



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Obsolete                                                      |
| Number of LABs/CLBs            | 1232                                                          |
| Number of Logic Elements/Cells | -                                                             |
| Total RAM Bits                 | -                                                             |
| Number of I/O                  | 125                                                           |
| Number of Gates                | 8000                                                          |
| Voltage - Supply               | 4.5V ~ 5.5V                                                   |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | -40°C ~ 85°C (TA)                                             |
| Package / Case                 | 160-BQFP                                                      |
| Supplier Device Package        | 160-PQFP (28x28)                                              |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microsemi/a1280a-1pq160i |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 – ACT 2 Family Overview

## **General Description**

The ACT 2 family represents Actel's second generation of field programmable gate arrays (FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel's patented channeled array architecture, the ACT 2 family provides significant enhancements to gate density and performance while maintaining downward compatibility with the ACT 1 design environment and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon gate, 1.0- $\mu$ m, two-level metal CMOS, and employ Actel's PLICE® antifuse technology. This revolutionary architecture offers gate array design flexibility, high performance, and fast time-to-production with user programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which offers automatic pin assignment, validation of electrical and design rules, automatic placement and routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are supported on the following platforms: 386/486<sup>TM</sup> PC, Sun<sup>TM</sup>, and HP<sup>TM</sup> workstations. The systems provide CAE interfaces to the following design environments: Cadence, Viewlogic<sup>®</sup>, Mentor Graphics<sup>®</sup>, and OrCAD<sup>TM</sup>.

# 2 – Detailed Specifications

## **Operating Conditions**

#### Table 2-1 • Absolute Maximum Ratings<sup>1</sup>

| Symbol           | Parameter                            | Limits            | Units |
|------------------|--------------------------------------|-------------------|-------|
| VCC              | DC supply voltage                    | –0.5 to +7.0      | V     |
| VI               | Input voltage                        | -0.5 to VCC + 0.5 | V     |
| VO               | Output voltage                       | -0.5 to VCC + 0.5 | V     |
| IIO              | I/O source sink current <sup>2</sup> | ±20               | mA    |
| T <sub>STG</sub> | Storage temperature                  | -65 to +150       | °C    |

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw excessive current.

#### Table 2-2 • Recommended Operating Conditions

| Parameter              | Commercial | Industrial | Military    | Units |
|------------------------|------------|------------|-------------|-------|
| Temperature range*     | 0 to +70   | -40 to +85 | –55 to +125 | °C    |
| Power supply tolerance | ±5         | ±10        | ±10         | %VCC  |

Note: \*Ambient temperature  $(T_A)$  is used for commercial and industrial; case temperature  $(T_C)$  is used for military.



## **Static Power Component**

Microsemi FPGAs have small static power components that result in lower power dissipation than PALs or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.

The power due to standby current is typically a small component of the overall power. Standby power is calculated in Table 2-5 for commercial, worst case conditions.

#### Table 2-5 • Standby Power Calculation

| ICC  | VCC    | Power   |
|------|--------|---------|
| 2 mA | 5.25 V | 10.5 mW |

The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual dissipation will average somewhere between as I/Os switch states with time.

#### **Active Power Component**

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.

An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

EQ 3

### **Equivalent Capacitance**

The power dissipated by a CMOS circuit can be expressed by EQ 3.

Power ( $\mu$ W) = C<sub>EQ</sub> \* VCC<sup>2</sup> \* F

Where:

C<sub>EQ</sub> is the equivalent capacitance expressed in pF.

VCC is the power supply in volts.

F is the switching frequency in MHz.

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Table 2-6.

Table 2-6 • CEQ Values for Microsemi FPGAs

| Item                                                 | CEQ Value |
|------------------------------------------------------|-----------|
| Modules (C <sub>EQM</sub> )                          | 5.8       |
| Input Buffers (C <sub>EQI</sub> )                    | 12.9      |
| Output Buffers (C <sub>EQO</sub> )                   | 23.8      |
| Routed Array Clock Buffer Loads (C <sub>EQCR</sub> ) | 3.9       |



