

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

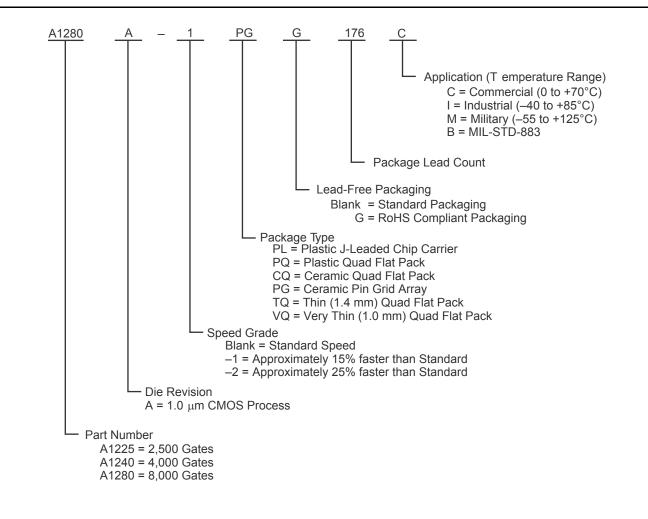
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	451
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1225a-1pq100c

Email: info@E-XFL.COM


E·XFI

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi.

ACT 2 Family FPGAs

Ordering Information

Table of Contents

ACT 2 Family Overview

General Description	1-1
Detailed Specifications	
Operating Conditions	2-1
Package Thermal Characteristics	2-3
Power Dissipation	2-3
ACT 2 Timing Model ¹	2-7
Pin Descriptions	-21

Package Pin Assignments

PQ100	 -3
PQ144	 -5
PQ160	 -7
VQ100	 -9
CQ172	 14
PG132	 18
PG176	 20

Datasheet Information

List of Changes	4-1
Datasheet Categories	4-2
Safety Critical, Life Support, and High-Reliability Applications Policy	4-2

1 – ACT 2 Family Overview

General Description

The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0- μ m, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486TM PC, SunTM, and HPTM workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic[®], Mentor Graphics[®], and OrCADTM.

Detailed Specifications

Table 2-3 • Electrical Specifications

		Con	nmercial	In	dustrial	N	lilitary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	$(IOH = -10 \text{ mA})^2$	2.4	-	_	_	_	-	V
	(IOH = –6 mA)	3.84	-	_	_	_	-	V
	(IOH = -4 mA)	-	-	3.7	_	3.7	-	V
VOL ¹	(IOL = 10 mA) ²	-	0.5	_	-	_	-	V
	(IOL = 6 mA)	-	0.33	_	0.40	_	0.40	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
Input Tran	sition Time t _R , t _F ²	-	500	_	500	-	500	ns
C _{IO} I/O caj	pacitance ^{2,3}	-	10	_	10	-	10	pF
Standby C	urrent, ICC ⁴ (typical = 1 mA)	-	2	_	10	_	20	mA
Leakage C	Current ⁵	-10	+10	-10	+10	-10	+10	μA
ICC(D)	Dynamic VCC supply curren	t. See the	Power Dissip	ation see	ction.		1	1

Notes:

1. Only one output tested at a time. VCC = minimum.

2. Not tested, for information only.

3. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz

4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operations.

5. VOUT, VIN = VCC or GND.

Detailed Specifications

A1225A Timing Characteristics

Table 2-12 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Logic Module Propagation Delays ¹		–2 Sj	beed ³	-1 Speed		Std. Speed		Units
· · · · · · · · · · · · · · · · · · ·		Min.	Max.	Min.	Max.	Min.	Max.	1
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t _{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²							
t _{RD1}	FO = 1 Routing Delay		1.1		1.2		1.4	ns
t _{RD2}	FO = 2 Routing Delay		1.7		1.9		2.2	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.6		3.0	ns
t _{RD4}	FO = 4 Routing Delay		2.8		3.1		3.7	ns
t _{RD8}	FO = 8 Routing Delay		4.4		4.9		5.8	ns
Sequent	ial Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.5		5.0		6.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	4.5		5.0		6.0		ns
t _A	Flip-Flop Clock Input Period	9.4		11.0		13.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{оитн}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		105.0		90.0		75.0	MHz

Notes:

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$ —whichever is appropriate.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

A1240A Timing Characteristics (continued)

Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

TTL Ou	tput Module Timing ¹	–2 S	peed	–1 Speed		Std. Speed		Units
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d _{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Dutput Module Timing ¹	·						
t _{DLH}	Data to Pad High		10.2		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Detailed Specifications

