

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1232
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	140
Number of Gates	8000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-BCPGA
Supplier Device Package	176-CPGA (39.88x39.88)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1280a-1pg176c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	s	peed Grad	e ¹	Application ¹			
Device/Package	Std.	-1	-2	С	I	М	В
A1225A Device	•	•	•	•	•	•	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	1	1	1	1	_	_
100-Pin Plastic Quad Flatpack (PQ)	1	1	1	1	1	_	_
100-Pin Very Thin Quad Flatpack (VQ)	1	✓	1	1	_	_	_
100-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	_	_
A1240A Device	I				ı	ı	
84-Pin Plastic Leaded Chip Carrier (PL)	✓	1	✓	1	1	_	_
132-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	1	✓
144-Pin Plastic Quad Flat Pack (PQ)	1	1	1	1	1	_	_
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
A1280A Device	I				ı	ı	
160-Pin Plastic Quad Flatpack (PQ)	✓	1	✓	1	1	_	_
172-Pin Ceramic Quad Flatpack (CQ)	1	✓	✓	✓	_	1	✓
176-Pin Ceramic Pin Grid Array (PG)	/	✓	✓	1	_	1	✓
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	_	_
• • •		•		•	_	-	_

Notes:

Applications:
C = Commercial
I = Industrial
M = Military
B = MIL-STD-883

Availability: ✓ = Available P = Planned – = Not planned

Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std.

2. Contact your Microsemi SoC Products Group sales representative for product availability.

Device Resources

Device	Logic						User	I/Os				
Series	Modules	Gates	PG176	PG132	PG100	PQ160	PQ144	PQ100	PL84	CQ172	TQ176	VQ100
A1225A	451	2,500	_	_	83	_	_	83	72	_	_	83
A1240A	684	4,000	_	104	_	_	104	_	72	_	104	_
A1280A	1,232	8,000	140	-	-	125	ı	-	72	140	140	_

Contact your local Microsemi SoC Products Group representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Revision 8 III

1 - ACT 2 Family Overview

General Description

The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0-μm, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®, and OrCAD™.

Detailed Specifications

Table 2-3 • Electrical Specifications

		Con	nmercial	In	dustrial	M	lilitary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	$(IOH = -10 \text{ mA})^2$	2.4	-	-	_	-	-	V
	(IOH = -6 mA)	3.84	-	-	-	-	_	V
	(IOH = -4 mA)	-	-	3.7	-	3.7	_	V
VOL ¹	$(IOL = 10 \text{ mA})^2$	-	0.5	-	_	-	_	V
	(IOL = 6 mA)	_	0.33	-	0.40	-	0.40	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
Input Transi	tion Time t _R , t _F ²	_	500	-	500	-	500	ns
C _{IO} I/O capa	acitance ^{2,3}	_	10	-	10	-	10	pF
Standby Current, ICC ⁴ (typical = 1 mA)		_	2	-	10	-	20	mA
Leakage Current ⁵		-10	+10	-10	+10	-10	+10	μA
ICC(D)	Dynamic VCC supply current	ICC(D) Dynamic VCC supply current. See the Power Dissipation section.					•	

Notes:

- 1. Only one output tested at a time. VCC = minimum.
- 2. Not tested, for information only.
- 3. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz
- 4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operations.
- 5. VOUT, VIN = VCC or GND.

