

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	684
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	104
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-BQFP
Supplier Device Package	144-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1240a-pqg144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	s	Application ¹					
Device/Package	Std.	-1	-2	С	I	М	В
A1225A Device	•	•	•		•	•	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	1	1	1	1	_	_
100-Pin Plastic Quad Flatpack (PQ)	1	1	1	1	1	_	_
100-Pin Very Thin Quad Flatpack (VQ)	1	✓	1	1	_	_	_
100-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	_	_
A1240A Device	I				ı	ı	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	1	✓	1	1	_	_
132-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	1	✓
144-Pin Plastic Quad Flat Pack (PQ)	1	1	1	1	1	_	_
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
A1280A Device	I				ı	ı	
160-Pin Plastic Quad Flatpack (PQ)	✓	1	✓	1	1	_	_
172-Pin Ceramic Quad Flatpack (CQ)	1	✓	✓	✓	_	1	✓
176-Pin Ceramic Pin Grid Array (PG)	/	✓	✓	1	_	1	✓
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
• • •		•		•	_	-	_

Notes:

Applications:
 C = Commercial
 I = Industrial
 M = Military
 B = MIL-STD-883

Availability: ✓ = Available P = Planned – = Not planned

Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std.

2. Contact your Microsemi SoC Products Group sales representative for product availability.

Device Resources

Device	Logic			User I/Os								
Series	Modules	Gates	PG176	PG132	PG100	PQ160	PQ144	PQ100	PL84	CQ172	TQ176	VQ100
A1225A	451	2,500	_	_	83	_	_	83	72	_	_	83
A1240A	684	4,000	_	104	_	_	104	_	72	_	104	_
A1280A	1,232	8,000	140	-	_	125	ı	-	72	140	140	_

Contact your local Microsemi SoC Products Group representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Revision 8 III

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{\text{ia}}\text{°C/W}} = \frac{150\text{°C} - 70\text{°C}}{33\text{°C/W}} = 2.4 \text{ W}$$

EQ 1

Table 2-4 • Package Thermal Characteristics

Package Type*	Pin Count	θ jc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	5	35	17	°C/W
	132	5	30	15	°C/W
	176	8	23	12	°C/W
Ceramic Quad Flatpack	172	8	25	15	°C/W
Plastic Quad Flatpack ¹	100	13	48	40	°C/W
	144	15	40	32	°C/W
	160	15	38	30	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	15	32	25	°C/W

Notes: (Maximum Power in Still Air)

- Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W (PQ160).
- 2. Maximum power dissipation for PLCC packages is 2.7 W.
- 3. Maximum power dissipation for VQFP packages is 2.3 W.
- 4. Maximum power dissipation for TQFP packages is 3.1 W.

Power Dissipation

P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC - VOH) * M

EQ2

where:

ICC standby is the current flowing when no inputs or outputs are changing

ICCactive is the current flowing due to CMOS switching.

IOL and IOH are TTL sink/source currents.

VOL and VOH are TTL level output voltages.

N is the number of outputs driving TTL loads to VOL.

M is the number of outputs driving TTL loads to VOH.

An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I/O. The power can be divided into two components: static and active.

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8.

Table 2-8 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (C _L)	35 pF
Average logic module switching rate (f _m)	F/10
Average input switching rate (f _n)	F/5
Average output switching rate (f _p)	F/10
Average first routed array clock rate (f _{q1})	F
Average second routed array clock rate (f _{q2})	F/2

2-6 Revision 8

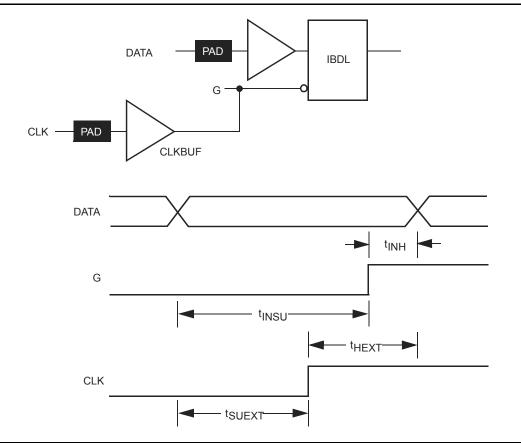


Figure 2-7 • Input Buffer Latches

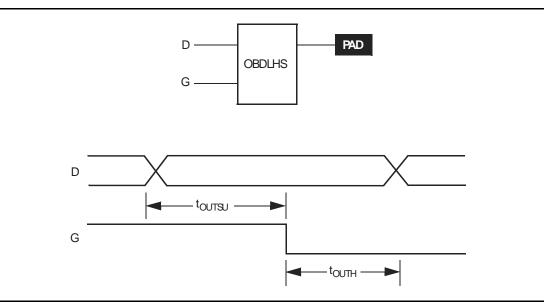


Figure 2-8 • Output Buffer Latches

2-10 Revision 8

Timing Derating Factor (Temperature and Voltage)