TTL Ou	tput Module Timing ¹	–2 S	peed	-1 Speed		Std. Speed		Units
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.1		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.2		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d _{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Output Module Timing ¹							
t _{DLH}	Data to Pad High		10.3		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.5		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Table 2-20 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Pin Descriptions

CLKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

GND Ground

Low supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

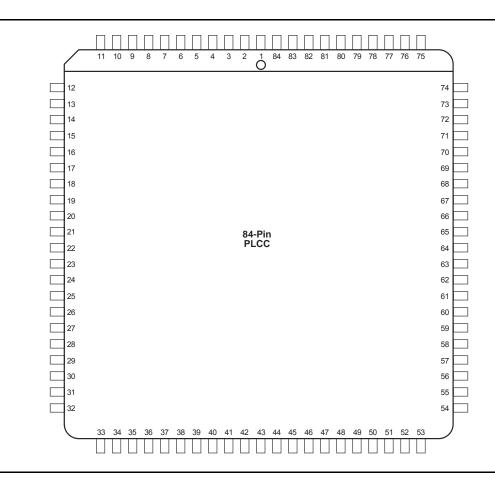
The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.


SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

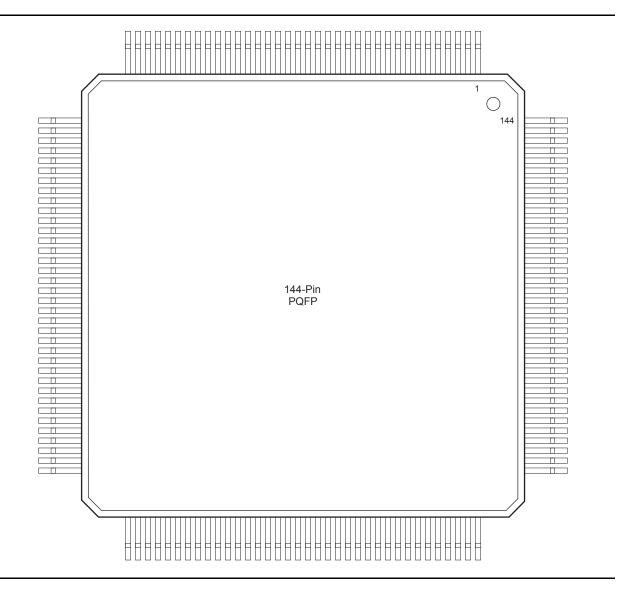
VCC 5.0 V Supply Voltage

High supply voltage.

PL84

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.



PL84						
Pin Number	A1225A Function	A1240A Function	A1280A Function			
2	CLKB, I/O	CLKB, I/O	CLKB, I/O			
4	PRB, I/O	PRB, I/O	PRB, I/O			
6	GND	GND	GND			
10	DCLK, I/O	DCLK, I/O	DCLK, I/O			
12	MODE	MODE	MODE			
22	VCC	VCC	VCC			
23	VCC	VCC	VCC			
28	GND	GND	GND			
43	VCC	VCC	VCC			
49	GND	GND	GND			
52	SDO	SDO	SDO			
63	GND	GND	GND			
64	VCC	VCC	VCC			
65	VCC	VCC	VCC			
70	GND	GND	GND			
76	SDI, I/O	SDI, I/O	SDI, I/O			
81	PRA, I/O	PRA, I/O	PRA, I/O			
83	CLKA, I/O	CLKA, I/O	CLKA, I/O			
84	VCC	VCC	VCC			

Notes:

1. All unlisted pin numbers are user I/Os.

2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Note

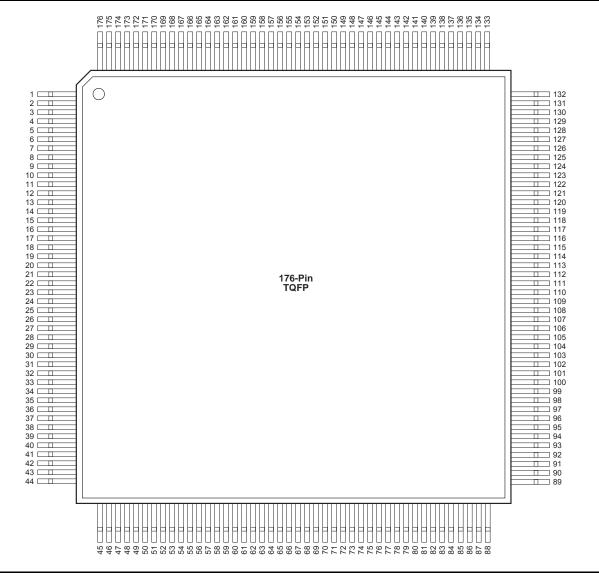
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi ACT 2 Family FPGAs

