that is bit addressable. To use a port signal
P3.1 - TXD, UART	as an input, write a 1 to the port location. Internal pull-ups pull the input
Transmit	high and source current when the input is driven low. To use a port signal
P3.2 - INT0n, External	as an output, a 1 or 0 written to the port location is presented at the output.
Interrupt 0	
P3.3 - INT1n, External	Port signals in this port also serve as I/O for IA80C152 functions. These I/O
Interrupt 1	signals are defined next to the port name.
P3.4 - T0, Timer 0 External	
Input	
P3.5 - T1, Timer 1 External	
Input P3.6 - WRn, External Data	
Memory Write Strobe	
P3.7 - RDn, External Data	
Memory Read Strobe	
Internoly Read Strobe	

Table 6. I/O Signal Descriptions (Continued)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{CC}	Supply Voltage	4.5	_	5.5	V	-
V _{IL}	Input Low Voltage (All Except XTAL1)	-	_	0.9	V	-
V _{IH}	Input High Voltage (All Except XTAL1)	2.1	—	_	V	-
V _{OL}	Output Low Voltage	-	-	0.4	V	-
V _{OH}	Output High Voltage (All Except Port 0 in	3.5	_	-	V	_
	port mode)	-	—	-		-
V _{OH1}	Output High Voltage (Port 0 in External Bus	3.5	—	-	V	-
	Mode)	-	_	_	_	_
I _{IL}	Logical 0 Input Current	-1	-	1	μA	No pullup or pulldown
I _{IH}	Logical 1 Input Current	-1	-	1	μA	No pullup or pulldown
l _{oz}	Input Leakage (Port 0,1,2,3,4,5,6, ALE,PSEN, EPSEN)	-10	-	10	μA	Tri-state leakage current
Rup, Rdn	Pull-up Resistor, Pull-down Resistor	-	50	-	kW	-
I _{DD} a	Power Supply Current: Active (16.5 MHz) Idle (16.5 MHz) Power Down Mode	-	-	50	mA	-
			_	-	mA	-
			_	_	μA	-

Table 9. DC Parameters

^aStatic Idd current is exclusive of input/output drive requirements and is measured with the clocks stopped and all inputs tied to Vdd or Vss configured to draw minimum current.



IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 21 of 61

4. Device Architecture

4.1 Functional Block Diagram

Figure 4 shows the major functional blocks of the IA80C152. Each version of the IA80C152 function identically to each other with the exception of the 2 additional I/O ports (Port 5 and Port 6) in the JB and JD versions.

I/O for Memory, GSC, DMA, UART, Interrupts, and Timers

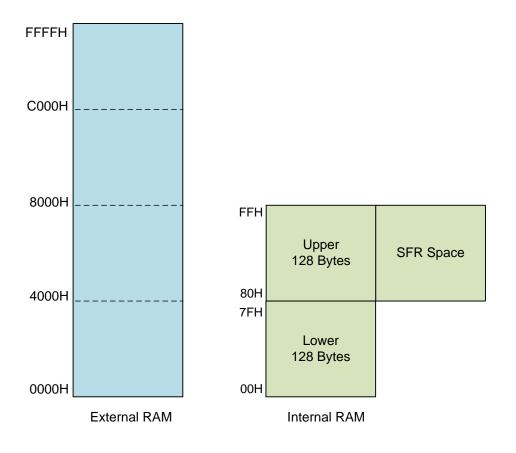


Figure 5. Memory Space

In the Raw Transmit mode the receiver operates as normal and zero bit detection is performed in SDLC mode. The transmit output is internally connected to the receiver input for loopback testing. Data transmitted is done so without a preamble, flag or zero bit insertion and without a CRC.

In the Alternate Backoff mode the backoff is modified so it is delayed until the end of the IFS. Since the IFS time is generally longer than the slot time this should help to prevent collisions.

- Bit [4]—AL → This bit determines the address length used. If set to a 1, the 16-bit addressing is used. If set to a 0, the 8 bit addressing is used.
- Bit [3]—CT → This bit determines the CRC type used. If set to a 1, the 32-bit AUTODIN II-32 is used. If set to a 0, the 16 bit CRC-CCITT is used.
- Bits [2-1]—PL0, PL1 \rightarrow Preamble length:

PL1	PL0	Preamble length in bits
0	0	0
0	1	8
1	0	32
1	1	64

The length noted in the table includes the two-bit BOF in CSMA/CD mode but not the SDLC flag. Zero length preamble is not compatible with CSMA/CD mode.

