Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 451 | | Number of Logic Elements/Cells | - | | Total RAM Bits | - | | Number of I/O | 72 | | Number of Gates | 2500 | | Voltage - Supply | 4.5V ~ 5.5V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 84-LCC (J-Lead) | | Supplier Device Package | 84-PLCC (29.31x29.31) | | Purchase URL | https://www.e-xfl.com/product-detail/microsemi/a1225a-1pl84c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Ordering Information** II Revision 8 # **Table of Contents** | ACT 2 Family Overview General Description | 1-1 | |---|------| | Detailed Specifications | | | Operating Conditions | 2-1 | | Package Thermal Characteristics | 2-3 | | Power Dissipation | | | ACT 2 Timing Model ¹ | | | Pin Descriptions | 2-21 | | Package Pin Assignments | | | PL84 | 3-1 | | PQ100 | | | PQ144 | | | PQ160 | | | VQ100 | | | CQ172 | | | PG100 | | | PG132 | | | PG176 | | | Datasheet Information | | | List of Changes | 4-1 | | Datasheet Categories | | | Safety Critical, Life Support, and High-Reliability Applications Policy | | # 1 - ACT 2 Family Overview # **General Description** The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0-μm, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®, and OrCAD™. # **Package Thermal Characteristics** The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates. Maximum junction temperature is 150°C. A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at commercial temperature and still air is as follows: $$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{\text{ia}}\text{°C/W}} = \frac{150\text{°C} - 70\text{°C}}{33\text{°C/W}} = 2.4 \text{ W}$$ EQ 1 Table 2-4 • Package Thermal Characteristics | Package Type [*] | Pin Count | $\theta_{ extsf{jc}}$ | θ _{ja}
Still Air | $_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min. | Units | |------------------------------------|-----------|-----------------------|------------------------------|--------------------------------------------|-------| | Ceramic Pin Grid Array | 100 | 5 | 35 | 17 | °C/W | | | 132 | 5 | 30 | 15 | °C/W | | | 176 | 8 | 23 | 12 | °C/W | | Ceramic Quad Flatpack | 172 | 8 | 25 | 15 | °C/W | | Plastic Quad Flatpack ¹ | 100 | 13 | 48 | 40 | °C/W | | | 144 | 15 | 40 | 32 | °C/W | | | 160 | 15 | 38 | 30 | °C/W | | Plastic Leaded Chip Carrier | 84 | 12 | 37 | 28 | °C/W | | Very Thin Quad Flatpack | 100 | 12 | 43 | 35 | °C/W | | Thin Quad Flatpack | 176 | 15 | 32 | 25 | °C/W | Notes: (Maximum Power in Still Air) - Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W (PQ160). - 2. Maximum power dissipation for PLCC packages is 2.7 W. - 3. Maximum power dissipation for VQFP packages is 2.3 W. - 4. Maximum power dissipation for TQFP packages is 3.1 W. ## **Power Dissipation** P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC - VOH) * M EQ2 where: ICC standby is the current flowing when no inputs or outputs are changing ICCactive is the current flowing due to CMOS switching. IOL and IOH are TTL sink/source currents. VOL and VOH are TTL level output voltages. N is the number of outputs driving TTL loads to VOL. M is the number of outputs driving TTL loads to VOH. An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I/O. The power can be divided into two components: static and active. # **Determining Average Switching Frequency** To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8. Table 2-8 • Guidelines for Predicting Power Dissipation | Data | Value | |-----------------------------------------------------------|---------------------------| | Logic