	PQ144		PQ144			
Pin Number	A1240A Function	Pin Number	A1240A Function			
2	MODE	89	VCC			
9	GND	90	VCC			
10	GND	91	VCC			
11	GND	92	VCC			
18	VCC	93	VCC			
19	VCC	100	GND			
20	VCC	101	GND			
21	VCC	102	GND			
28	GND	110	SDI, I/O			
29	GND	116	GND			
30	GND	117	GND			
44	GND	118	GND			
45	GND	123	PRA, I/O			
46	GND	125	CLKA, I/O			
54	VCC	126	VCC			
55	VCC	127	VCC			
56	VCC	128	VCC			
64	GND	130	CLKB, I/O			
65	GND	132	PRB, I/O			
71	SDO	136	GND			
79	GND	137	GND			
80	GND	138	GND			
81	GND	144	DCLK, I/O			
88	GND	-	-			

Notes:

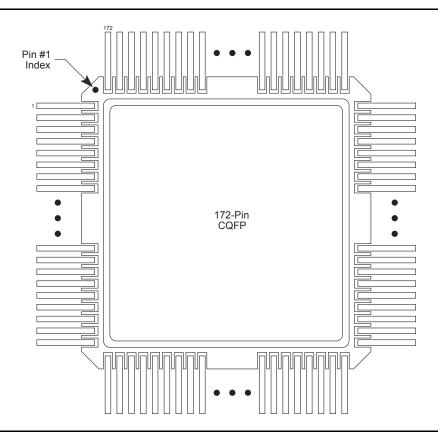
- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.



	VQ100		VQ100	
Pin Number	A1225A Function	Pin Number	A1225A Function	
2	MODE	64	VCC	
7	GND	65	VCC	
14	VCC	70	GND	
15	VCC	77	SDI, I/O	
20	GND	82	GND	
32	GND	85	PRA, I/O	
38	VCC	87	CLKA, I/O	
44	GND	88	VCC	
50	SDO	90	CLKB, I/O	
55	GND	92	PRB, I/O	
62	GND	94	GND	
63	VCC	100	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.


Note

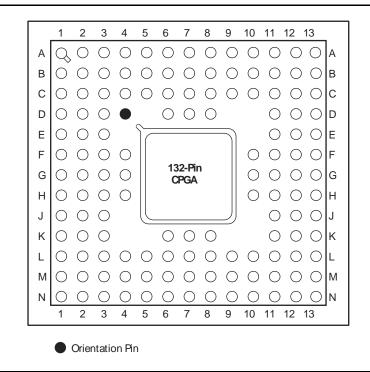
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi. ACT 2 Family FPGAs

CQ172

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx


Р	G100	P	PG100		
Pin Number	A1225A Function	Pin Number	A1225A Function		
A4	PRB, I/O	E11	VCC		
A7	PRA, I/O	F3	VCC		
B6	VCC	F9	VCC		
C2	MODE	F10	VCC		
C3	DCLK, I/O	F11	GND		
C5	GND	G1	VCC		
C6	CLKA, I/O	G3	GND		
C7	GND	G9	GND		
C8	SDI, I/O	J5	GND		
D6	CLKB, I/O	J7	GND		
D10	GND	J9	SDO		
E3	GND	K6	VCC		

Notes:

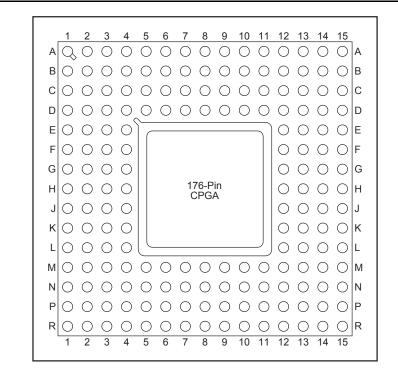
- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG132

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

PG132		
Pin Number	A1240A Function	
A1	MODE	
B5	GND	
B6	CLKB, I/O	
B7	CLKA, I/O	
B8	PRA, I/O	
B9	GND	
B12	SDI, I/O	
C3	DCLK, I/O	
C5	GND	
C6	PRB, I/O	
C7	VCC	
C9	GND	
D7	VCC	
E3	GND	
E11	GND	
E12	GND	
F4	GND	
G2	VCC	


PG132	
Pin Number	A1240A Function
G3	VCC
G4	VCC
G10	VCC
G11	VCC
G12	VCC
G13	VCC
H13	GND
J2	GND
J3	GND
J11	GND
K7	VCC
K12	GND
L5	GND
L7	VCC
L9	GND
M9	GND
N12	SDO

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Datasheet Information

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.