• Bit [0]—PR → If set to a 1, the GSC is in SDLC mode. If set to a 0, the GSC is in CSMA/CD mode.

5.2.14 IE* (0A8h)

The Interrupt Enable register allows the software to select which interrupts are enabled as shown in Table 15. If a bit is 0, the interrupt is disabled. If a bit is 1, the interrupt is enabled.

Table 15. IE* Register

7	6	5	4	3	2	1	0
EA	Reserved	Reserved	ES	ET1	EX1	ET0	EX0

- Bit [7]—EA \rightarrow Enable All interrupts. This bit globally enables or disables all interrupts regardless of the state of the individual bits.
- Bit [6]—Reserved.
- Bit [5]—Reserved.

- Bit [4]—ES \rightarrow Enable or disable serial port interrupt.
- Bit [3]—ET1 \rightarrow Enable or disable Timer 1 overflow interrupt.
- Bit [2]—EX1 \rightarrow Enable or disable External Interrupt 1.
- Bit [1]—ET0 \rightarrow Enable or disable Timer 0 overflow interrupt.
- Bit [0]—EX0 \rightarrow Enable or disable External Interrupt 0.

5.2.15 IEN1* (0C8h)

The Interrupt Enable Number 1 register allows the software to select which interrupts are enabled as shown in Table 16. If a bit is 0, the interrupt is disabled. If a bit is 1, the interrupt is enabled.

Table 16. IEN1* Register

ĺ	7	6	5	4	3	2	1	0
	Reserved	Reserved	EGSTE	EDMA1	EGSTV	EDMA0	EGSRE	EGSRV

- Bit [7]—Reserved.
- Bit [6]—Reserved.
- Bit [5]—EGSTE \rightarrow Enable or disable GSC Transmit Error interrupt.
- Bit [4]—EDMA1 \rightarrow Enable or disable DMA channel 1 interrupt.
- Bit [3]—EGSTV \rightarrow Enable or disable GSC Transmit Valid interrupt.
- Bit [2]—EDMA0 \rightarrow Enable or disable DMA channel 0 interrupt.
- Bit [1]—EGSRE \rightarrow Enable or disable GSC Receive Error interrupt.
- Bit [0]—EGSRV \rightarrow Enable or disable GSC Receive Valid interrupt.

5.2.16 IFS (0A4h)

The Interframe Spacing register determines the number of bit times between transmitted frames in both CSMA/CD and SDLC. Only even bit times can be used. The number written to this register is divided by two and loaded into the seven most significant bits. An interframe space is created by counting down this seven bit number twice. The value read from this register is the current count value in the upper seven bits and the first or second count down in the LSB. A 1 indicates the first count down and a 0 indicates the second count down. The value may not be valid because the register is clocked asynchronously to the CPU.

	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P0	Function	Multipl	exed Addı	ress/Data	a					
	Bit Address	087h	086h	085h	084h	083h	082h	081h	080h	
P1	Function	_	HLDAn	HLDn	RXCn	TXCn	DENn	GTXD	GRXD	
	Bit Address	097h	096h	095h	094h	093h	092h	091h	090h	
P2	Function			Add	ress and	User De	fined			
	Bit Address	0A7h	0A6h	0A5h	0A4h	0A3h	0A2h	0A1h	0A0h	
P3	Function	RDn	WRn	T1	T0	INT1n	INT0n	TXD	RXD	
	Bit Address	0B7h	0B6h	0B5h	0B4h	0B3h	0B2h	0B1h	0B0h	
P4	Function				User [Defined				
	Bit Address	0C7h	0C6h	0C5h	0C4h	0C3h	0C2h	0C1h	0C0h	
P5	Function				User [Defined				
	Bit Address		091h							
P6	Function		User Defined							
	Address				0A	\1h				

Table 20. P0*, P1*, P2*, P3*, P4*, P5, P6 Register

5.2.21 PCON (087h)

The Power Control register controls the power down and idle states of the IA80C152 as well as various UART, GSC, and DMA functions as defined in Table 21.

Table 21. PCON Register

7	6	5	4	3	2	1	0
SMOD	ARB	REQ	GAREN	XRCLK	GFIEN	PD	IDL

- Bit [7]—SMOD \rightarrow Doubles the baud rate of the UART if the bit is set to 1.
- Bit [6]—ARB \rightarrow The DMA (both channels) is put into Arbiter mode if the bit is set to 1.
- Bit [5]—REQ → The DMA (both channels) is put into Requester mode if the bit is set to 1.
- Bit [4]—GAREN → The GSC Auxiliary Receive Enable allows the GSC to receive back-to-back SDLC frames by setting the bit to 1. This bit has no effect in CSMA mode.
- Bit [3]—XRCLK → Setting this bit enables the External Receive Clock to be used by the receiver portion of the GSC.
- Bit [2]—GFIEN → The GSC Flag Idle Enable bit generates idle flags between transmitted SDLC frames when this bit is set to a 1. This bit has no effect in CSMA mode.

