

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1232
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	140
Number of Gates	8000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	176-BCPGA
Supplier Device Package	176-CPGA (39.88x39.88)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1280a-1pg176m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 - ACT 2 Family Overview

General Description

The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0-μm, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®, and OrCAD™.

2 - Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.
- 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND -0.5 V, the internal protection diodes will be forward biased and can draw excessive current.

Table 2-2 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	-55 to +125	°C
Power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{\text{ia}}\text{°C/W}} = \frac{150\text{°C} - 70\text{°C}}{33\text{°C/W}} = 2.4 \text{ W}$$

EQ 1

Table 2-4 • Package Thermal Characteristics

Package Type*	Pin Count	θ jc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	5	35	17	°C/W
	132	5	30	15	°C/W
	176	8	23	12	°C/W
Ceramic Quad Flatpack	172	8	25	15	°C/W
Plastic Quad Flatpack ¹	100	13	48	40	°C/W
	144	15	40	32	°C/W
	160	15	38	30	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	15	32	25	°C/W

Notes: (Maximum Power in Still Air)

- Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W (PQ160).
- 2. Maximum power dissipation for PLCC packages is 2.7 W.
- 3. Maximum power dissipation for VQFP packages is 2.3 W.
- 4. Maximum power dissipation for TQFP packages is 3.1 W.

Power Dissipation

P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC - VOH) * M

EQ2

where:

ICC standby is the current flowing when no inputs or outputs are changing

ICCactive is the current flowing due to CMOS switching.

IOL and IOH are TTL sink/source currents.

VOL and VOH are TTL level output voltages.

N is the number of outputs driving TTL loads to VOL.

M is the number of outputs driving TTL loads to VOH.

An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I/O. The power can be divided into two components: static and active.

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.

$$\begin{aligned} & \text{Power =VCC$}^2 * [(\text{m * C}_{\text{EQM}} * f_{\text{m}})_{\text{modules}} + (\text{n * C}_{\text{EQI}} * f_{\text{n}})_{\text{inputs}} \\ & + (\text{p * (C}_{\text{EQO}} + \text{C}_{\text{L}}) * f_{\text{p}})_{\text{outputs}} \\ & + 0.5 * (\text{q1 * C}_{\text{EQCR}} * f_{\text{q1}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{routed}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ & + 0.5 * (\text{q2 * C}_{\text{EQCR}} * f_{\text{q2}})_{\text{q2}} \\ \\ & + 0.5 * (\text{q2 * C}_$$

EQ 4

Where:

m = Number of logic modules switching at f_m

n = Number of input buffers switching at f_n

p = Number of output buffers switching at f_n

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

 r_1 = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

C_{FOM} = Equivalent capacitance of logic modules in pF

C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_I = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_p = Average output buffer switching rate in MHz

f_{q1} = Average first routed array clock rate in MHz

f_{g2} = Average second routed array clock rate in MHz

Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1225A	106	106.0
A1240A	134	134.2
A1280A	168	167.8

Parameter Measurement

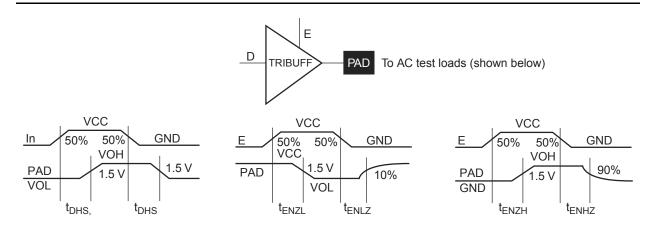


Figure 2-2 • Output Buffer Delays

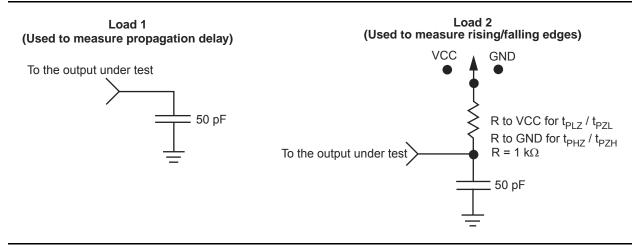


Figure 2-3 • AC Test Loads

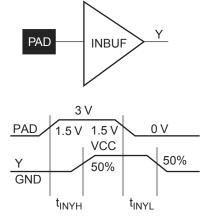


Figure 2-4 • Input Buffer Delays

2-8 Revision 8

Timing Derating Factor (Temperature and Voltage)