2-2 Revision 8

Parameter Measurement

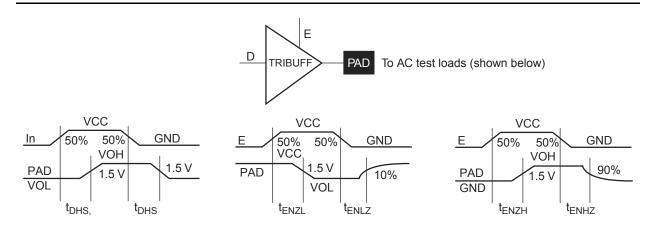


Figure 2-2 • Output Buffer Delays

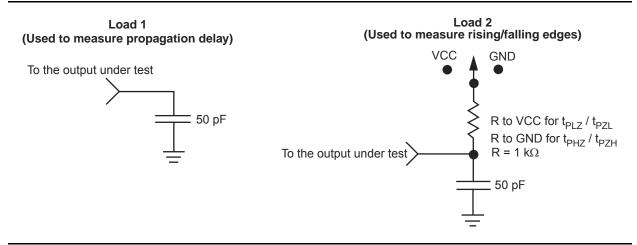


Figure 2-3 • AC Test Loads

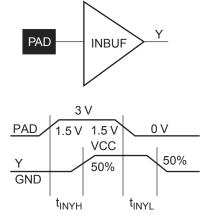


Figure 2-4 • Input Buffer Delays

2-8 Revision 8

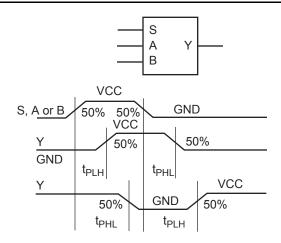
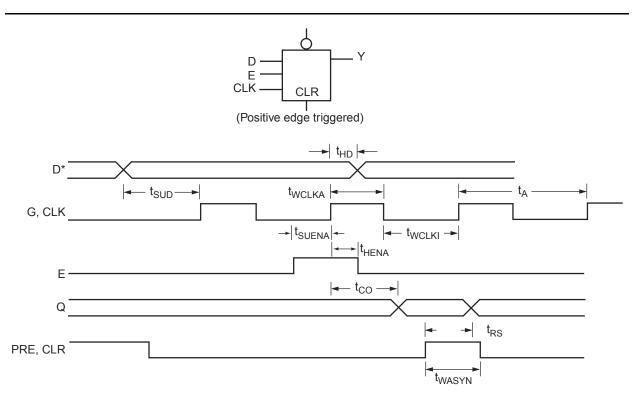



Figure 2-5 • Module Delays

Sequential Module Timing Characteristics

Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Figure 2-6 • Flip-Flops and Latches

A1240A Timing Characteristics (continued)

Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

TTL Output Module Timing ¹		-2 S	peed	-1 Speed		Std. Speed		Units
Parame	ter/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d_{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d_{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS (Output Module Timing ¹	-						
t _{DLH}	Data to Pad High		10.2		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.7		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.4		9.5		11.1	ns
t _{GLH}	G to Pad High		9.0		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

- 1. Delays based on 50 pF loading.
- 2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Pin Descriptions

CLKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

GND Ground

Low supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled High when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

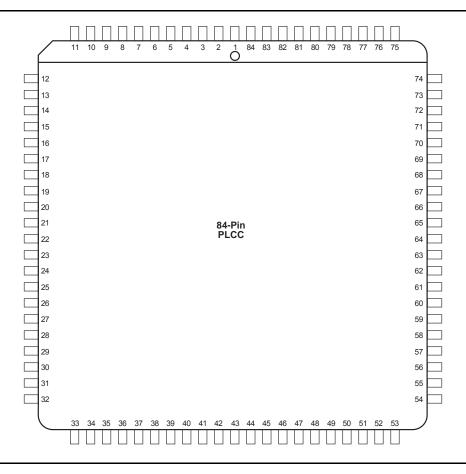
PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

SDO Serial Data Output (Output)


Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

VCC 5.0 V Supply Voltage

High supply voltage.

PL84

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

	PQ160				
Pin Number	A1280A Function	Pin Nur			
2	DCLK, I/O	69			
6	VCC	80			
11	GND	82			
16	PRB, I/O	86			
18	CLKB, I/O	89			
20	VCC	98			
21	CLKA, I/O	99			
23	PRA, I/O	109			
30	GND	114			
35	VCC	120			
38	SDI, I/O	125			
40	GND	130			
44	GND	135			
49	GND	138			
54	VCC	139			
57	VCC	140			
58	VCC	145			
59	GND	150			
60	VCC	155			
61	GND	159			
64	GND	160			

PQ160				
Pin Number	A1280A Function			
69	GND			
80	GND			
82	SDO			
86	VCC			
89	GN			
98	GND			
99	GND			
109	GND			
114	VCC			
120	GND			
125	GND			
130	GND			
135	VCC			
138	VCC			
139	VCC			
140	GND			
145	GND			
150	VCC			
155	GND			
159	MODE			
160	GND			

Notes:

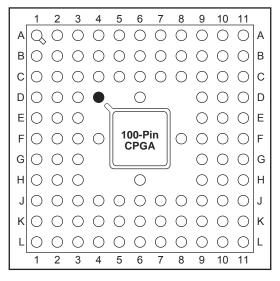
- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-8 Revision 8

	TQ176			
Pin Number	A1240A Function	A1280A Function		
1	GND	GND		
2	MODE	MODE		
8	NC	NC		
10	NC	I/O		
11	NC	I/O		
13	NC	VCC		
18	GND	GND		
19	NC	I/O		
20	NC	I/O		
22	NC	I/O		
23	GND	GND		
24	NC	VCC		
25	VCC	VCC		
26	NC	I/O		
27	NC	I/O		
28	VCC	VCC		
29	NC	I/O		
33	NC	NC		
37	NC	I/O		
38	NC	NC		
45	GND	GND		
52	NC	VCC		
54	NC	I/O		
55	NC	I/O		
57	NC	NC		
61	NC	I/O		
64	NC	I/O		
66	NC	I/O		
67	GND	GND		
68	VCC	VCC		
74	NC	I/O		
77	NC	NC		
78	NC	I/O		
80	NC	I/O		