Table 25. TCON* Register

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

- Bit [7]—TF1 → Timer overFlow 1 interrupt flag set by hardware when timer 1 overflows. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [6]—TR1 → Timer Run 1 flag set by software to turn on timer 1 and cleared by software to turn off timer 1.
- Bit [5]—TF0 → Timer overFlow 0 interrupt flag set by hardware when timer 0 overflows. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [4]—TR0 \rightarrow Timer Run 0 flag set by software to turn on timer 0 and cleared by software to turn off timer 0.
- Bit [3]—IE1 → Interrupt External 1 flag set by hardware when an edge is detected on External Interrupt 1. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [2]—IT1 → Interrupt Type 1 flag is set by software to specify a falling edge triggered interrupt for External Interrupt 1. The flag is cleared by software to specify a low level triggered interrupt for External Interrupt 1.
- Bit [1]—IE0 → Interrupt External 0 flag set by hardware when an edge is detected on External Interrupt 0. Hardware clears this flag when the processor vectors to the interrupt service routine.
- Bit [0]—IT0 → Interrupt Type 0 flag is set by software to specify a falling edge triggered interrupt for External Interrupt 0. The flag is cleared by software to specify a low level triggered interrupt for External Interrupt 0.

5.2.34 TFIFO (085h)

This is the 3 byte buffer used for storing GSC transmit data. If TEN is set to a 1 transmission begins as soon as data is written to TFIFO.

5.2.35 TH0, TL0 (08Ch, 08Ah)

These registers provide the high byte (TH0) and low byte (TL0) values for Timer 0. These registers may be used together or separately depending on Timer 0 mode bits.

Power Down Mode is entered through software control of the PCON register. Power Down disables the oscillator causing all functions to stop. RAM data is maintained because power is not removed from the device. The only way to exit power down mode is to invoke a hardware reset.

	Program				Port	Port	Port	Port	Port	Port	Port
Mode	Fetch	ALE	PSENn	EPSENn ^a	0	1	2	3	4	5 ^a	6 ^a
Idle	P0, P2	1	1	1	Float	Data	Addr.	Data	Data	Data	Data
	P5, P6 ^a	1	1	1	Data	Data	Data	Data	Data	0FFh	Addr.
Power	P0, P2	0	0	1	Float	Data	Data	Data	Data	Data	Data
Down	P5, P6 ^a	0	1	0	Data	Data	Data	Data	Data	0FFh	0FFh

Table 28. Power Conservation Modes

^aJB and JD versions only.

5.4 Oscillator Pins

There are 2 methods for providing a clock to the IA80C152. One method is to provide a crystal oscillator and the other method is to provide an external clock source. When providing a crystal oscillator, the XTAL1 pin is the input and XTAL2 is the output. The min and max crystal frequencies are 3.5 and 16.5 MHz, respectively.

When providing an external clock source, XTAL1 is the input and XTAL2 has no connection. Duty cycle does not matter to the device, however, the external clock source requires a minimum pulse width of 20 ns.

Figures 6 through 13 present the external program memory read cycle, the external data memory read cycle, the external data memory write cycle, the external clock drive waveform, the shift register mode timing waveforms, the GSC receiver timings (internal baud rate generator), the GSC transmit timings (internal baud rate generator), the GSC timings (external clock) respectively. Tables 29 through 32 present the external clock drive, the local serial channel timing—shift register mode, the global serial port timing—internal baud rate generator, and the global serial port timing—external clock, respectively.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 43 of 61

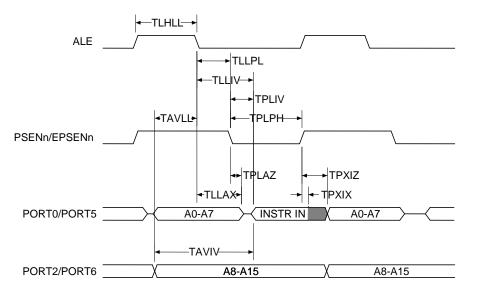
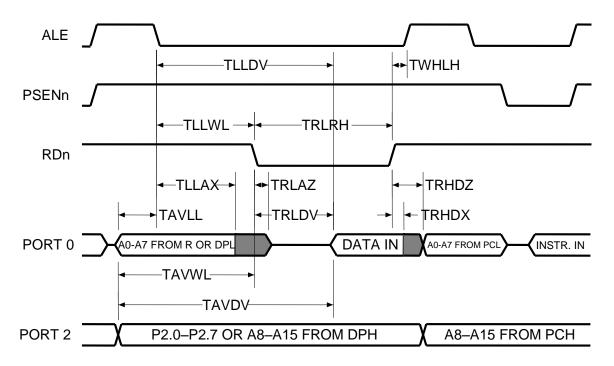