Modules (m) | 80% of modules | | Inputs switching (n) | # inputs/4 | | Outputs switching (p) | # output/4 | | First routed array clock loads (q1) | 40% of sequential modules | | Second routed array clock loads (q2) | 40% of sequential modules | | Load capacitance (C _L) | 35 pF | | Average logic module switching rate (f _m) | F/10 | | Average input switching rate (f _n) | F/5 | | Average output switching rate (f _p) | F/10 | | Average first routed array clock rate (f _{q1}) | F | | Average second routed array clock rate (f _{q2}) | F/2 | 2-6 Revision 8 Figure 2-5 • Module Delays # **Sequential Module Timing Characteristics** Note: D represents all data functions involving A, B, and S for multiplexed flip-flops. Figure 2-6 • Flip-Flops and Latches **Detailed Specifications** # A1225A Timing Characteristics (continued) Table 2-14 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C | TTL Ou | TTL Output Module Timing ¹ | | peed | -1 S | -1 Speed | | Std. Speed | | |-------------------|---------------------------------------|------|------|------|----------|------|------------|-------| | Parame | ter/Description | Min. | Max. | Min. | Max. | Min. | Max. | | | t _{DLH} | Data to Pad High | | 8.0 | | 9.0 | | 10.6 | ns | | t _{DHL} | Data to Pad Low | | 10.1 | | 11.4 | | 13.4 | ns | | t _{ENZH} | Enable Pad Z to High | | 8.9 | | 10.0 | | 11.8 | ns | | t _{ENZL} | Enable Pad Z to Low | | 11.6 | | 13.2 | | 15.5 | ns | | t _{ENHZ} | Enable Pad High to Z | | 7.1 | | 8.0 | | 9.4 | ns | | t _{ENLZ} | Enable Pad Low to Z | | 8.3 | | 9.5 | | 11.1 | ns | | t _{GLH} | G to Pad High | | 8.9 | | 10.2 | | 11.9 | ns | | t _{GHL} | G to Pad Low | | 11.2 | | 12.7 | | 14.9 | ns | | d_{TLH} | Delta Low to High | | 0.07 | | 0.08 | | 0.09 | ns/pF | | d _{THL} | Delta High to Low | | 0.12 | | 0.13 | | 0.16 | ns/pF | | CMOS | Output Module Timing ¹ | • | | | | | | .1. | | t _{DLH} | Data to Pad High | | 10.1 | | 11.5 | | 13.5 | ns | | t _{DHL} | Data to Pad Low | | 8.4 | | 9.6 | | 11.2 | ns | | t _{ENZH} | Enable Pad Z to High | | 8.9 | | 10.0 | | 11.8 | ns | | t _{ENZL} | Enable Pad Z to Low | | 11.6 | | 13.2 | | 15.5 | ns | | t _{ENHZ} | Enable Pad High to Z | | 7.1 | | 8.0 | | 9.4 | ns | | t _{ENLZ} | Enable Pad Low to Z | | 8.3 | | 9.5 | | 11.1 | ns | | t _{GLH} | G to Pad High | | 8.9 | | 10.2 | | 11.9 | ns | | t _{GHL} | G to Pad Low | | 11.2 | | 12.7 | | 14.9 | ns | | d _{TLH} | Delta Low to High | | 0.12 | | 0.13 | | 0.16 | ns/pF | | d _{THL} | Delta High to Low | | 0.09 | | 0.10 | | 0.12 | ns/pF | #### Notes: 2-14 Revision 8 ^{1.} Delays based on 50 pF loading. ^{2.} SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx. ## **A1240A Timing Characteristics** Table 2-15 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C | Logic Module Propagation Delays ¹ | | −2 S _I | peed ³ | -1 Speed | | Std. Speed | | Units | |----------------------------------------------|--------------------------------------------------|-------------------|-------------------|----------|------|------------|------|-------| | Paramete | er/Description | Min. | Max. | Min. | Max. | Min. | Max. | | | t _{PD1} | Single Module | | 3.8 | | 4.3 | | 5.0 | ns | | t _{CO} | Sequential Clock to Q | | 3.8 | | 4.3 | | 5.0 | ns | | t _{GO} | Latch G to Q | | 3.8 | | 4.3 | | 5.0 | ns | | t _{RS} | Flip-Flop (Latch) Reset to Q | | 3.8 | | 4.3 | | 5.0 | ns | | Predicted | d Routing Delays ² | L | | | | ı | | | | t _{RD1} | FO = 1 Routing Delay | | 1.4 | | 1.5 | | 1.8 | ns | | t _{RD2} | FO = 2 Routing Delay | | 1.7 | | 2.0 | | 2.3 | ns | | t _{RD3} | FO = 3 Routing Delay | | 2.3 | | 2.6 | | 3.0 | ns | | t _{RD4} | FO = 4 Routing Delay | | 3.1 | | 3.5 | | 4.1 | ns | | t _{RD8} | FO = 8 Routing Delay | | 4.7 | | 5.4 | | 6.3 | ns | | Sequenti | al Timing Characteristics ^{3,4} | | | | | | | | | t _{SUD} | Flip-Flop (Latch) Data Input Setup | 0.4 | | 0.4 | | 0.5 | | ns | | t _{HD} | Flip-Flop (Latch) Data Input Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{SUENA} | Flip-Flop (Latch) Enable Setup | 8.0 | | 0.9 | | 1.0 | | ns | | t _{HENA} | Flip-Flop (Latch) Enable Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{WCLKA} | Flip-Flop (Latch) Clock Active Pulse Width | 4.5 | | 6.0 | | 6.5 | | ns | | t _{WASYN} | Flip-Flop (Latch) Clock Asynchronous Pulse Width | 4.5 | | 6.0 | | 6.5 | | ns | | t _A | Flip-Flop Clock Input Period | 9.8 | | 12.0 | | 15.0 | | ns | | t _{INH} | Input Buffer Latch Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSU} | Input Buffer Latch Setup | 0.4 | | 0.4 | | 0.5 | | ns | | t _{OUTH} | Output Buffer Latch Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{outsu} | Output Buffer Latch Setup | 0.4 | | 0.4 | | 0.5 | | ns | | f _{MAX} | Flip-Flop (Latch) Clock Frequency | | 100.0 | | 80.0 | | 66.0 | MHz | #### Notes: - $1. \quad \textit{For dual-module macros, use } t_{PD1} + t_{RD1} + t_{PDn}, \ t_{CO} + t_{RD1} + t_{PDn}, \ \textit{or } t_{PD1} + t_{RD1} + t_{SUD} \textit{whichever is appropriate.} \\$ - Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. - 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility. - 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. # A1240A Timing Characteristics (continued) Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C | TTL Output Module Timing ¹ | | -2 S | -2 Speed | | -1 Speed | | Std. Speed | | |---------------------------------------|-----------------------------------|------|----------|------|----------|------|------------|-------| | Parame | ter/Description | Min. | Max. | Min. | Max. | Min. | Max. | | | t _{DLH} | Data to Pad High | | 8.0 | | 9.0 | | 10.6 | ns | | t _{DHL} | Data to Pad Low | | 10.1 | | 11.4 | | 13.4 | ns | | t _{ENZH} | Enable Pad Z to High | | 8.9 | | 10.0 | | 11.8 | ns | | t _{ENZL} | Enable Pad Z to Low | | 11.7 | | 13.2 | | 15.5 | ns | | t _{ENHZ} | Enable Pad High to Z | | 7.1 | | 8.0 | | 9.4 | ns | | t _{ENLZ} | Enable Pad Low to Z | | 8.4 | | 9.5 | | 11.1 | ns | | t _{GLH} | G to Pad High | | 9.0 | | 10.2 | | 11.9 | ns | | t _{GHL} | G to Pad Low | | 11.2 | | 12.7 | | 14.9 | ns | | d_{TLH} | Delta Low to High | | 0.07 | | 0.08 | | 0.09 | ns/pF | | d_THL | Delta High to Low | | 0.12 | | 0.13 | | 0.16 | ns/pF | | CMOS | Output Module Timing ¹ | | | | | | | | | t _{DLH} | Data to Pad High | | 10.2 | | 11.5 | | 13.5 | ns | | t _{DHL} | Data to Pad Low | | 8.4 | | 9.6 | | 11.2 | ns | | t _{ENZH} | Enable Pad Z to High | | 8.9 | | 10.0 | | 11.8 | ns | | t _{ENZL} | Enable Pad Z to Low | | 11.7 | | 13.2 | | 15.5 | ns | | t _{ENHZ} | Enable Pad High to Z | | 7.1 | | 8.0 | | 9.4 | ns | | t _{ENLZ} | Enable Pad Low to Z | | 8.4 | | 9.5 | | 11.1 | ns | | t _{GLH} | G to Pad High | | 9.0 | | 10.2 | | 11.9 | ns | | t _{GHL} | G to Pad Low | | 11.2 | | 12.7 | | 14.9 | ns | | d_{TLH} | Delta Low to High | | 0.12 | | 0.13 | | 0.16 | ns/pF | | d _{THL} | Delta High to Low | | 0.09 | | 0.10 | | 0.12 | ns/pF | #### Notes: - 1. Delays based on 50 pF loading. - 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx. **Detailed Specifications** ## **A1280A Timing Characteristics** Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C | Logic Module Propagation Delays ¹ | | -2 Speed ³ | | -1 Speed | | Std. Speed | | Units | |----------------------------------------------|--------------------------------------------------|-----------------------|------|----------|------|------------|------|-------| | Paramete | er/Description | Min. | Max. | Min. | Max. | Min. | Max. | | | t _{PD1} | Single Module | | 3.8 | | 4.3 | | 5.0 | ns | | t _{CO} | Sequential Clock to Q | | 3.8 | | 4.3 | | 5.0 | ns | | t_{GO} | Latch G to Q | | 3.8 | | 4.3 | | 5.0 | ns | | t _{RS} | Flip-Flop (Latch) Reset to Q | | 3.8 | | 4.3 | | 5.0 | ns | | Predicte | d Routing Delays ² | | | | | ı | | | | t _{RD1} | FO = 1 Routing Delay | | 1.7 | | 2.0 | | 2.3 | ns | | t _{RD2} | FO = 2 Routing Delay | | 2.5 | | 2.8 | | 3.3 | ns | | t _{RD3} | FO = 3 Routing Delay | | 3.0 | | 3.4 | | 4.0 | ns | | t _{RD4} | FO = 4 Routing Delay | | 3.7 | | 4.2 | | 4.9 | ns | | t _{RD8} | FO = 8 Routing Delay | | 6.7 | | 7.5 | | 8.8 | ns | | Sequenti | al Timing Characteristics ^{3,4} | | | | | ı | | | | t _{SUD} | Flip-Flop (Latch) Data Input Setup | 0.4 | | 0.4 | | 0.5 | | ns | | t _{HD} | Flip-Flop (Latch) Data Input Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{SUENA} | Flip-Flop (Latch) Enable Setup | 0.8 | | 0.9 | | 1.0 | | ns | | t _{HENA} | Flip-Flop (Latch) Enable Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{WCLKA} | Flip-Flop (Latch) Clock Active Pulse Width | 5.5 | | 6.0 | | 7.0 | | ns | | t _{WASYN} | Flip-Flop (Latch) Clock Asynchronous Pulse Width | 5.5 | | 6.0 | | 7.0 | | ns | | t _A | Flip-Flop Clock Input Period | 11.7 | | 13.3 | | 18.0 | | ns | | t _{INH} | Input Buffer Latch Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSU} | Input Buffer Latch Setup | 0.4 | | 0.4 | | 0.5 | | ns | | t _{OUTH} | Output Buffer Latch Hold | 0.0 | | 0.0 | | 0.0 | | ns | | t _{outsu} | Output Buffer Latch Setup | 0.4 | | 0.4 | | 0.5 | | ns | | f _{MAX} | Flip-Flop (Latch) Clock Frequency | | 85.0 | | 75.0 | | 50.0 | MHz | #### Notes: - 1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$ —whichever is appropriate. - Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment. - 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility. - 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time. 2-18 Revision 8 # **Pin Descriptions** #### CLKA Clock A (Input) TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. #### CLKB Clock B (Input) TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O. #### DCLK Diagnostic Clock (Input) TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. #### GND Ground Low supply voltage. #### I/O Input/Output (Input, Output) The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software. #### MODE Mode (Input) The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required. #### NC No Connection This pin is not connected to circuitry within the device. #### PRA Probe A (Output) The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. #### PRB Probe B (Output) The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. #### SDI Serial Data Input (Input) Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. #### SDO Serial Data Output (Output) Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low. #### VCC 5.0 V Supply Voltage High supply voltage. # **PQ144** #### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx ### **PQ160** Note: This is the top view of the package #### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx #### Package Pin Assignments | | PQ160 | | |------------|-----------------|-----| | Pin Number | A1280A Function | Pir | | 2 | DCLK, I/O | | | 6 | VCC | | | 11 | GND | | | 16 | PRB, I/O | | | 18 | CLKB, I/O | | | 20 | VCC | | | 21 | CLKA, I/O | | | 23 | PRA, I/O | | | 30 | GND | | | 35 | VCC | | | 38 | SDI, I/O | | | 40 | GND | | | 44 | GND | | | 49 | GND | | | 54 | VCC | | | 57 | VCC | | | 58 | VCC | | | 59 | GND | | | 60 | VCC | | | 61 | GND | | | 64 | GND | | | | PQ160 | | | | | |------------|-----------------|--|--|--|--| | Pin Number | A1280A Function | | | | | | 69 | GND | | | | | | 80 | GND | | | | | | 82 | SDO | | | | | | 86 | VCC | | | | | | 89 | GN | | | | | | 98 | GND | | | | | | 99 | GND | | | | | | 109 | GND | | | | | | 114 | VCC | | | | | | 120 | GND | | | | | | 125 | GND | | | | | | 130 | GND | | | | | | 135 | VCC | | | | | | 138 | VCC | | | | | | 139 | VCC | | | | | | 140 | GND | | | | | | 145 | GND | | | | | | 150 | VCC | | | | | | 155 | GND | | | | | | 159 | MODE | | | | | | 160 | GND | | | | | #### Notes: - 1. All unlisted pin numbers are user I/Os. - 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. 3-8 Revision 8 | TQ176 | | | | | | |------------|-----------------|-----------------|--|--|--| | Pin Number | A1240A Function | A1280A Function | | | | | 155 | VCC | VCC | | | | | 156 | GND | GND | | | | | 158 | CLKB, I/O | CLKB, I/O | | | | | 160 | PRB, I/O | PRB, I/O | | | | | 161 | NC | I/O | | | | | 165 | NC | NC | | | | | 166 | NC | I/O | | | | | 168 | NC | I/O | | | | | 170 | NC | VCC | | | | | 173 | NC | I/O | | | | | 175 | DCLK, I/O | DCLK, I/O | | | | #### Notes: - 1. NC denotes no connection. - 2. All unlisted pin numbers are user I/Os. - 3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. # **CQ172** ### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3-14 Revision 8 | PG132 | | |------------|-----------------| | Pin Number | A1240A Function | | A1 | MODE | | B5 | GND | | B6 | CLKB, I/O | | B7 | CLKA, I/O | | B8 | PRA, I/O | | В9 | GND | | B12 | SDI, I/O | | C3 | DCLK, I/O | | C5 | GND | | C6 | PRB, I/O | | C7 | VCC | | C9 | GND | | D7 | VCC | | E3 | GND | | E11 | GND | | E12 | GND | | F4 | GND | | G2 | VCC | | PG132 | | |------------|-----------------| | Pin Number | A1240A Function | | G3 | VCC | | G4 | VCC | | G10 | VCC | | G11 | VCC | | G12 | VCC | | G13 | VCC | | H13 | GND | | J2 | GND | | J3 | GND | | J11 | GND | | K7 | VCC | | K12 | GND | | L5 | GND | | L7 | VCC | | L9 | GND | | M9 | GND | | N12 | SDO | #### Notes: - 1. All unlisted pin numbers are user I/Os. - 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND. Package Pin Assignments ### **PG176** #### Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx 3-20 Revision 8 | PG176 | | |------------|-----------------| | Pin Number | A1280A Function | | A9 | CLKA, I/O | | В3 | DCLK, I/O | | B8 | CLKB, I/O | | B14 | SDI, I/O | | C3 | MODE | | C8 | GND | | C9 | PRA, I/O | | D4 | GND | | D5 | VCC | | D6 | GND | | D7 | PRB, I/O | | D8 | VCC | | D10 | GND | | D11 | VCC | | D12 | GND | | E4 | GND | | E12 | GND | | F4 | VCC | | F12 | GND | | G4 | GND | | G12 | VCC | | H2 | VCC | | PG176 | | | |------------|-----------------|--| | Pin Number | A1280A Function | | | H3 | VCC | | | H4 | GND | | | H12 | GND | | | H13 | VCC | | | H14 | VCC | | | J4 | VCC | | | J12 | GND | | | J13 | GND | | | J14 | VCC | | | K4 | GND | | | K12 | GND | | | L4 | GND | | | M4 | GND | | | M5 | VCC | | | M6 | GND | | | M8 | GND | | | M10 | GND | | | M11 | VCC | | | M12 | GND | | | N8 | VCC | | | P13 | SDO | | #### Notes: - 1. All unlisted pin numbers are user I/Os. - 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.