

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	684
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	104
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	132-BCPGA
Supplier Device Package	132-CPGA (34.54x34.54)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1240a-1pg132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.

$$\begin{aligned} & \text{Power =VCC$}^2 * [(\text{m * C}_{\text{EQM}} * f_{\text{m}})_{\text{modules}} + (\text{n * C}_{\text{EQI}} * f_{\text{n}})_{\text{inputs}} \\ & + (\text{p * (C}_{\text{EQO}} + \text{C}_{\text{L}}) * f_{\text{p}})_{\text{outputs}} \\ & + 0.5 * (\text{q1 * C}_{\text{EQCR}} * f_{\text{q1}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ \\ & + 0.5 * (\text{q2 * C}_$$

EQ 4

Where:

m = Number of logic modules switching at f_m

n = Number of input buffers switching at f_n

p = Number of output buffers switching at f_n

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

 r_1 = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

C_{FOM} = Equivalent capacitance of logic modules in pF

C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EOCR} = Equivalent capacitance of routed array clock in pF

C_I = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_p = Average output buffer switching rate in MHz

f_{q1} = Average first routed array clock rate in MHz

f_{g2} = Average second routed array clock rate in MHz

Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1225A	106	106.0
A1240A	134	134.2
A1280A	168	167.8

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8.

Table 2-8 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (C _L)	35 pF
Average logic module switching rate (f _m)	F/10
Average input switching rate (f _n)	F/5
Average output switching rate (f _p)	F/10
Average first routed array clock rate (f _{q1})	F
Average second routed array clock rate (f _{q2})	F/2

2-6 Revision 8

A1240A Timing Characteristics

Table 2-15 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C

odule Propagation Delays ¹	–2 Speed ³		-1 Speed		Std. Speed		Units
er/Description	Min.	Max.	Min.	Max.	Min.	Max.	1
Single Module		3.8		4.3		5.0	ns
Sequential Clock to Q		3.8		4.3		5.0	ns
Latch G to Q		3.8		4.3		5.0	ns
Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
d Routing Delays ²	L	.1.			ı		1.
FO = 1 Routing Delay		1.4		1.5		1.8	ns
FO = 2 Routing Delay		1.7		2.0		2.3	ns
FO = 3 Routing Delay		2.3		2.6		3.0	ns
FO = 4 Routing Delay		3.1		3.5		4.1	ns
FO = 8 Routing Delay		4.7		5.4		6.3	ns
al Timing Characteristics ^{3,4}		•		•	•		•
Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
Flip-Flop (Latch) Clock Active Pulse Width	4.5		6.0		6.5		ns
Flip-Flop (Latch) Clock Asynchronous Pulse Width	4.5		6.0		6.5		ns
Flip-Flop Clock Input Period	9.8		12.0		15.0		ns
Input Buffer Latch Hold	0.0		0.0		0.0		ns
Input Buffer Latch Setup	0.4		0.4		0.5		ns
Output Buffer Latch Hold	0.0		0.0		0.0		ns
Output Buffer Latch Setup	0.4		0.4		0.5		ns
Flip-Flop (Latch) Clock Frequency		100.0		80.0		66.0	MHz
	Single Module Sequential Clock to Q Latch G to Q Flip-Flop (Latch) Reset to Q d Routing Delays² FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 8 Routing Delay FO = 8 Routing Delay FO = 8 Routing Delay FIip-Flop (Latch) Data Input Setup Flip-Flop (Latch) Data Input Hold Flip-Flop (Latch) Enable Setup Flip-Flop (Latch) Enable Hold Flip-Flop (Latch) Clock Active Pulse Width Flip-Flop Clock Input Period Input Buffer Latch Hold Input Buffer Latch Hold Output Buffer Latch Hold Output Buffer Latch Setup	Single Module Sequential Clock to Q Latch G to Q Flip-Flop (Latch) Reset to Q ROuting Delays FO = 1 Routing Delay FO = 2 Routing Delay FO = 3 Routing Delay FO = 8 Routing Delay FO = 8 Routing Delay FO = 8 Routing Delay FIp-Flop (Latch) Data Input Setup Flip-Flop (Latch) Data Input Hold Flip-Flop (Latch) Enable Setup Flip-Flop (Latch) Enable Hold Flip-Flop (Latch) Clock Active Pulse Width Flip-Flop Clock Input Period Input Buffer Latch Hold O.0 Output Buffer Latch Setup O.4	Single Module Sequential Clock to Q Sequential Clock O Sequential Clo	Single Module Sequential Clock to Q Latch G to Q Sequential Place It o Q Sequential Clock to Q Sequential Clock Sequ	Min. Max. Min. Max. Min. Max. Single Module 3.8 4.3	Min. Max. Min. Max. Min. Max. Min. Min. Single Module	Min. Max. So. So. Sequential Clock to Q 3.8 4.3 5.0 Max. So. Max. Min. Min. Max. Min. Max. Min. Max. Min. Min. Max. Min. Min. Max. Min