Figure 6. External Program Memory Read Cycle

6. Instruction Set Summary Table

Table 33 provides a summary of the instruction set organized by hexadecimal opcode. Please refer to the original Intel Data Book for individual instruction set details.

Table 33. Instruction Set Summary

Ornerale	
Opcode	Mnemonic
00 H	NOP
01 H	AJMP addr11
02 H	LJMP addr16
03 H	RR A
04 H	INC A
05 H	INC direct
06 H	INC @R0 INC @R1
07 H	INC @R1
08 H	INC R0
09 H	INC R1
0A H	INC R2
0B H	INC R3
0C H	INC R4
0D H	INC R5
0E H	INC R6 INC R7
0F H	INC R7
10 H	JBC bit,rel
11 H	ACALL addr11
12 H	LCALL addr16
13 H	RRC A
14 H	DEC A
15 H	DEC direct
16 H	DEC @R0
17 H	DEC @R1
18 H	DEC R0
19 H	DEC R1 DEC R2
1A H	DEC R2
1B H	DEC R3
1C H	DEC R4
1D H	DEC R5 DEC R6
1E H	DEC R6
1F H	DEC R7
20 H	JB bit.rel
21 H	AJMP addr11
22 H	RET
23 H	RL A
24 H	ADD A,#data
25 H	ADD A, direct
26 H	ADD A,@R0
27 H	ADD A,@R1
28 H	ADD A,R0

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 50 of 61

Opcode	Mnemonic
29 H	ADD A,R1
2A H	ADD A,R2
2B H	ADD A,R3
2C H	ADD A,R4
2D H	ADD A,R5
2E H	ADD A,R6
2F H	ADD A,R7
2F H 30 H	JNB bit.rel
31 H	ACALL addr11
32 H	RETI
33 H	RLC A
34 H	ADDC A,#data
35 H	ADDC A, direct
36 H	ADDC A,@R0
37 H	ADDC A,@R1
38 H	ADDC A,R0
39 H	ADDC A,R1
3A H	ADDC A,R2
3B H	ADDC A,R3
3C H	ADDC A,R4
3D H	ADDC A,R5
3E H	ADDC A,R6
3F H	RLC AADDC A,#dataADDC A,directADDC A,@R0ADDC A,@R1ADDC A,R0ADDC A,R1ADDC A,R2ADDC A,R2ADDC A,R3ADDC A,R4ADDC A,R5ADDC A,R6ADDC A,R7JC rel
3F H 40 H	
41 H	AJMP addr11
42 H	ORL direct,A
43 H	ORL direct,#data
44 H	ORL A,#data
45 H	ORL A, direct
46 H	ORL A,@R0
47 H	ORL A,@R1
48 H	ORL A,R0
49 H	ORL A,R1
4A H	ORL A,R2
4B H	ORL A,R3
4C H	ORL A,R4
4D H	ORL A,R5
4E H	ORL A,R6
4F H 50 H	ORL A,R7
50 H	JNC rel
51 H	ACALL addr11
52 H	ANL direct,A
53 H	ANL direct,#data
54 H	ANL A,#data
55 H	ANL A, direct
56 H	ANL A,@R0

Table 33. Instruction Set Summary (Continued)