Table 2-9 • Timing Derating Factor (Temperature and Voltage)

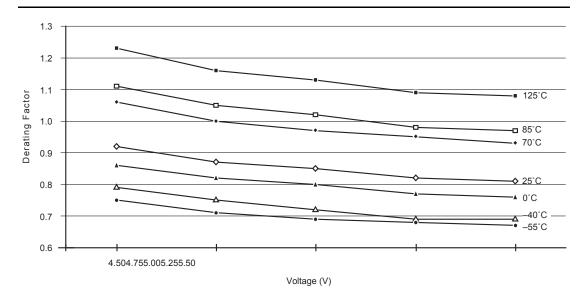

(Commercial Minimum/Maximum Specification) x	Industrial		Military	
	Min.	Max.	Min.	Max.
	0.69	1.11	0.67	1.23

Table 2-10 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25^{\circ}C$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-11 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.75	0.79	0.86	0.92	1.06	1.11	1.23
4.75	0.71	0.75	0.82	0.87	1.00	1.05	1.13
5.00	0.69	0.72	0.80	0.85	0.97	1.02	1.13
5.25	0.68	0.69	0.77	0.82	0.95	0.98	1.09
5.50	0.67	0.69	0.76	0.81	0.93	0.97	1.08

Note: This derating factor applies to all routing and propagation delays.

Figure 2-9 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, T_J = 4.75 V, 70°C)

A1225A Timing Characteristics (continued)

Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

I/O Mod	ule Input Propagation Delays		-2 S	peed	-1 Speed		Std. Speed		Units
Parameter/Description			Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]							
t _{IRD1}	FO = 1 Routing Delay			4.1		4.6		5.4	ns
t _{IRD2}	FO = 2 Routing Delay			4.6		5.2		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			5.3		6.0		7.1	ns
t _{IRD4}	FO = 4 Routing Delay			5.7		6.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			7.4		8.3		9.8	ns
Global (Clock Network								
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL}	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{CKSW}	Maximum Skew	FO = 32		0.7		0.7		0.7	ns
		FO = 256		3.5		3.5		3.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		
t _P	Minimum Period	FO = 32	7.7		8.3		9.1		ns
		FO = 256	8.1		8.8		10.0		
f _{MAX}	Maximum Frequency	FO = 32		130.0		120.0		110.0	ns
		FO = 256		125.0		115.0		100.0]

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1225A Timing Characteristics (continued)

Table 2-14 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

TTL Output Module Timing ¹ Parameter/Description		-2 S	peed	-1 Speed		Std.	Units	
		Min.	Max.	Min.	Max.	Min.	Max.	
t _{DLH}	Data to Pad High		8.0		9.0		10.6	ns
t _{DHL}	Data to Pad Low		10.1		11.4		13.4	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.6		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.3		9.5		11.1	ns
t _{GLH}	G to Pad High		8.9		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d_{TLH}	Delta Low to High		0.07		0.08		0.09	ns/pF
d _{THL}	Delta High to Low		0.12		0.13		0.16	ns/pF
CMOS	Output Module Timing ¹	•						.1.
t _{DLH}	Data to Pad High		10.1		11.5		13.5	ns
t _{DHL}	Data to Pad Low		8.4		9.6		11.2	ns
t _{ENZH}	Enable Pad Z to High		8.9		10.0		11.8	ns
t _{ENZL}	Enable Pad Z to Low		11.6		13.2		15.5	ns
t _{ENHZ}	Enable Pad High to Z		7.1		8.0		9.4	ns
t _{ENLZ}	Enable Pad Low to Z		8.3		9.5		11.1	ns
t _{GLH}	G to Pad High		8.9		10.2		11.9	ns
t _{GHL}	G to Pad Low		11.2		12.7		14.9	ns
d _{TLH}	Delta Low to High		0.12		0.13		0.16	ns/pF
d _{THL}	Delta High to Low		0.09		0.10		0.12	ns/pF

Notes:

2-14 Revision 8

^{1.} Delays based on 50 pF loading.

^{2.} SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.