	TQ176			
Pin Number	A1240A Function	A1280A Function		
82	NC	VCC		
86	NC	I/O		
87	SDO	SDO		
89	GND	GND		
96	NC	I/O		
97	NC	I/O		
101	NC	NC		
103	NC	I/O		
106	GND	GND		
107	NC	I/O		
108	NC	I/O		
109	GND	GND		
110	VCC	VCC		
111	GND	GND		
112	VCC	VCC		
113	VCC	VCC		
114	NC	I/O		
115	NC	I/O		
116	NC	VCC		
121	NC	NC		
124	NC	I/O		
125	NC	I/O		
126	NC	NC		
133	GND	GND		
135	SDI, I/O	SDI, I/O		
136	NC	I/O		
140	NC	VCC		
143	NC	I/O		
144	NC	I/O		
145	NC	NC		
147	NC	I/O		
151	NC	I/O		
152	PRA, I/O	PRA, I/O		
154	CLKA, I/O	CLKA, I/O		

3-12 Revision 8


	CQ172			
Pin Number	A1280A Function			
1	MODE			
7	GND			
12	VCC			
17	GND			
22	GND			
23	VCC			
24	VCC			
27	VCC			
32	GND			
37	GND			
50	VCC			
55	GND			
65	GND			
66	VCC			
75	GND			
80	VCC			
85	SDO			
98	GND			
103	GND			
106	GND			

CQ172			
Pin Number	A1280A Function		
107	VCC		
108	GND		
109	VCC		
110	VCC		
113	VCC		
118	GND		
123	GND		
131	SDI, I/O		
136	VCC		
141	GND		
148	PRA, I/O		
150	CLKA, I/O		
151	VCC		
152	GND		
154	CLKB, I/O		
156	PRB, I/O		
161	GND		
166	VCC		
171	DCLK, I/O		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG100

Orientation Pin

Note

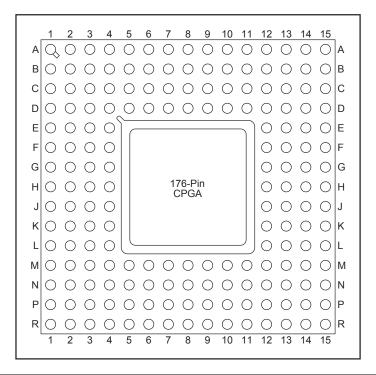
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 8

PG100			
Pin Number	A1225A Function		
A4	PRB, I/O		
A7	PRA, I/O		
B6	VCC		
C2	MODE		
C3	DCLK, I/O		
C5	GND		
C6	CLKA, I/O		
C7	GND		
C8	SDI, I/O		
D6	CLKB, I/O		
D10	GND		
E3	GND		

PG100			
Pin Number	A1225A Function		
E11	VCC		
F3	VCC		
F9	VCC		
F10	VCC		
F11	GND		
G1	VCC		
G3	GND		
G9	GND		
J5	GND		
J7	GND		
J9	SDO		
K6	VCC		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.


PG132			
Pin Number	A1240A Function		
A1	MODE		
B5	GND		
B6	CLKB, I/O		
B7	CLKA, I/O		
B8	PRA, I/O		
B9	GND		
B12	SDI, I/O		
C3	DCLK, I/O		
C5	GND		
C6	PRB, I/O		
C7	VCC		
C9	GND		
D7	VCC		
E3	GND		
E11	GND		
E12	GND		
F4	GND		
G2	VCC		

PG132			
Pin Number	A1240A Function		
G3	VCC		
G4	VCC		
G10	VCC		
G11	VCC		
G12	VCC		
G13	VCC		
H13	GND		
J2	GND		
J3	GND		
J11	GND		
K7	VCC		
K12	GND		
L5	GND		
L7	VCC		
L9	GND		
M9	GND		
N12	SDO		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-20 Revision 8

PG176			
Pin Number	A1280A Function		
A9	CLKA, I/O		
В3	DCLK, I/O		
B8	CLKB, I/O		
B14	SDI, I/O		
C3	MODE		
C8	GND		
C9	PRA, I/O		
D4	GND		
D5	VCC		
D6	GND		
D7	PRB, I/O		
D8	VCC		
D10	GND		
D11	VCC		
D12	GND		
E4	GND		
E12	GND		
F4	VCC		
F12	GND		
G4	GND		
G12	VCC		
H2	VCC		

PG176			
Pin Number	A1280A Function		
H3	VCC		
H4	GND		
H12	GND		
H13	VCC		
H14	VCC		
J4	VCC		
J12	GND		
J13	GND		
J14	VCC		
K4	GND		
K12	GND		
L4	GND		
M4	GND		
M5	VCC		
M6	GND		
M8	GND		
M10	GND		
M11	VCC		
M12	GND		
N8	VCC		
P13	SDO		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.