Table 2-9 • Timing Derating Factor (Temperature and Voltage)

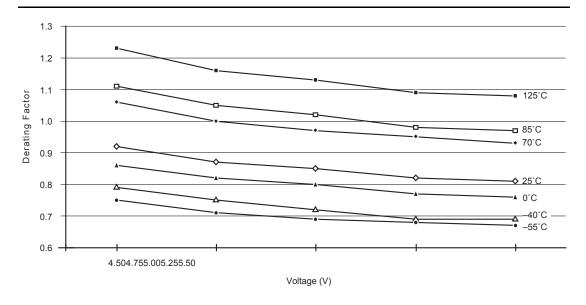

(Commercial Minimum/Maximum Specification) x	Indus	strial	Military	
	Min.	Max.	Min.	Max.
	0.69	1.11	0.67	1.23

Table 2-10 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25^{\circ}C$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-11 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.75	0.79	0.86	0.92	1.06	1.11	1.23
4.75	0.71	0.75	0.82	0.87	1.00	1.05	1.13
5.00	0.69	0.72	0.80	0.85	0.97	1.02	1.13
5.25	0.68	0.69	0.77	0.82	0.95	0.98	1.09
5.50	0.67	0.69	0.76	0.81	0.93	0.97	1.08

Note: This derating factor applies to all routing and propagation delays.

Figure 2-9 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, T_J = 4.75 V, 70°C)

A1225A Timing Characteristics (continued)

Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

I/O Mod	ule Input Propagation Delays		-2 S	peed	-1 S	peed	Std. Speed		Units
Paramet	ter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]							
t _{IRD1}	FO = 1 Routing Delay			4.1		4.6		5.4	ns
t _{IRD2}	FO = 2 Routing Delay			4.6		5.2		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			5.3		6.0		7.1	ns
t _{IRD4}	FO = 4 Routing Delay			5.7		6.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			7.4		8.3		9.8	ns
Global (Clock Network								
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL} Input	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{CKSW}	Maximum Skew	FO = 32		0.7		0.7		0.7	ns
		FO = 256		3.5		3.5		3.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		
t _P	Minimum Period	FO = 32	7.7		8.3		9.1		ns
		FO = 256	8.1		8.8		10.0		
f _{MAX}	Maximum Frequency	FO = 32		130.0		120.0		110.0	ns
		FO = 256		125.0		115.0		100.0]

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1240A Timing Characteristics (continued)

Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

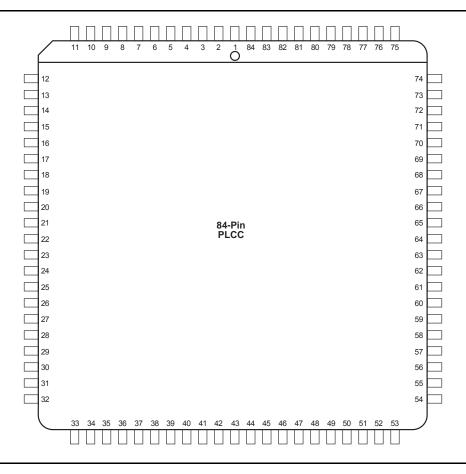
I/O Mod	ule Input Propagation Delays		-2 S	peed	-1 Speed		Std. Speed		Units
Paramet	ter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]		.1.					
t _{IRD1}	FO = 1 Routing Delay			4.2		4.8		5.6	ns
t _{IRD2}	FO = 2 Routing Delay			4.8		5.4		6.4	ns
t _{IRD3}	FO = 3 Routing Delay			5.4		6.1		7.2	ns
t _{IRD4}	FO = 4 Routing Delay			5.9		6.7		7.9	ns
t _{IRD8}	FO = 8 Routing Delay			7.9		8.9		10.5	ns
Global (Clock Network		•	•		•		•	•
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL} Input High to	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{CKSW}	Maximum Skew	FO = 32		0.5		0.5		0.5	ns
		FO = 256		2.5		2.5		2.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		1
t _P	Minimum Period	FO = 32	8.1		9.1		11.1		ns
		FO = 256	8.8		10.0		11.7		1
f _{MAX}	Maximum Frequency	FO = 32		125.0		110.0		90.0	ns
		FO = 256		115.0		100.0		85.0	1