Notes:

- $1. \quad \textit{For dual-module macros, use } t_{PD1} + t_{RD1} + t_{PDn}, \ t_{CO} + t_{RD1} + t_{PDn}, \ \textit{or } t_{PD1} + t_{RD1} + t_{SUD} \textit{whichever is appropriate.} \\$
- Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
 estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
 performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
 shipment.
- 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.
- 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Detailed Specifications

A1240A Timing Characteristics (continued)

Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	/O Module Input Propagation Delays			-2 Speed		-1 Speed		Std. Speed	
Paramet	ter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]		.1.					
t _{IRD1}	FO = 1 Routing Delay			4.2		4.8		5.6	ns
t _{IRD2}	FO = 2 Routing Delay			4.8		5.4		6.4	ns
t _{IRD3}	FO = 3 Routing Delay			5.4		6.1		7.2	ns
t _{IRD4}	FO = 4 Routing Delay			5.9		6.7		7.9	ns
t _{IRD8}	FO = 8 Routing Delay			7.9		8.9		10.5	ns
Global (Clock Network		•	•		•		•	•
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL}	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{CKSW}	Maximum Skew	FO = 32		0.5		0.5		0.5	ns
		FO = 256		2.5		2.5		2.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		1
t _P	Minimum Period	FO = 32	8.1		9.1		11.1		ns
		FO = 256	8.8		10.0		11.7		1
f _{MAX}	Maximum Frequency	FO = 32		125.0		110.0		90.0	ns
		FO = 256		115.0		100.0		85.0	1

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-16 Revision 8

A1240A Timing Characteristics (continued)

Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

TTL Output Module Timing ¹		-2 S	-2 Speed		-1 Speed		Std. Speed	
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d_{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d_{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS (Output Module Timing ¹	•						
t _{DLH}	Data to Pad High		10.2		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

- 1. Delays based on 50 pF loading.
- 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Detailed Specifications

A1280A Timing Characteristics

Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C

Logic Mo	Logic Module Propagation Delays ¹		peed ³	-1 Speed		Std. Speed		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²					ı		
t _{RD1}	FO = 1 Routing Delay		1.7		2.0		2.3	ns
t _{RD2}	FO = 2 Routing Delay		2.5		2.8		3.3	ns
t _{RD3}	FO = 3 Routing Delay		3.0		3.4		4.0	ns
t _{RD4}	FO = 4 Routing Delay		3.7		4.2		4.9	ns
t _{RD8}	FO = 8 Routing Delay		6.7		7.5		8.8	ns
Sequenti	al Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	5.5		6.0		7.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	5.5		6.0		7.0		ns
t _A	Flip-Flop Clock Input Period	11.7		13.3		18.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		85.0		75.0		50.0	MHz

Notes:

- 1. For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn} , t_{CO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} —whichever is appropriate.
- Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
 estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
 performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
 shipment.
- 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.
- 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

2-18 Revision 8

Detailed Specifications

Table 2-20 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

TTL Output Module Timing ¹		-2 S	-2 Speed		-1 Speed		Std. Speed	
Parame	Parameter/Description		Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.1		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.2		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d_TLH	Delta Low to High		0.07		0.08		0.09	ns/pF
d_THL	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Dutput Module Timing ¹							
t _{DLH}	Data to Pad High		10.3		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.5		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		9.0		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.8		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.3		12.7		14.9	ns
d_{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d_{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

2-20 Revision 8

^{1.} Delays based on 50 pF loading.