**Detailed Specifications** 

## **Parameter Measurement**

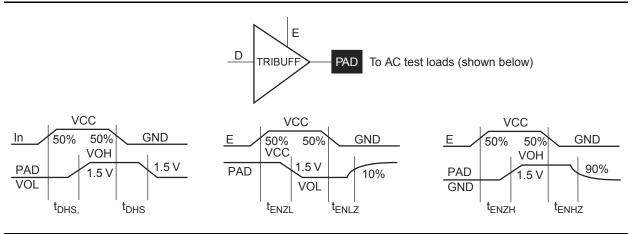



Figure 2-2 • Output Buffer Delays

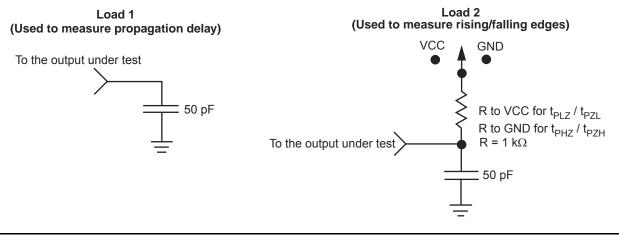
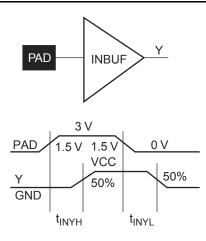
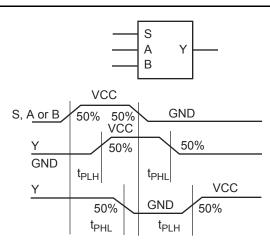
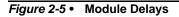
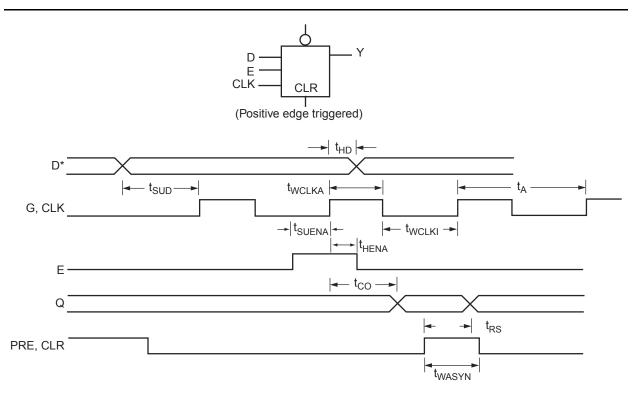



Figure 2-3 • AC Test Loads

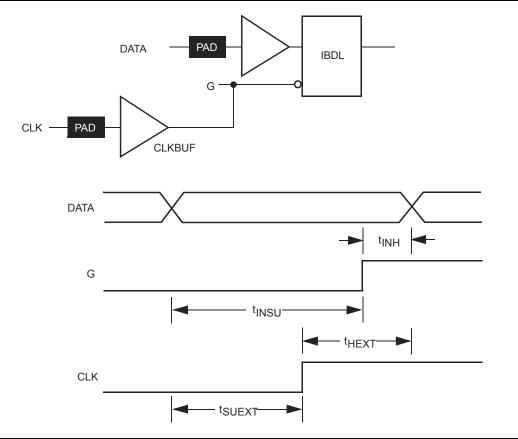




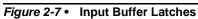


Figure 2-4 • Input Buffer Delays








## **Sequential Module Timing Characteristics**



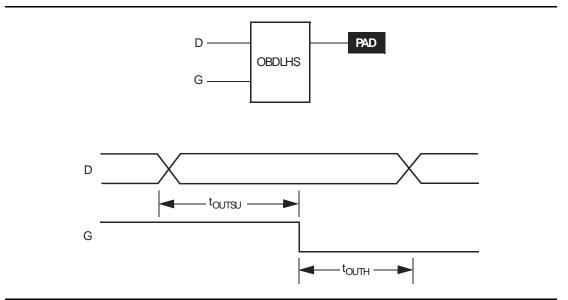


Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Figure 2-6 • Flip-Flops and Latches