Detailed Specifications

A1280A Timing Characteristics

Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C

Logic Module Propagation Delays ¹		–2 S _l	peed ³	-1 Speed		Std. Speed		Units
Parameter/Description			Max.	Min.	Max.	Min.	Max.	
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²					ı		
t _{RD1}	FO = 1 Routing Delay		1.7		2.0		2.3	ns
t _{RD2}	FO = 2 Routing Delay		2.5		2.8		3.3	ns
t _{RD3}	FO = 3 Routing Delay		3.0		3.4		4.0	ns
t _{RD4}	FO = 4 Routing Delay		3.7		4.2		4.9	ns
t _{RD8}	FO = 8 Routing Delay		6.7		7.5		8.8	ns
Sequenti	al Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	5.5		6.0		7.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	5.5		6.0		7.0		ns
t _A	Flip-Flop Clock Input Period	11.7		13.3		18.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		85.0		75.0		50.0	MHz

Notes:

- 1. For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn} , t_{CO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} —whichever is appropriate.
- Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
 estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
 performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
 shipment.
- 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.
- 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

2-18 Revision 8

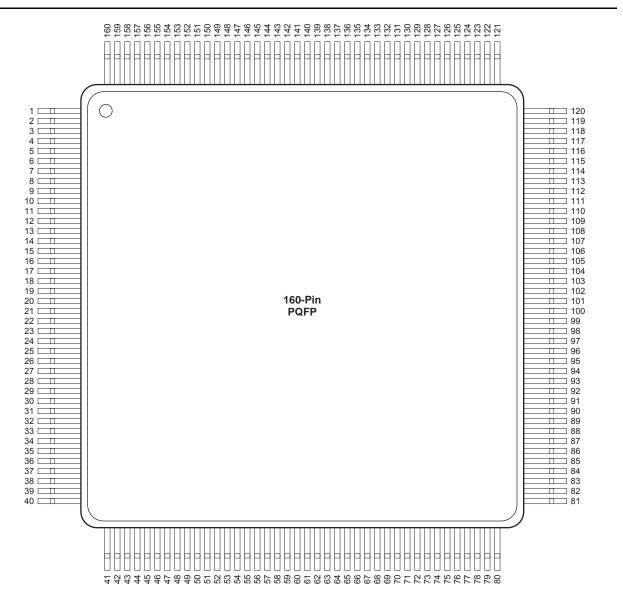
PL84			
Pin Number	A1225A Function	A1240A Function	A1280A Function
2	CLKB, I/O	CLKB, I/O	CLKB, I/O
4	PRB, I/O	PRB, I/O	PRB, I/O
6	GND	GND	GND
10	DCLK, I/O	DCLK, I/O	DCLK, I/O
12	MODE	MODE	MODE
22	VCC	VCC	VCC
23	VCC	VCC	VCC
28	GND	GND	GND
43	VCC	VCC	VCC
49	GND	GND	GND
52	SDO	SDO	SDO
63	GND	GND	GND
64	VCC	VCC	VCC
65	VCC	VCC	VCC
70	GND	GND	GND
76	SDI, I/O	SDI, I/O	SDI, I/O
81	PRA, I/O	PRA, I/O	PRA, I/O
83	CLKA, I/O	CLKA, I/O	CLKA, I/O
84	VCC	VCC	VCC

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 8

PQ100		
Pin Number	A1225A Function	
2	DCLK, I/O	
4	MODE	
9	GND	
16	VCC	
17	VCC	
22	GND	
34	GND	
40	VCC	
46	GND	
52	SDO	
57	GND	
64	GND	


PQ100		
Pin Number	A1225A Function	
65	VCC	
66	VCC	
67	VCC	
72	GND	
79	SDI, I/O	
84	GND	
87	PRA, I/O	
89	CLKA, I/O	
90	VCC	
92	CLKB, I/O	
94	PRB, I/O	
96	GND	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 8