^{2.} SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Pin Descriptions

CLKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

GND Ground

Low supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

PRB Probe B (Output)

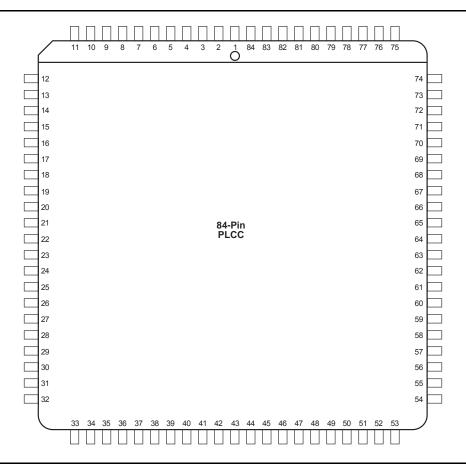
The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

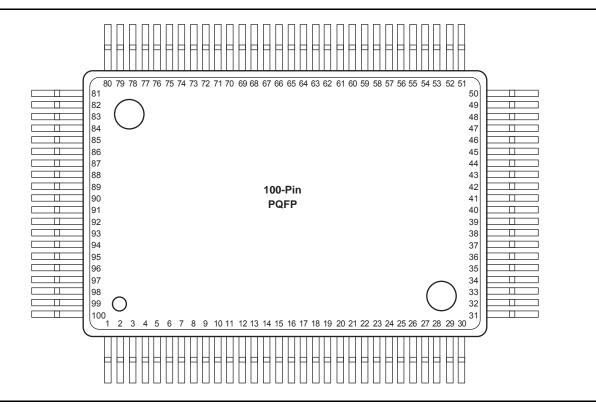
SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.


VCC 5.0 V Supply Voltage

High supply voltage.

3 – Package Pin Assignments


PL84

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

PQ100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

PQ144				
Pin Number	A1240A Function			
2	MODE			
9	GND			
10	GND			
11	GND			
18	VCC			
19	VCC			
20	VCC			
21	VCC			
28	GND			
29	GND			
30	GND			
44	GND			
45	GND			
46	GND			
54	VCC			
55	VCC			
56	VCC			
64	GND			
65	GND			
71	SDO			
79	GND			
80	GND			
81	GND			
88	GND			

PQ144				
Pin Number	A1240A Function			
89	VCC			
90	VCC			
91	VCC			
92	VCC			
93	VCC			
100	GND			
101	GND			
102	GND			
110	SDI, I/O			
116	GND			
117	GND			
118	GND			
123	PRA, I/O			
125	CLKA, I/O			
126	VCC			
127	VCC			
128	VCC			
130	CLKB, I/O			
132	PRB, I/O			
136	GND			
137	GND			
138	GND			
144	DCLK, I/O			

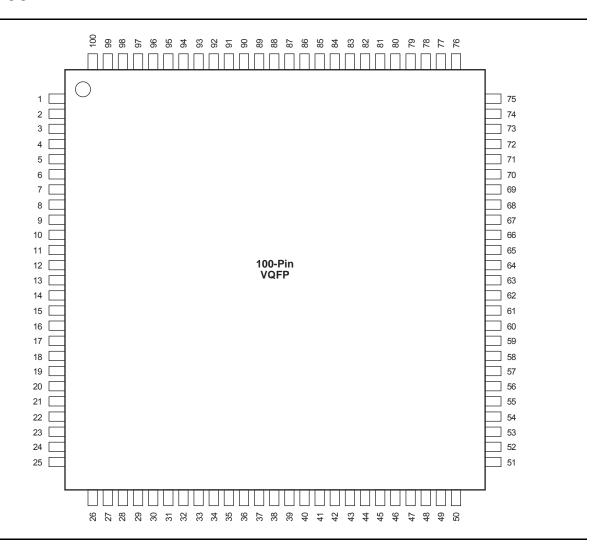
Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-6 Revision 8

Package Pin Assignments

	PQ160					
Pin Number	A1280A Function	Pin Nur				
2	DCLK, I/O	69				
6	VCC	80				
11	GND	82				
16	PRB, I/O	86				
18	CLKB, I/O	89				
20	VCC	98				
21	CLKA, I/O	99				
23	PRA, I/O	109				
30	GND	114				
35	VCC	120				
38	SDI, I/O	125				
40	GND	130				
44	GND	135				
49	GND	138				
54	VCC	139				
57	VCC	140				
58	VCC	145				
59	GND	150				
60	VCC	155				
61	GND	159				
64	GND	160				


PQ160				
Pin Number	A1280A Function			
69	GND			
80	GND			
82	SDO			
86	VCC			
89	GN			
98	GND			
99	GND			
109	GND			
114	VCC			
120	GND			
125	GND			
130	GND			
135	VCC			
138	VCC			
139	VCC			
140	GND			
145	GND			
150	VCC			
155	GND			
159	MODE			
160	GND			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-8 Revision 8