## A1225A Timing Characteristics (continued)

#### Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Mod            | ule Input Propagation Delays      |                  | -2 S | peed  | –1 S | peed  | Std. | Speed | Units |
|--------------------|-----------------------------------|------------------|------|-------|------|-------|------|-------|-------|
| Parame             | ter/Description                   |                  | Min. | Max.  | Min. | Max.  | Min. | Max.  |       |
| t <sub>INYH</sub>  | Pad to Y High                     |                  |      | 2.9   |      | 3.3   |      | 3.8   | ns    |
| t <sub>INYL</sub>  | Pad to Y Low                      |                  |      | 2.6   |      | 3.0   |      | 3.5   | ns    |
| t <sub>INGH</sub>  | G to Y High                       |                  |      | 5.0   |      | 5.7   |      | 6.6   | ns    |
| t <sub>INGL</sub>  | G to Y Low                        |                  |      | 4.7   |      | 5.4   |      | 6.3   | ns    |
| Input M            | odule Predicted Input Routing Del | ays <sup>*</sup> |      |       |      |       |      |       |       |
| t <sub>IRD1</sub>  | FO = 1 Routing Delay              |                  |      | 4.1   |      | 4.6   |      | 5.4   | ns    |
| t <sub>IRD2</sub>  | FO = 2 Routing Delay              |                  |      | 4.6   |      | 5.2   |      | 6.1   | ns    |
| t <sub>IRD3</sub>  | FO = 3 Routing Delay              |                  |      | 5.3   |      | 6.0   |      | 7.1   | ns    |
| t <sub>IRD4</sub>  | FO = 4 Routing Delay              |                  |      | 5.7   |      | 6.4   |      | 7.6   | ns    |
| t <sub>IRD8</sub>  | FO = 8 Routing Delay              |                  |      | 7.4   |      | 8.3   |      | 9.8   | ns    |
| Global (           | Clock Network                     |                  |      |       |      |       | -    | -     |       |
| t <sub>скн</sub>   | Input Low to High                 | FO = 32          |      | 10.2  |      | 11.0  |      | 12.8  | ns    |
|                    |                                   | FO = 256         |      | 11.8  |      | 13.0  |      | 15.7  |       |
| t <sub>CKL</sub>   | Input High to Low                 | FO = 32          |      | 10.2  |      | 11.0  |      | 12.8  | ns    |
|                    |                                   | FO = 256         |      | 12.0  |      | 13.2  |      | 15.9  |       |
| t <sub>PWH</sub>   | Minimum Pulse Width High          | FO = 32          | 3.4  |       | 4.1  |       | 4.5  |       | ns    |
|                    |                                   | FO = 256         | 3.8  |       | 4.5  |       | 5.0  |       |       |
| t <sub>PWL</sub>   | Minimum Pulse Width Low           | FO = 32          | 3.4  |       | 4.1  |       | 4.5  |       | ns    |
|                    |                                   | FO = 256         | 3.8  |       | 4.5  |       | 5.0  |       |       |
| t <sub>CKSW</sub>  | Maximum Skew                      | FO = 32          |      | 0.7   |      | 0.7   |      | 0.7   | ns    |
|                    |                                   | FO = 256         |      | 3.5   |      | 3.5   |      | 3.5   |       |
| t <sub>SUEXT</sub> | Input Latch External Setup        | FO = 32          | 0.0  |       | 0.0  |       | 0.0  |       | ns    |
|                    |                                   | FO = 256         | 0.0  |       | 0.0  |       | 0.0  |       |       |
| t <sub>HEXT</sub>  | Input Latch External Hold         | FO = 32          | 7.0  |       | 7.0  |       | 7.0  |       | ns    |
|                    |                                   | FO = 256         | 11.2 |       | 11.2 |       | 11.2 |       |       |
| t <sub>P</sub>     | Minimum Period                    | FO = 32          | 7.7  |       | 8.3  |       | 9.1  |       | ns    |
|                    |                                   | FO = 256         | 8.1  |       | 8.8  |       | 10.0 |       |       |
| f <sub>MAX</sub>   | Maximum Frequency                 | FO = 32          |      | 130.0 |      | 120.0 |      | 110.0 | ns    |
|                    |                                   | FO = 256         |      | 125.0 |      | 115.0 |      | 100.0 | ]     |

Note: \*These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.