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-16 Revision 8

A1240A Timing Characteristics (continued)

Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C


TTL Out	put Module Timing ¹	-2 S	peed	-1 Speed		Std. Speed		Units
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d_{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d_{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS (Output Module Timing ¹	•						
t _{DLH}	Data to Pad High		10.2		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

- 1. Delays based on 50 pF loading.
- 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

PL84

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

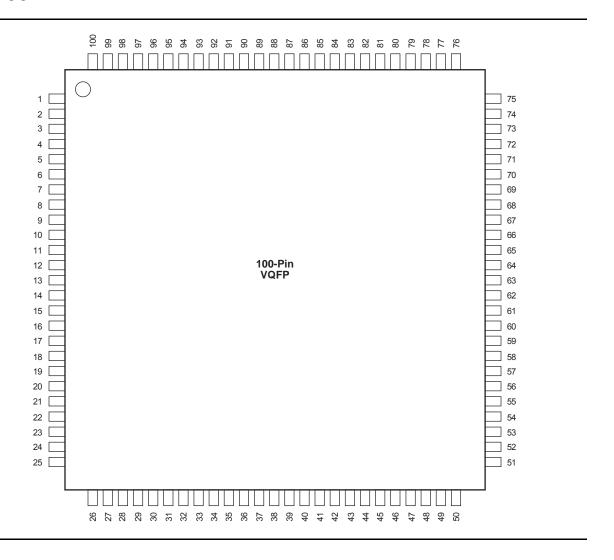
PL84			
Pin Number	A1225A Function	A1240A Function	A1280A Function
2	CLKB, I/O	CLKB, I/O	CLKB, I/O
4	PRB, I/O	PRB, I/O	PRB, I/O
6	GND	GND	GND
10	DCLK, I/O	DCLK, I/O	DCLK, I/O
12	MODE	MODE	MODE
22	VCC	VCC	VCC
23	VCC	VCC	VCC
28	GND	GND	GND
43	VCC	VCC	VCC
49	GND	GND	GND
52	SDO	SDO	SDO
63	GND	GND	GND
64	VCC	VCC	VCC
65	VCC	VCC	VCC
70	GND	GND	GND
76	SDI, I/O	SDI, I/O	SDI, I/O
81	PRA, I/O	PRA, I/O	PRA, I/O
83	CLKA, I/O	CLKA, I/O	CLKA, I/O
84	VCC	VCC	VCC

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 8

PQ160		
Pin Number	A1280A Function	Pin Nur
2	DCLK, I/O	69
6	VCC	80
11	GND	82
16	PRB, I/O	86
18	CLKB, I/O	89
20	VCC	98
21	CLKA, I/O	99
23	PRA, I/O	109
30	GND	114
35	VCC	120
38	SDI, I/O	125
40	GND	130
44	GND	135
49	GND	138
54	VCC	139
57	VCC	140
58	VCC	145
59	GND	150
60	VCC	155
61	GND	159
64	GND	160


PQ160		
Pin Number	A1280A Function	
69	GND	
80	GND	
82	SDO	
86	VCC	
89	GN	
98	GND	
99	GND	
109	GND	
114	VCC	
120	GND	
125	GND	
130	GND	
135	VCC	
138	VCC	
139	VCC	
140	GND	
145	GND	
150	VCC	
155	GND	
159	MODE	
160	GND	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