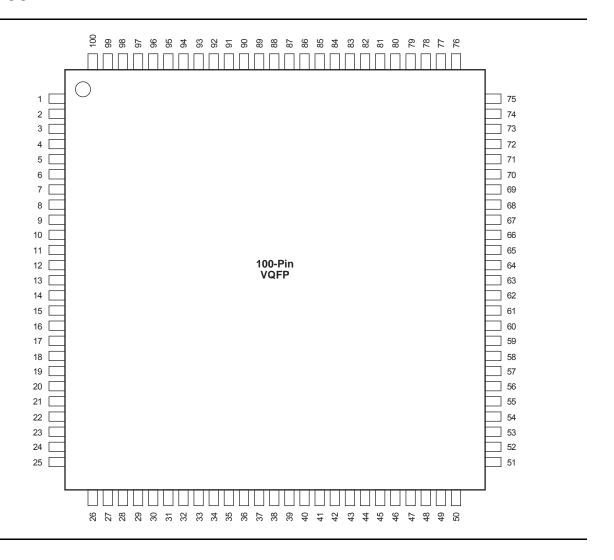
PQ160

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

	PQ160	
Pin Number	A1280A Function	Pin Nur
2	DCLK, I/O	69
6	VCC	80
11	GND	82
16	PRB, I/O	86
18	CLKB, I/O	89
20	VCC	98
21	CLKA, I/O	99
23	PRA, I/O	109
30	GND	114
35	VCC	120
38	SDI, I/O	125
40	GND	130
44	GND	135
49	GND	138
54	VCC	139
57	VCC	140
58	VCC	145
59	GND	150
60	VCC	155
61	GND	159
64	GND	160


PQ160		
Pin Number	A1280A Function	
69	GND	
80	GND	
82	SDO	
86	VCC	
89	GN	
98	GND	
99	GND	
109	GND	
114	VCC	
120	GND	
125	GND	
130	GND	
135	VCC	
138	VCC	
139	VCC	
140	GND	
145	GND	
150	VCC	
155	GND	
159	MODE	
160	GND	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-8 Revision 8

VQ100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

TQ176				
Pin Number A1240A Function A1280A Functi				
1	GND	GND		
2	MODE	MODE		
8	NC	NC		
10	NC	I/O		
11	NC	I/O		
13	NC	VCC		
18	GND	GND		
19	NC	I/O		
20	NC	I/O		
22	NC	I/O		
23	GND	GND		
24	NC	VCC		
25	VCC	VCC		
26	NC	I/O		
27	NC	I/O		
28	VCC	VCC		
29	NC	I/O		
33	NC	NC		
37	NC I/O			
38	NC NC			
45	GND	GND		
52	NC	VCC		
54	NC	I/O		
55	NC	I/O		
57	NC	NC		
61	NC	I/O		
64	NC	I/O		
66	NC	I/O		
67	GND	GND		
68	VCC	VCC		
74	NC	I/O		
77	NC	NC		
78	NC	I/O		
80	NC	I/O		

TQ176				
Pin Number A1240A Function A1280A Funct				
82	NC	VCC		
86	NC	I/O		
87	SDO	SDO		
89	GND	GND		
96	NC	I/O		
97	NC	I/O		
101	NC	NC		
103	NC	I/O		
106	GND	GND		
107	NC	I/O		
108	NC	I/O		
109	GND	GND		
110	VCC	VCC		
111	GND	GND		
112	VCC	VCC		
113	VCC	VCC		
114	114 NC I/O			
115	NC	I/O		
116	NC	VCC		
121	NC	NC		
124	NC	I/O		
125	NC	I/O		
126	NC	NC		
133	GND	GND		
135	SDI, I/O	SDI, I/O		
136	NC	I/O		
140	NC	VCC		
143	NC	I/O		
144	NC	I/O		
145	NC	NC		
147	NC	I/O		
151	NC	I/O		
152	PRA, I/O	PRA, I/O		
154	CLKA, I/O	CLKA, I/O		

3-12 Revision 8

TQ176			
Pin Number	A1240A Function	A1280A Function	
155	VCC	VCC	
156	GND	GND	
158	CLKB, I/O	CLKB, I/O	
160	PRB, I/O	PRB, I/O	
161	NC	I/O	
165	NC	NC	
166	NC	I/O	
168	NC	I/O	
170	NC	VCC	
173	NC	I/O	
175	DCLK, I/O	DCLK, I/O	

Notes:

- 1. NC denotes no connection.
- 2. All unlisted pin numbers are user I/Os.
- 3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ172			
Pin Number	A1280A Function		
1	MODE		
7	GND		
12	VCC		
17	GND		
22	GND		
23	VCC		
24	VCC		
27	VCC		
32	GND		
37	GND		
50	VCC		
55	GND		
65	GND		
66	VCC		
75	GND		
80	VCC		
85	SDO		
98	GND		
103	GND		
106	GND		

CQ172		
Pin Number	A1280A Function	
107	VCC	
108	GND	
109	VCC	
110	VCC	
113	VCC	
118	GND	
123	GND	
131	SDI, I/O	
136	VCC	
141	GND	
148	PRA, I/O	
150	CLKA, I/O	
151	VCC	
152	GND	
154	CLKB, I/O	
156	PRB, I/O	
161	GND	
166	VCC	
171	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.