**Detailed Specifications** 

### A1240A Timing Characteristics (continued)

Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Mod            | ule Input Propagation Delays      |                  | -2 S | peed  | –1 S | peed  | Std. Speed |      | Units |
|--------------------|-----------------------------------|------------------|------|-------|------|-------|------------|------|-------|
| Paramet            | ter/Description                   |                  | Min. | Max.  | Min. | Max.  | Min.       | Max. |       |
| t <sub>INYH</sub>  | Pad to Y High                     |                  |      | 2.9   |      | 3.3   |            | 3.8  | ns    |
| t <sub>INYL</sub>  | Pad to Y Low                      |                  |      | 2.6   |      | 3.0   |            | 3.5  | ns    |
| t <sub>INGH</sub>  | G to Y High                       |                  |      | 5.0   |      | 5.7   |            | 6.6  | ns    |
| t <sub>INGL</sub>  | G to Y Low                        |                  |      | 4.7   |      | 5.4   |            | 6.3  | ns    |
| Input Mo           | odule Predicted Input Routing Del | ays <sup>*</sup> |      |       |      |       | -          |      |       |
| t <sub>IRD1</sub>  | FO = 1 Routing Delay              |                  |      | 4.2   |      | 4.8   |            | 5.6  | ns    |
| t <sub>IRD2</sub>  | FO = 2 Routing Delay              |                  |      | 4.8   |      | 5.4   |            | 6.4  | ns    |
| t <sub>IRD3</sub>  | FO = 3 Routing Delay              |                  |      | 5.4   |      | 6.1   |            | 7.2  | ns    |
| t <sub>IRD4</sub>  | FO = 4 Routing Delay              |                  |      | 5.9   |      | 6.7   |            | 7.9  | ns    |
| t <sub>IRD8</sub>  | FO = 8 Routing Delay              |                  |      | 7.9   |      | 8.9   |            | 10.5 | ns    |
| Global (           | Clock Network                     |                  | -    |       |      |       | -          |      |       |
| t <sub>CKH</sub>   | Input Low to High                 | FO = 32          |      | 10.2  |      | 11.0  |            | 12.8 | ns    |
|                    |                                   | FO = 256         |      | 11.8  |      | 13.0  |            | 15.7 |       |
| t <sub>CKL</sub>   | Input High to Low                 | FO = 32          |      | 10.2  |      | 11.0  |            | 12.8 | ns    |
|                    |                                   | FO = 256         |      | 12.0  |      | 13.2  |            | 15.9 |       |
| t <sub>PWH</sub>   | Minimum Pulse Width High          | FO = 32          | 3.8  |       | 4.5  |       | 5.5        |      | ns    |
|                    |                                   | FO = 256         | 4.1  |       | 5.0  |       | 5.8        |      |       |
| t <sub>PWL</sub>   | Minimum Pulse Width Low           | FO = 32          | 3.8  |       | 4.5  |       | 5.5        |      | ns    |
|                    |                                   | FO = 256         | 4.1  |       | 5.0  |       | 5.8        |      |       |
| t <sub>CKSW</sub>  | Maximum Skew                      | FO = 32          |      | 0.5   |      | 0.5   |            | 0.5  | ns    |
|                    |                                   | FO = 256         |      | 2.5   |      | 2.5   |            | 2.5  |       |
| t <sub>SUEXT</sub> | Input Latch External Setup        | FO = 32          | 0.0  |       | 0.0  |       | 0.0        |      | ns    |
|                    |                                   | FO = 256         | 0.0  |       | 0.0  |       | 0.0        |      |       |
| t <sub>HEXT</sub>  | Input Latch External Hold         | FO = 32          | 7.0  |       | 7.0  |       | 7.0        |      | ns    |
|                    |                                   | FO = 256         | 11.2 |       | 11.2 |       | 11.2       |      |       |
| t <sub>P</sub>     | Minimum Period                    | FO = 32          | 8.1  |       | 9.1  |       | 11.1       |      | ns    |
|                    |                                   | FO = 256         | 8.8  |       | 10.0 |       | 11.7       |      | 1     |
| f <sub>MAX</sub>   | Maximum Frequency                 | FO = 32          |      | 125.0 |      | 110.0 |            | 90.0 | ns    |
|                    |                                   | FO = 256         |      | 115.0 |      | 100.0 |            | 85.0 |       |

