

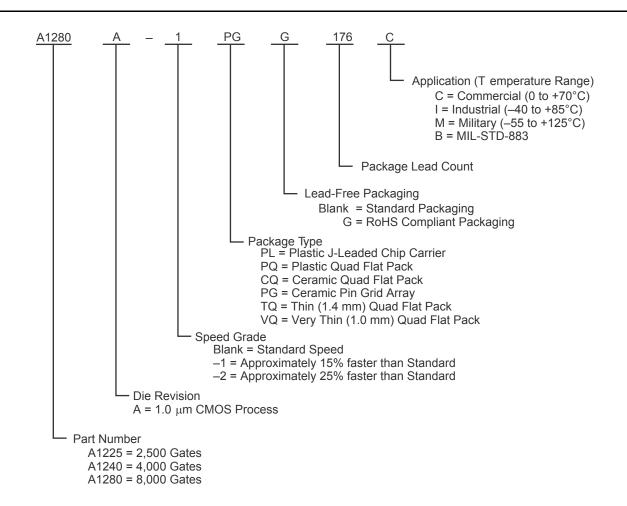
Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Obsolete
Number of LABs/CLBs	684
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	72
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1240a-1pl84c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

II Revision 8

Product Plan

	s	peed Grad	e ¹	Application ¹			
Device/Package	Std.	-1	-2	С	I	М	В
A1225A Device	•	•	•		•	•	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	1	1	1	1	_	_
100-Pin Plastic Quad Flatpack (PQ)	1	1	1	1	1	_	_
100-Pin Very Thin Quad Flatpack (VQ)	1	✓	1	1	_	_	_
100-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	_	_
A1240A Device	I				ı	ı	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	✓	✓	1	1	_	_
132-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	1	✓
144-Pin Plastic Quad Flat Pack (PQ)	1	1	1	1	1	_	_
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
A1280A Device	I				ı	ı	
160-Pin Plastic Quad Flatpack (PQ)	✓	✓	✓	1	1	_	_
172-Pin Ceramic Quad Flatpack (CQ)	1	✓	✓	✓	_	1	✓
176-Pin Ceramic Pin Grid Array (PG)	/	✓	✓	1	_	1	✓
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
• • •		•		•	_	-	_

Notes:

Applications:
 C = Commercial
 I = Industrial
 M = Military
 B = MIL-STD-883

Availability: ✓ = Available P = Planned – = Not planned

Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std.

2. Contact your Microsemi SoC Products Group sales representative for product availability.

Device Resources

Device	Logic						User	I/Os				
Series	Modules	Gates	PG176	PG132	PG100	PQ160	PQ144	PQ100	PL84	CQ172	TQ176	VQ100
A1225A	451	2,500	_	_	83	_	_	83	72	_	_	83
A1240A	684	4,000	_	104	_	_	104	_	72	_	104	_
A1280A	1,232	8,000	140	-	_	125	ı	-	72	140	140	_

Contact your local Microsemi SoC Products Group representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Revision 8 III

1 - ACT 2 Family Overview

General Description

The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0-μm, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®, and OrCAD™.

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.

Power =VCC² * [(m *
$$C_{EQM}$$
 * f_{m})_{modules} + (n * C_{EQI} * f_{n}) _{inputs} + (p * (C_{EQO} + C_{L}) * f_{D})outputs + 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Cik1} + (r1 * f_{q1})_{routed_Cik1} + 0.5 * (q2 * C_{EQCR} * f_{q2})_{routed_Cik2} + (r_{2} * f_{q2})_{routed_Cik2}

EQ 4

Where:

m = Number of logic modules switching at f_m

n = Number of input buffers switching at f_n

p = Number of output buffers switching at f_n

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

 r_1 = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

C_{FOM} = Equivalent capacitance of logic modules in pF

C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EOCR} = Equivalent capacitance of routed array clock in pF

C_I = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_p = Average output buffer switching rate in MHz

f_{q1} = Average first routed array clock rate in MHz

f_{g2} = Average second routed array clock rate in MHz

Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1225A	106	106.0
A1240A	134	134.2
A1280A	168	167.8

Determining Average Switching Frequency

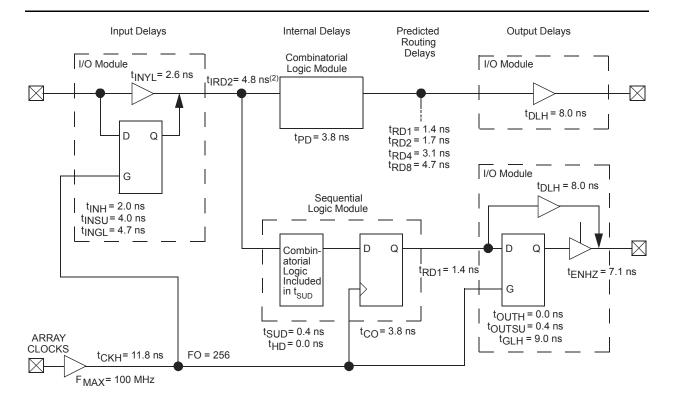

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8.