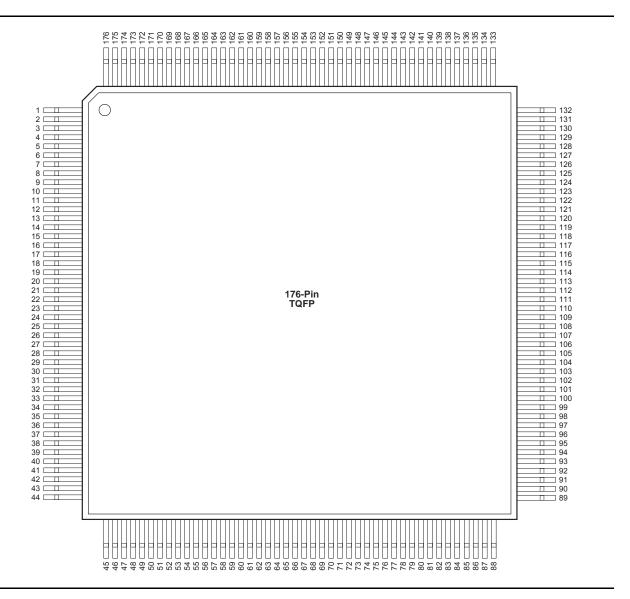
3-8 Revision 8

VQ100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

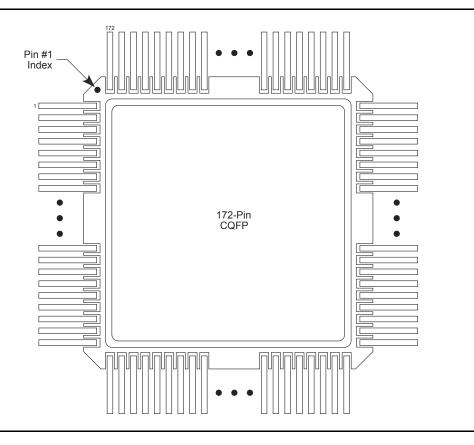
VQ100		
Pin Number	A1225A Function	
2	MODE	
7	GND	
14	VCC	
15	VCC	
20	GND	
32	GND	
38	VCC	
44	GND	
50	SDO	
55	GND	
62	GND	
63	VCC	


VQ100		
Pin Number	A1225A Function	
64	VCC	
65	VCC	
70	GND	
77	SDI, I/O	
82	GND	
85	PRA, I/O	
87	CLKA, I/O	
88	VCC	
90	CLKB, I/O	
92	PRB, I/O	
94	GND	
100	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-10 Revision 8


TQ176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

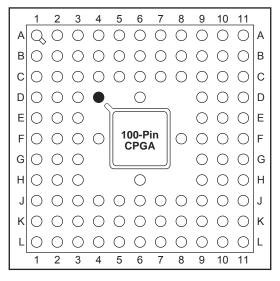
CQ172

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 8

CQ172		
Pin Number	A1280A Function	
1	MODE	
7	GND	
12	VCC	
17	GND	
22	GND	
23	VCC	
24	VCC	
27	VCC	
32	GND	
37	GND	
50	VCC	
55	GND	
65	GND	
66	VCC	
75	GND	
80	VCC	
85	SDO	
98	GND	
103	GND	
106	GND	


CQ172		
Pin Number	A1280A Function	
107	VCC	
108	GND	
109	VCC	
110	VCC	
113	VCC	
118	GND	
123	GND	
131	SDI, I/O	
136	VCC	
141	GND	
148	PRA, I/O	
150	CLKA, I/O	
151	VCC	
152	GND	
154	CLKB, I/O	
156	PRB, I/O	
161	GND	
166	VCC	
171	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG100

Orientation Pin

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 8

PG132		
Pin Number	A1240A Function	
A1	MODE	
B5	GND	
B6	CLKB, I/O	
B7	CLKA, I/O	
B8	PRA, I/O	
B9	GND	
B12	SDI, I/O	
C3	DCLK, I/O	
C5	GND	
C6	PRB, I/O	
C7	VCC	
C9	GND	
D7	VCC	
E3	GND	
E11	GND	
E12	GND	
F4	GND	
G2	VCC	

PG132		
Pin Number	A1240A Function	
G3	VCC	
G4	VCC	
G10	VCC	
G11	VCC	
G12	VCC	
G13	VCC	
H13	GND	
J2	GND	
J3	GND	
J11	GND	
K7	VCC	
K12	GND	
L5	GND	
L7	VCC	
L9	GND	
M9	GND	
N12	SDO	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG176		
Pin Number	A1280A Function	
A9	CLKA, I/O	
В3	DCLK, I/O	
B8	CLKB, I/O	
B14	SDI, I/O	
C3	MODE	
C8	GND	
C9	PRA, I/O	
D4	GND	
D5	VCC	
D6	GND	
D7	PRB, I/O	
D8	VCC	
D10	GND	
D11	VCC	
D12	GND	
E4	GND	
E12	GND	
F4	VCC	
F12	GND	
G4	GND	
G12	VCC	
H2	VCC	

PG176		
Pin Number	A1280A Function	
H3	VCC	
H4	GND	
H12	GND	
H13	VCC	
H14	VCC	
J4	VCC	
J12	GND	
J13	GND	
J14	VCC	
K4	GND	
K12	GND	
L4	GND	
M4	GND	
M5	VCC	
M6	GND	
M8	GND	
M10	GND	
M11	VCC	
M12	GND	
N8	VCC	
P13	SDO	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.