Note: \*These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

## A1240A Timing Characteristics (continued)

#### Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

| TTL Output Module Timing <sup>1</sup> |                                   | –2 S | peed | –1 S | Speed Std. |      | Speed | Units |
|---------------------------------------|-----------------------------------|------|------|------|------------|------|-------|-------|
| Parameter/Description                 |                                   | Min. | Max. | Min. | Max.       | Min. | Max.  |       |
| t <sub>DLH</sub>                      | Data to Pad High                  |      | 8.0  |      | 9.0        |      | 10.6  | ns    |
| t <sub>DHL</sub>                      | Data to Pad Low                   |      | 10.1 |      | 11.4       |      | 13.4  | ns    |
| t <sub>ENZH</sub>                     | Enable Pad Z to High              |      | 8.9  |      | 10.0       |      | 11.8  | ns    |
| t <sub>ENZL</sub>                     | Enable Pad Z to Low               |      | 11.7 |      | 13.2       |      | 15.5  | ns    |
| t <sub>ENHZ</sub>                     | Enable Pad High to Z              |      | 7.1  |      | 8.0        |      | 9.4   | ns    |
| t <sub>ENLZ</sub>                     | Enable Pad Low to Z               |      | 8.4  |      | 9.5        |      | 11.1  | ns    |
| t <sub>GLH</sub>                      | G to Pad High                     |      | 9.0  |      | 10.2       |      | 11.9  | ns    |
| t <sub>GHL</sub>                      | G to Pad Low                      |      | 11.2 |      | 12.7       |      | 14.9  | ns    |
| d <sub>TLH</sub>                      | Delta Low to High                 |      | 0.07 |      | 0.08       |      | 0.09  | ns/pF |
| d <sub>THL</sub>                      | Delta High to Low                 |      | 0.12 |      | 0.13       |      | 0.16  | ns/pF |
| CMOS                                  | Dutput Module Timing <sup>1</sup> | ·    |      |      |            |      |       |       |
| t <sub>DLH</sub>                      | Data to Pad High                  |      | 10.2 |      | 11.5       |      | 13.5  | ns    |
| t <sub>DHL</sub>                      | Data to Pad Low                   |      | 8.4  |      | 9.6        |      | 11.2  | ns    |
| t <sub>ENZH</sub>                     | Enable Pad Z to High              |      | 8.9  |      | 10.0       |      | 11.8  | ns    |
| t <sub>ENZL</sub>                     | Enable Pad Z to Low               |      | 11.7 |      | 13.2       |      | 15.5  | ns    |
| t <sub>ENHZ</sub>                     | Enable Pad High to Z              |      | 7.1  |      | 8.0        |      | 9.4   | ns    |
| t <sub>ENLZ</sub>                     | Enable Pad Low to Z               |      | 8.4  |      | 9.5        |      | 11.1  | ns    |
| t <sub>GLH</sub>                      | G to Pad High                     |      | 9.0  |      | 10.2       |      | 11.9  | ns    |
| t <sub>GHL</sub>                      | G to Pad Low                      |      | 11.2 |      | 12.7       |      | 14.9  | ns    |
| d <sub>TLH</sub>                      | Delta Low to High                 |      | 0.12 |      | 0.13       |      | 0.16  | ns/pF |
| d <sub>THL</sub>                      | Delta High to Low                 |      | 0.09 |      | 0.10       |      | 0.12  | ns/pF |

Notes:

1. Delays based on 50 pF loading.

2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board\_consideration.aspx.