Table 2-8 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (C _L)	35 pF
Average logic module switching rate (f _m)	F/10
Average input switching rate (f _n)	F/5
Average output switching rate (f _p)	F/10
Average first routed array clock rate (f _{q1})	F
Average second routed array clock rate (f _{q2})	F/2

2-6 Revision 8

ACT 2 Timing Model¹

Notes:

- 1. Values shown for A1240A-2 at worst-case commercial conditions.
- 2. Input module predicted routing delay

Figure 2-1 • Timing Model

Parameter Measurement

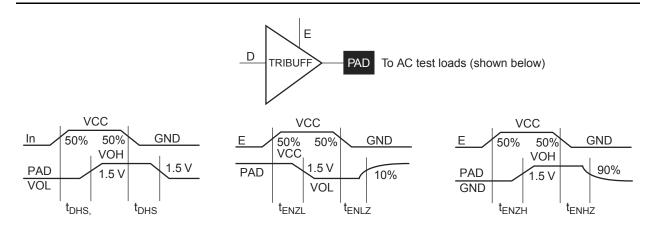


Figure 2-2 • Output Buffer Delays

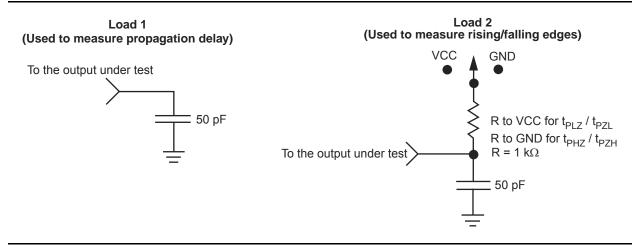


Figure 2-3 • AC Test Loads

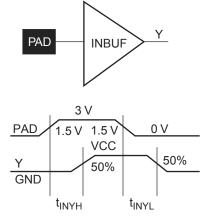


Figure 2-4 • Input Buffer Delays

2-8 Revision 8

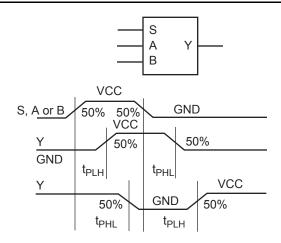
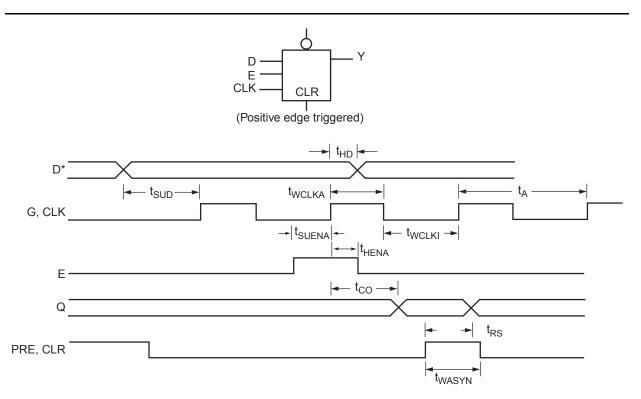



Figure 2-5 • Module Delays

Sequential Module Timing Characteristics

Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Figure 2-6 • Flip-Flops and Latches

Timing Derating Factor (Temperature and Voltage)

Table 2-9 • Timing Derating Factor (Temperature and Voltage)

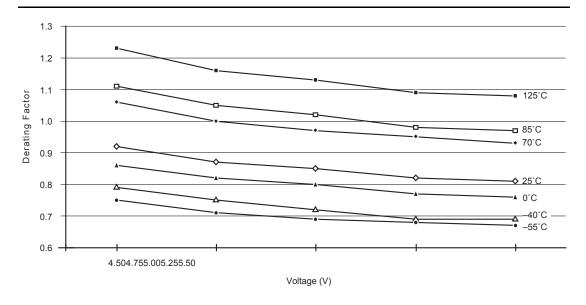

(Commercial Minimum/Maximum Specification) x	Indus	strial	Military		
	Min.	Max.	Min.	Max.	
	0.69	1.11	0.67	1.23	

Table 2-10 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25^{\circ}C$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-11 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.75	0.79	0.86	0.92	1.06	1.11	1.23
4.75	0.71	0.75	0.82	0.87	1.00	1.05	1.13
5.00	0.69	0.72	0.80	0.85	0.97	1.02	1.13
5.25	0.68	0.69	0.77	0.82	0.95	0.98	1.09
5.50	0.67	0.69	0.76	0.81	0.93	0.97	1.08

Note: This derating factor applies to all routing and propagation delays.