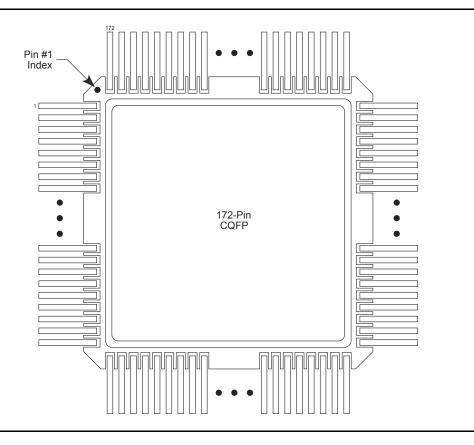
VQ100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

VQ100		
Pin Number	A1225A Function	
2	MODE	
7	GND	
14	VCC	
15	VCC	
20	GND	
32	GND	
38	VCC	
44	GND	
50	SDO	
55	GND	
62	GND	
63	VCC	


VQ100		
Pin Number	A1225A Function	
64	VCC	
65	VCC	
70	GND	
77	SDI, I/O	
82	GND	
85	PRA, I/O	
87	CLKA, I/O	
88	VCC	
90	CLKB, I/O	
92	PRB, I/O	
94	GND	
100	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-10 Revision 8

CQ172

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 8

	CQ172		
Pin Number	A1280A Function		
1	MODE		
7	GND		
12	VCC		
17	GND		
22	GND		
23	VCC		
24	VCC		
27	VCC		
32	GND		
37	GND		
50	VCC		
55	GND		
65	GND		
66	VCC		
75	GND		
80	VCC		
85	SDO		
98	GND		
103	GND		
106	GND		

CQ172		
Pin Number	A1280A Function	
107	VCC	
108	GND	
109	VCC	
110	VCC	
113	VCC	
118	GND	
123	GND	
131	SDI, I/O	
136	VCC	
141	GND	
148	PRA, I/O	
150	CLKA, I/O	
151	VCC	
152	GND	
154	CLKB, I/O	
156	PRB, I/O	
161	GND	
166	VCC	
171	DCLK, I/O	

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG100			
Pin Number	A1225A Function		
A4	PRB, I/O		
A7	PRA, I/O		
B6	VCC		
C2	MODE		
C3	DCLK, I/O		
C5	GND		
C6	CLKA, I/O		
C7	GND		
C8	SDI, I/O		
D6	CLKB, I/O		
D10	GND		
E3	GND		

PG100		
Pin Number	A1225A Function	
E11	VCC	
F3	VCC	
F9	VCC	
F10	VCC	
F11	GND	
G1	VCC	
G3	GND	
G9	GND	
J5	GND	
J7	GND	
J9	SDO	
K6	VCC	

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

	PG132		
Pin Number	A1240A Function		
A1	MODE		
B5	GND		
B6	CLKB, I/O		
B7	CLKA, I/O		
B8	PRA, I/O		
B9	GND		
B12	SDI, I/O		
C3	DCLK, I/O		
C5	GND		
C6	PRB, I/O		
C7	VCC		
C9	GND		
D7	VCC		
E3	GND		
E11	GND		
E12	GND		
F4	GND		
G2	VCC		

PG132			
Pin Number	A1240A Function		
G3	VCC		
G4	VCC		
G10	VCC		
G11	VCC		
G12	VCC		
G13	VCC		
H13	GND		
J2	GND		
J3	GND		
J11	GND		
K7	VCC		
K12	GND		
L5	GND		
L7	VCC		
L9	GND		
M9	GND		
N12	SDO		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG176		
Pin Number	A1280A Function	
A9	CLKA, I/O	
В3	DCLK, I/O	
B8	CLKB, I/O	
B14	SDI, I/O	
C3	MODE	
C8	GND	
C9	PRA, I/O	
D4	GND	
D5	VCC	
D6	GND	
D7	PRB, I/O	
D8	VCC	
D10	GND	
D11	VCC	
D12	GND	
E4	GND	
E12	GND	
F4	VCC	
F12	GND	
G4	GND	
G12	VCC	
H2	VCC	

PG176		
Pin Number	A1280A Function	
H3	VCC	
H4	GND	
H12	GND	
H13	VCC	
H14	VCC	
J4	VCC	
J12	GND	
J13	GND	
J14	VCC	
K4	GND	
K12	GND	
L4	GND	
M4	GND	
M5	VCC	
M6	GND	
M8	GND	
M10	GND	
M11	VCC	
M12	GND	
N8	VCC	
P13	SDO	

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.