

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	451
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1225a-1pq100i

Email: info@E-XFL.COM

E·XFI

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi.

ACT 2 Family FPGAs

Ordering Information

2 – Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	–0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw excessive current.

Table 2-2 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	–55 to +125	°C
Power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

ACT 2 Timing Model¹

Notes:

1. Values shown for A1240A-2 at worst-case commercial conditions.

2. Input module predicted routing delay

Figure 2-1 • Timing Model

Detailed Specifications

A1225A Timing Characteristics

Table 2-12 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Logic Module Propagation Delays ¹ Parameter/Description		–2 Speed ³		-1 Speed		Std. Speed		Units
		Min.	Max.	Min.	Max.	Min.	Max.	1
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t _{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²							
t _{RD1}	FO = 1 Routing Delay		1.1		1.2		1.4	ns
t _{RD2}	FO = 2 Routing Delay		1.7		1.9		2.2	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.6		3.0	ns
t _{RD4}	FO = 4 Routing Delay		2.8		3.1		3.7	ns
t _{RD8}	FO = 8 Routing Delay		4.4		4.9		5.8	ns
Sequent	ial Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.5		5.0		6.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	4.5		5.0		6.0		ns
t _A	Flip-Flop Clock Input Period	9.4		11.0		13.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{оитн}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		105.0		90.0		75.0	MHz

Notes:

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$ —whichever is appropriate.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

A1225A Timing Characteristics (continued)

Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module Input Propagation Delays			-2 S	peed	–1 S	peed	Std. Speed		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.		
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input M	odule Predicted Input Routing Del	ays [*]							
t _{IRD1}	FO = 1 Routing Delay			4.1		4.6		5.4	ns
t _{IRD2}	FO = 2 Routing Delay			4.6		5.2		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			5.3		6.0		7.1	ns
t _{IRD4}	FO = 4 Routing Delay			5.7		6.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			7.4		8.3		9.8	ns
Global (Clock Network						-	-	
t _{CKH} Input Low to High	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL}	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{CKSW}	Maximum Skew	FO = 32		0.7		0.7		0.7	ns
		FO = 256		3.5		3.5		3.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		
t _P	Minimum Period	FO = 32	7.7		8.3		9.1		ns
		FO = 256	8.1		8.8		10.0		
f _{MAX}	Maximum Frequency	FO = 32		130.0		120.0		110.0	ns
		FO = 256		125.0		115.0		100.0]

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1240A Timing Characteristics

Logic M	odule Propagation Delays ¹	–2 Sj	beed ³	-1 Speed		Std. Speed		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t _{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²							
t _{RD1}	FO = 1 Routing Delay		1.4		1.5		1.8	ns
t _{RD2}	FO = 2 Routing Delay		1.7		2.0		2.3	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.6		3.0	ns
t _{RD4}	FO = 4 Routing Delay		3.1		3.5		4.1	ns
t _{RD8}	FO = 8 Routing Delay		4.7		5.4		6.3	ns
Sequent	ial Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.5		6.0		6.5		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	4.5		6.0		6.5		ns
t _A	Flip-Flop Clock Input Period	9.8		12.0		15.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		100.0		80.0		66.0	MHz

Notes:

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$ —whichever is appropriate.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

A1240A Timing Characteristics (continued)

Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

TTL Ou	TTL Output Module Timing ¹		peed	–1 S	peed	Std. Speed		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d _{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Dutput Module Timing ¹	·						
t _{DLH}	Data to Pad High		10.2		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Detailed Specifications

TTL Ou	tput Module Timing ¹	–2 S	peed	-1 S	peed	Std. Speed		Units
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.1		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.2		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d _{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Output Module Timing ¹							
t _{DLH}	Data to Pad High		10.3		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.5		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Table 2-20 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

PL84							
Pin Number	A1225A Function	A1240A Function	A1280A Function				
2	CLKB, I/O	CLKB, I/O	CLKB, I/O				
4	PRB, I/O	PRB, I/O	PRB, I/O				
6	GND	GND	GND				
10	DCLK, I/O	DCLK, I/O	DCLK, I/O				
12	MODE	MODE	MODE				
22	VCC	VCC	VCC				
23	VCC	VCC	VCC				
28	GND	GND	GND				
43	VCC	VCC	VCC				
49	GND	GND	GND				
52	SDO	SDO	SDO				
63	GND	GND	GND				
64	VCC	VCC	VCC				
65	VCC	VCC	VCC				
70	GND	GND	GND				
76	SDI, I/O	SDI, I/O	SDI, I/O				
81	PRA, I/O	PRA, I/O	PRA, I/O				
83	CLKA, I/O	CLKA, I/O	CLKA, I/O				
84	VCC	VCC	VCC				