## A1280A Timing Characteristics (continued)

#### Table 2-19 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Mod            | ule Input Propagation Delays      |                  | -2 S | peed  | –1 S | peed | Std. | Speed | Units |
|--------------------|-----------------------------------|------------------|------|-------|------|------|------|-------|-------|
| Parame             | ter/Description                   |                  | Min. | Max.  | Min. | Max. | Min. | Max.  | 1     |
| t <sub>INYH</sub>  | Pad to Y High                     |                  |      | 2.9   |      | 3.3  |      | 3.8   | ns    |
| t <sub>INYL</sub>  | Pad to Y Low                      |                  |      | 2.7   |      | 3.0  |      | 3.5   | ns    |
| t <sub>INGH</sub>  | G to Y High                       |                  |      | 5.0   |      | 5.7  |      | 6.6   | ns    |
| t <sub>INGL</sub>  | G to Y Low                        |                  |      | 4.8   |      | 5.4  |      | 6.3   | ns    |
| Input M            | odule Predicted Input Routing Del | ays <sup>*</sup> | -    |       |      |      | -    | -     |       |
| t <sub>IRD1</sub>  | FO = 1 Routing Delay              |                  |      | 4.6   |      | 5.1  |      | 6.0   | ns    |
| t <sub>IRD2</sub>  | FO = 2 Routing Delay              |                  |      | 5.2   |      | 5.9  |      | 6.9   | ns    |
| t <sub>IRD3</sub>  | FO = 3 Routing Delay              |                  |      | 5.6   |      | 6.3  |      | 7.4   | ns    |
| t <sub>IRD4</sub>  | FO = 4 Routing Delay              |                  |      | 6.5   |      | 7.3  |      | 8.6   | ns    |
| t <sub>IRD8</sub>  | FO = 8 Routing Delay              |                  |      | 9.4   |      | 10.5 |      | 12.4  | ns    |
| Global (           | Clock Network                     |                  | -    |       |      |      | -    | -     |       |
| t <sub>скн</sub>   | Input Low to High                 | FO = 32          |      | 10.2  |      | 11.0 |      | 12.8  | ns    |
|                    |                                   | FO = 256         |      | 13.1  |      | 14.6 |      | 17.2  | 1     |
| t <sub>CKL</sub>   | Input High to Low                 | FO = 32          |      | 10.2  |      | 11.0 |      | 12.8  | ns    |
|                    |                                   | FO = 256         |      | 13.3  |      | 14.9 |      | 17.5  |       |
| t <sub>PWH</sub>   | Minimum Pulse Width High          | FO = 32          | 5.0  |       | 5.5  |      | 6.6  |       | ns    |
|                    |                                   | FO = 256         | 5.8  |       | 6.4  |      | 7.6  |       |       |
| t <sub>PWL</sub>   | Minimum Pulse Width Low           | FO = 32          | 5.0  |       | 5.5  |      | 6.6  |       | ns    |
|                    |                                   | FO = 256         | 5.8  |       | 6.4  |      | 7.6  |       |       |
| t <sub>CKSW</sub>  | Maximum Skew                      | FO = 32          |      | 0.5   |      | 0.5  |      | 0.5   | ns    |
|                    |                                   | FO = 256         |      | 2.5   |      | 2.5  |      | 2.5   |       |
| t <sub>SUEXT</sub> | Input Latch External Setup        | FO = 32          | 0.0  |       | 0.0  |      | 0.0  |       | ns    |
|                    |                                   | FO = 256         | 0.0  |       | 0.0  |      | 0.0  |       |       |
| t <sub>HEXT</sub>  | Input Latch External Hold         | FO = 32          | 7.0  |       | 7.0  |      | 7.0  |       | ns    |
|                    |                                   | FO = 256         | 11.2 |       | 11.2 |      | 11.2 |       |       |
| t <sub>P</sub>     | Minimum Period                    | FO = 32          | 9.6  |       | 11.2 |      | 13.3 |       | ns    |
|                    |                                   | FO = 256         | 10.6 |       | 12.6 |      | 15.3 |       | ]     |
| f <sub>MAX</sub>   | Maximum Frequency                 | FO = 32          |      | 105.0 |      | 90.0 |      | 75.0  | ns    |
|                    |                                   | FO = 256         |      | 95.0  |      | 80.0 |      | 65.0  | 1     |

Note: \*These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1280A Timing Characteristics (continued)