Opcode	Mnemonic			
B3 H	CPL C			
B4 H	CJNE A,#data,rel			
B5 H	CJNE A, direct, rel			
B6 H	CJNE			
	@R0,#data,rel			
B7 H	CJNE			
	@R1,#data,rel			
B8 H	CJNE R0,#data,rel			
B9 H	CJNE R1,#data,rel			
BA H	CJNE R2,#data,rel			
BB H	CJNE R3,#data,rel			
BC H	CJNE R4,#data,rel			
BD H	CJNE R5,#data,rel			
BE H	CJNE R6,#data,rel			
BF H	CJNE R7,#data,rel			
C0 H	PUSH direct			
C1 H	AJMP addr11			
C2 H	CLR bit			
C3 H	CLR C			
C4 H	SWAP A			
C5 H	XCH A, direct			
C6 H	XCH A,@R0			
C7 H	XCH A,@R1			
C8 H	XCH A,R0			
C9 H	XCH A,R1			
CAH	XCH A,R2			
CB H	XCH A,R3			
CC H	XCH A,R4			
CD H	XCH A,R5			
CE H	XCH A,R6			
CF H	XCH A,R7			
D0 H	POP direct			
D1 H	ACALL addr11			
D2 H	SETB bit			
D3 H	SETB C			
D4 H	DA A			
D5 H	DJNZ direct,rel			
D6 H	XCHD A,@R0			
D7 H	XCHD A,@R1			
D8 H	DJNZ R0,rel			
D9 H	DJNZ R1,rel			
DA H	DJNZ R2,rel			
DB H	DJNZ R3,rel			
DC H	DJNZ R4,rel			
DD H	DJNZ R5,rel			
DE H	DJNZ R6,rel			

Table 33. Instruction Set Summary (Continued)

Opcode	Mnemonic		
DF H	DJNZ R7,rel		
E0 H	MOVX A,@DPTR		
E1 H	AJMP addr11		
E2 H	MOVX A,@R0		
E3 H	MOVX A,@R1		
E4 H	CLR A		
E5 H	MOV A, direct		
E6 H	MOV A,@R0		
E7 H	MOV A,@R1		
E8 H	MOV A,R0		
E9 H	MOV A,R1		
EAH	MOV A,R2		
EB H	MOV A,R3		
EC H	MOV A,R4		
ED H	MOV A,R5		
EE H	MOV A,R6		
EFH	MOV A,R7		
F0 H	MOVX @DPTR,A		
F1 H	ACALL addr11		
F2 H	MOVX @R0,A		
F3 H	MOVX @R1,A		
F4 H	CPL A		
F5 H	MOV direct,A		
F6 H	MOV @R0,A		
F7 H	MOV @R1,A		
F8 H	MOV R0,A		
F9 H	MOV R1,A		
FA H	MOV R2,A		
FB H	MOV R3,A		
FC H	MOV R4,A		
FD H	MOV R5,A		
FE H	MOV R6,A		
FF H	MOV R7,A		

Table 33. Instruction Set Summary (Continued)

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 55 of 61 http://www.Innovasic.com Customer Support: 1-888-824-4184

9. Errata

The following errata are associated with all versions of the IA80C152. A workaround to the identified problem has been provided where possible.

9.1 Errata Summary

Table 36 presents a summary of errata.

Table 36. Summary of Errata

Errata No.	Problem	Rev. 01
1	Under certain circumstances, the DMA arbiter will "lock up" in alternate cycles mode. This problem occurs when one DMA channel has finished performing a transfer and another DMA initiates a transfer with the byte Count Register having been set to 0001 by the CPU.	Exists
2	Original Intel device has a linear resistor as the pullup on input RESET.	Exists
3	DMA can interfere with processing of interrupts of different priority.	Exists
4	Corruption of read data may occur if Port 0 bit written to 0.	Exists

9.2 Errata Detail

Errata No. 1

Problem: Under certain circumstances, the DMA arbiter will "lock up" in alternate cycles mode. This problem occurs when one DMA channel has finished performing a transfer and another DMA initiates a transfer with the byte Count Register having been set to 0001 by the CPU.

Workaround: Avoid using the alternate cycles DMA mode in conjunction with a byte count of one.

Errata No. 2

Problem: Original Intel device has a linear resistor as the pullup on input RESET.

Workaround: None. A non-linear resistor is on the Innovasic device. This may affect operation of certain R/C reset circuits.

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 58 of 61

Revision History

Table 37 presents the sequence of revisions to document IA211040524.

Table 37. Revision History

Date	Revision	Description	Page(s)
August 17, 2005	1	Edition released.	NA
July 27, 2007	2	Renamed data sheet for clarity	NA
August 31, 2007	3	Updated Errata and RoHS information	57, 58
June 18, 2009	4	Document reformatted to meet publication standards. Added Conventions, Acronyms and Abbreviations, and Summary of Errata table. Added new errata and added range for supply voltage in Table 9.	All
August 17, 2009	5	Added a note regarding recommendations for using the JB/JD version of the device in JA/JC applications. Revised Tables 2, 3 and 5.	7, 11, 12, 15
July 29, 2010	6	Errata 3 and 4 added.	58, 59

IA211040524-06 UNCONTROLLED WHEN PRINTED OR COPIED Page 60 of 61