Notes:

1. All unlisted pin numbers are user I/Os.

2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi. ACT 2 Family FPGAs

	VQ100		VQ100
Pin Number	A1225A Function	Pin Number	A1225A Function
2	MODE	64	VCC
7	GND	65	VCC
14	VCC	70	GND
15	VCC	77	SDI, I/O
20	GND	82	GND
32	GND	85	PRA, I/O
38	VCC	87	CLKA, I/O
44	GND	88	VCC
50	SDO	90	CLKB, I/O
55	GND	92	PRB, I/O
62	GND	94	GND
63	VCC	100	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

	TQ176			TQ176	
Pin Number	A1240A Function	A1280A Function	Pin Number	A1240A Function	A1280A Function
1	GND	GND	82	NC	VCC
2	MODE	MODE	86	NC	I/O
8	NC	NC	87	SDO	SDO
10	NC	I/O	89	GND	GND
11	NC	I/O	96	NC	I/O
13	NC	VCC	97	NC	I/O
18	GND	GND	101	NC	NC
19	NC	I/O	103	NC	I/O
20	NC	I/O	106	GND	GND
22	NC	I/O	107	NC	I/O
23	GND	GND	108	NC	I/O
24	NC	VCC	109	GND	GND
25	VCC	VCC	110	VCC	VCC
26	NC	I/O	111	GND	GND
27	NC	I/O	112	VCC	VCC
28	VCC	VCC	113	VCC	VCC
29	NC	I/O	114	NC	I/O
33	NC	NC	115	NC	I/O
37	NC	I/O	116	NC	VCC
38	NC	NC	121	NC	NC
45	GND	GND	124	NC	I/O
52	NC	VCC	125	NC	I/O
54	NC	I/O	126	NC	NC
55	NC	I/O	133	GND	GND
57	NC	NC	135	SDI, I/O	SDI, I/O
61	NC	I/O	136	NC	I/O
64	NC	I/O	140	NC	VCC
66	NC	I/O	143	NC	I/O
67	GND	GND	144	NC	I/O
68	VCC	VCC	145	NC	NC
74	NC	I/O	147	NC	I/O
77	NC	NC	151	NC	I/O
78	NC	I/O	152	PRA, I/O	PRA, I/O
80	NC	I/O	154	CLKA, I/O	CLKA, I/O

CQ172		CQ172	
Pin Number	A1280A Function	Pin Number	A1280A Function
1	MODE	107	VCC
7	GND	108	GND
12	VCC	109	VCC
17	GND	110	VCC
22	GND	113	VCC
23	VCC	118	GND
24	VCC	123	GND
27	VCC	131	SDI, I/O
32	GND	136	VCC
37	GND	141	GND
50	VCC	148	PRA, I/O
55	GND	150	CLKA, I/O
65	GND	151	VCC
66	VCC	152	GND
75	GND	154	CLKB, I/O
80	VCC	156	PRB, I/O
85	SDO	161	GND
98	GND	166	VCC
103	GND	171	DCLK, I/O
106	GND	L L	

Notes:

1. All unlisted pin numbers are user I/Os.

2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

PG176		PG176	
Pin Number	A1280A Function	Pin Number	A1280A Functio
A9	CLKA, I/O	H3	VCC
B3	DCLK, I/O	H4	GND
B8	CLKB, I/O	H12	GND
B14	SDI, I/O	H13	VCC
C3	MODE	H14	VCC
C8	GND	J4	VCC
C9	PRA, I/O	J12	GND
D4	GND	J13	GND
D5	VCC	J14	VCC
D6	GND	K4	GND
D7	PRB, I/O	K12	GND
D8	VCC	L4	GND
D10	GND	M4	GND
D11	VCC	M5	VCC
D12	GND	M6	GND
E4	GND	M8	GND
E12	GND	M10	GND
F4	VCC	M11	VCC
F12	GND	M12	GND
G4	GND	N8	VCC
G12	VCC	P13	SDO
H2	VCC		

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	
Revision 8 (January 2012)	The ACT 2 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters.	N/A
	Package names used in Table 1 • ACT 2 Product Family Profile and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	
	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35819).	
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35819).	3-2
Revision 7 (June 2006)	The "Ordering Information" section was revised to include RoHS information.	II
Revision 6 (December 2000)	In the "PG176" package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a user I/O. Pin A9 is CLKA, I/O.	3-21