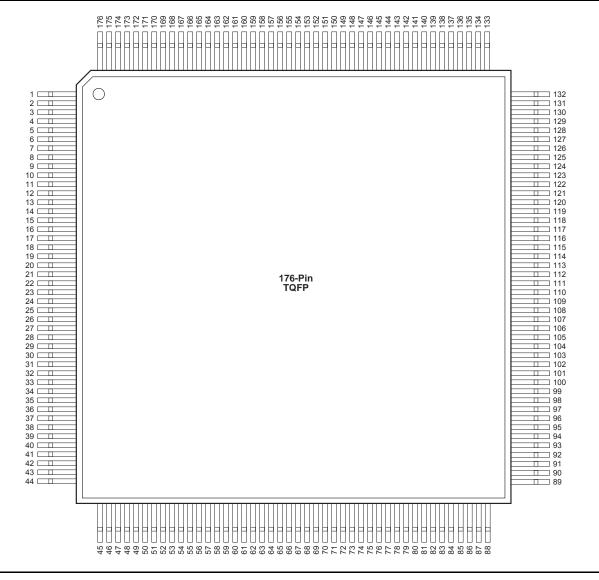


|            | PQ100           |            | PQ100           |
|------------|-----------------|------------|-----------------|
| Pin Number | A1225A Function | Pin Number | A1225A Function |
| 2          | DCLK, I/O       | 65         | VCC             |
| 4          | MODE            | 66         | VCC             |
| 9          | GND             | 67         | VCC             |
| 16         | VCC             | 72         | GND             |
| 17         | VCC             | 79         | SDI, I/O        |
| 22         | GND             | 84         | GND             |
| 34         | GND             | 87         | PRA, I/O        |
| 40         | VCC             | 89         | CLKA, I/O       |
| 46         | GND             | 90         | VCC             |
| 52         | SDO             | 92         | CLKB, I/O       |
| 57         | GND             | 94         | PRB, I/O        |
| 64         | GND             | 96         | GND             |

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.



| PQ160      |                 |            | PQ160           |
|------------|-----------------|------------|-----------------|
| Pin Number | A1280A Function | Pin Number | A1280A Function |
| 2          | DCLK, I/O       | 69         | GND             |
| 6          | VCC             | 80         | GND             |
| 11         | GND             | 82         | SDO             |
| 16         | PRB, I/O        | 86         | VCC             |
| 18         | CLKB, I/O       | 89         | GN              |
| 20         | VCC             | 98         | GND             |
| 21         | CLKA, I/O       | 99         | GND             |
| 23         | PRA, I/O        | 109        | GND             |
| 30         | GND             | 114        | VCC             |
| 35         | VCC             | 120        | GND             |
| 38         | SDI, I/O        | 125        | GND             |
| 40         | GND             | 130        | GND             |
| 44         | GND             | 135        | VCC             |
| 49         | GND             | 138        | VCC             |
| 54         | VCC             | 139        | VCC             |
| 57         | VCC             | 140        | GND             |
| 58         | VCC             | 145        | GND             |
| 59         | GND             | 150        | VCC             |
| 60         | VCC             | 155        | GND             |
| 61         | GND             | 159        | MODE            |
| 64         | GND             | 160        | GND             |


- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.



|            | VQ100           |            | VQ100           |
|------------|-----------------|------------|-----------------|
| Pin Number | A1225A Function | Pin Number | A1225A Function |
| 2          | MODE            | 64         | VCC             |
| 7          | GND             | 65         | VCC             |
| 14         | VCC             | 70         | GND             |
| 15         | VCC             | 77         | SDI, I/O        |
| 20         | GND             | 82         | GND             |
| 32         | GND             | 85         | PRA, I/O        |
| 38         | VCC             | 87         | CLKA, I/O       |
| 44         | GND             | 88         | VCC             |
| 50         | SDO             | 90         | CLKB, I/O       |
| 55         | GND             | 92         | PRB, I/O        |
| 62         | GND             | 94         | GND             |
| 63         | VCC             | 100        | DCLK, I/O       |

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.





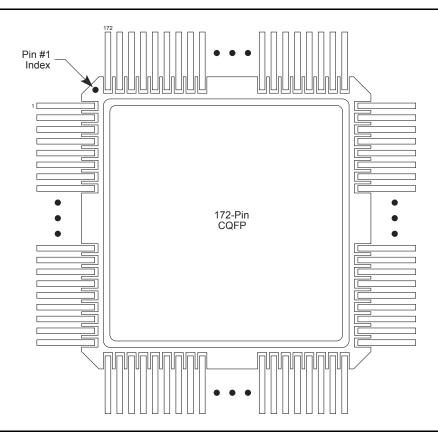
#### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