Figure 2-9 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, T_J = 4.75 V, 70°C)

Detailed Specifications

A1280A Timing Characteristics

Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C

Logic Module Propagation Delays ¹			peed ³	-1 Speed		Std. Speed		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²					ı		
t _{RD1}	FO = 1 Routing Delay		1.7		2.0		2.3	ns
t _{RD2}	FO = 2 Routing Delay		2.5		2.8		3.3	ns
t _{RD3}	FO = 3 Routing Delay		3.0		3.4		4.0	ns
t _{RD4}	FO = 4 Routing Delay		3.7		4.2		4.9	ns
t _{RD8}	FO = 8 Routing Delay		6.7		7.5		8.8	ns
Sequenti	al Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	5.5		6.0		7.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	5.5		6.0		7.0		ns
t _A	Flip-Flop Clock Input Period	11.7		13.3		18.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		85.0		75.0		50.0	MHz

Notes:

- 1. For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn} , t_{CO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} —whichever is appropriate.
- Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
 estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
 performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
 shipment.
- 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.
- 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

2-18 Revision 8

Pin Descriptions

CLKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

GND Ground

Low supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

VCC 5.0 V Supply Voltage

High supply voltage.

PQ100				
Pin Number	A1225A Function			
2	DCLK, I/O			
4	MODE			
9	GND			
16	VCC			
17	VCC			
22	GND			
34	GND			
40	VCC			
46	GND			
52	SDO			
57	GND			
64	GND			

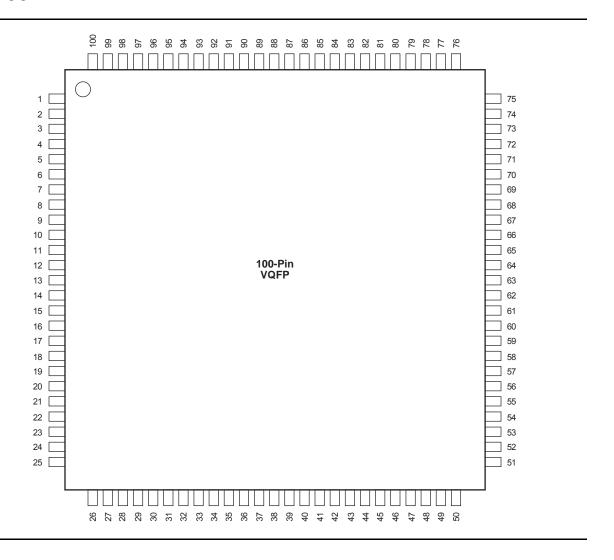
	PQ100				
Pin Number	A1225A Function				
65	VCC				
66	VCC				
67	VCC				
72	GND				
79	SDI, I/O				
84	GND				
87	PRA, I/O				
89	CLKA, I/O				
90	VCC				
92	CLKB, I/O				
94	PRB, I/O				
96	GND				

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 8

PQ160				
Pin Number	A1280A Function	Pin Nur		
2	DCLK, I/O	69		
6	VCC	80		
11	GND	82		
16	PRB, I/O	86		
18	CLKB, I/O	89		
20	VCC	98		
21	CLKA, I/O	99		
23	PRA, I/O	109		
30	GND	114		
35	VCC	120		
38	SDI, I/O	125		
40	GND	130		
44	GND	135		
49	GND	138		
54	VCC	139		
57	VCC	140		
58	VCC	145		
59	GND	150		
60	VCC	155		
61	GND	159		
64	GND	160		

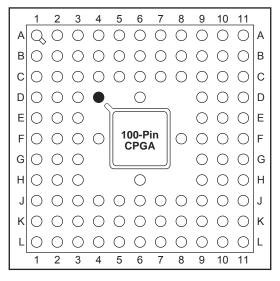

PQ160				
Pin Number	A1280A Function			
69	GND			
80	GND			
82	SDO			
86	VCC			
89	GN			
98	GND			
99	GND			
109	GND			
114	VCC			
120	GND			
125	GND			
130	GND			
135	VCC			
138	VCC			
139	VCC			
140	GND			
145	GND			
150	VCC			
155	GND			
159	MODE			
160	GND			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-8 Revision 8

VQ100

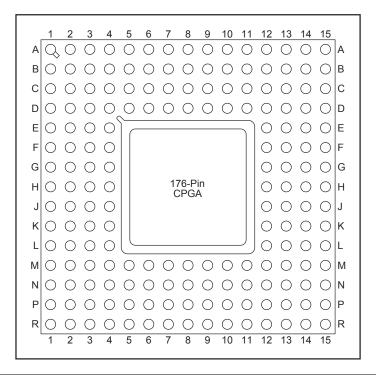


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

PG100

Orientation Pin


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 8

PG176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-20 Revision 8

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.