**Microsemi**. ACT 2 Family FPGAs



|            | TQ176           |                 | TQ176      |                 |                 |  |
|------------|-----------------|-----------------|------------|-----------------|-----------------|--|
| Pin Number | A1240A Function | A1280A Function | Pin Number | A1240A Function | A1280A Function |  |
| 1          | GND             | GND             | 82         | NC              | VCC             |  |
| 2          | MODE            | MODE            | 86         | NC              | I/O             |  |
| 8          | NC              | NC              | 87         | SDO             | SDO             |  |
| 10         | NC              | I/O             | 89         | GND             | GND             |  |
| 11         | NC              | I/O             | 96         | NC              | I/O             |  |
| 13         | NC              | VCC             | 97         | NC              | I/O             |  |
| 18         | GND             | GND             | 101        | NC              | NC              |  |
| 19         | NC              | I/O             | 103        | NC              | I/O             |  |
| 20         | NC              | I/O             | 106        | GND             | GND             |  |
| 22         | NC              | I/O             | 107        | NC              | I/O             |  |
| 23         | GND             | GND             | 108        | NC              | I/O             |  |
| 24         | NC              | VCC             | 109        | GND             | GND             |  |
| 25         | VCC             | VCC             | 110        | VCC             | VCC             |  |
| 26         | NC              | I/O             | 111        | GND             | GND             |  |
| 27         | NC              | I/O             | 112        | VCC             | VCC             |  |
| 28         | VCC             | VCC             | 113        | VCC             | VCC             |  |
| 29         | NC              | I/O             | 114        | NC              | I/O             |  |
| 33         | NC              | NC              | 115        | NC              | I/O             |  |
| 37         | NC              | I/O             | 116        | NC              | VCC             |  |
| 38         | NC              | NC              | 121        | NC              | NC              |  |
| 45         | GND             | GND             | 124        | NC              | I/O             |  |
| 52         | NC              | VCC             | 125        | NC              | I/O             |  |
| 54         | NC              | I/O             | 126        | NC              | NC              |  |
| 55         | NC              | I/O             | 133        | GND             | GND             |  |
| 57         | NC              | NC              | 135        | SDI, I/O        | SDI, I/O        |  |
| 61         | NC              | I/O             | 136        | NC              | I/O             |  |
| 64         | NC              | I/O             | 140        | NC              | VCC             |  |
| 66         | NC              | I/O             | 143        | NC              | I/O             |  |
| 67         | GND             | GND             | 144        | NC              | I/O             |  |
| 68         | VCC             | VCC             | 145        | NC              | NC              |  |
| 74         | NC              | I/O             | 147        | NC              | I/O             |  |
| 77         | NC              | NC              | 151        | NC              | I/O             |  |
| 78         | NC              | I/O             | 152        | PRA, I/O        | PRA, I/O        |  |
| 80         | NC              | I/O             | 154        | CLKA, I/O       | CLKA, I/O       |  |




|            | TQ176           |                 |
|------------|-----------------|-----------------|
| Pin Number | A1240A Function | A1280A Function |
| 155        | VCC             | VCC             |
| 156        | GND             | GND             |
| 158        | CLKB, I/O       | CLKB, I/O       |
| 160        | PRB, I/O        | PRB, I/O        |
| 161        | NC              | I/O             |
| 165        | NC              | NC              |
| 166        | NC              | I/O             |
| 168        | NC              | I/O             |
| 170        | NC              | VCC             |
| 173        | NC              | I/O             |
| 175        | DCLK, I/O       | DCLK, I/O       |

- 1. NC denotes no connection.
- 2. All unlisted pin numbers are user I/Os.
- 3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.



# CQ172



#### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

|            | PG176           | PG176      |                |  |
|------------|-----------------|------------|----------------|--|
| Pin Number | A1280A Function | Pin Number | A1280A Functio |  |
| A9         | CLKA, I/O       | H3         | VCC            |  |
| B3         | DCLK, I/O       | H4         | GND            |  |
| B8         | CLKB, I/O       | H12        | GND            |  |
| B14        | SDI, I/O        | H13        | VCC            |  |
| C3         | MODE            | H14        | VCC            |  |
| C8         | GND             | J4         | VCC            |  |
| C9         | PRA, I/O        | J12        | GND            |  |
| D4         | GND             | J13        | GND            |  |
| D5         | VCC             | J14        | VCC            |  |
| D6         | GND             | K4         | GND            |  |
| D7         | PRB, I/O        | K12        | GND            |  |
| D8         | VCC             | L4         | GND            |  |
| D10        | GND             | M4         | GND            |  |
| D11        | VCC             | M5         | VCC            |  |
| D12        | GND             | M6         | GND            |  |
| E4         | GND             | M8         | GND            |  |
| E12        | GND             | M10        | GND            |  |
| F4         | VCC             | M11        | VCC            |  |
| F12        | GND             | M12        | GND            |  |
| G4         | GND             | N8         | VCC            |  |
| G12        | VCC             | P13        | SDO            |  |
| H2         | VCC             |            |                |  |

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.