

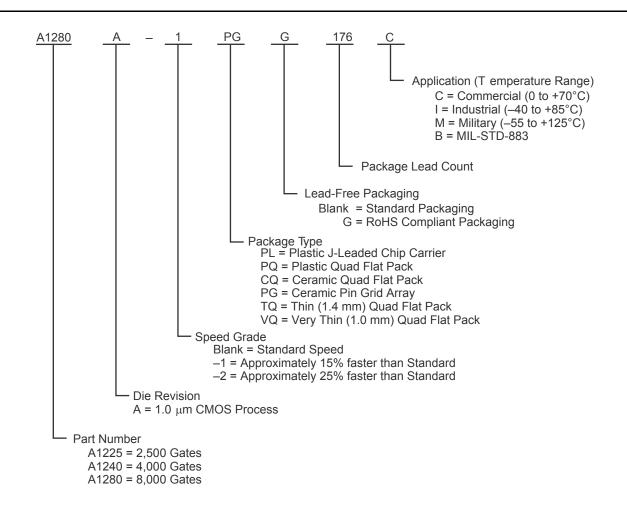
Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Obsolete
Number of LABs/CLBs	1232
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	140
Number of Gates	8000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-BCPGA
Supplier Device Package	176-CPGA (39.88x39.88)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1280a-pg176c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

II Revision 8

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{\text{ia}}\text{°C/W}} = \frac{150\text{°C} - 70\text{°C}}{33\text{°C/W}} = 2.4 \text{ W}$$

EQ 1

Table 2-4 • Package Thermal Characteristics

Package Type*	Pin Count	θ jc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	5	35	17	°C/W
	132	5	30	15	°C/W
	176	8	23	12	°C/W
Ceramic Quad Flatpack	172	8	25	15	°C/W
Plastic Quad Flatpack ¹	100	13	48	40	°C/W
	144	15	40	32	°C/W
	160	15	38	30	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	15	32	25	°C/W

Notes: (Maximum Power in Still Air)

- Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W (PQ160).
- 2. Maximum power dissipation for PLCC packages is 2.7 W.
- 3. Maximum power dissipation for VQFP packages is 2.3 W.
- 4. Maximum power dissipation for TQFP packages is 3.1 W.

Power Dissipation

P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC - VOH) * M

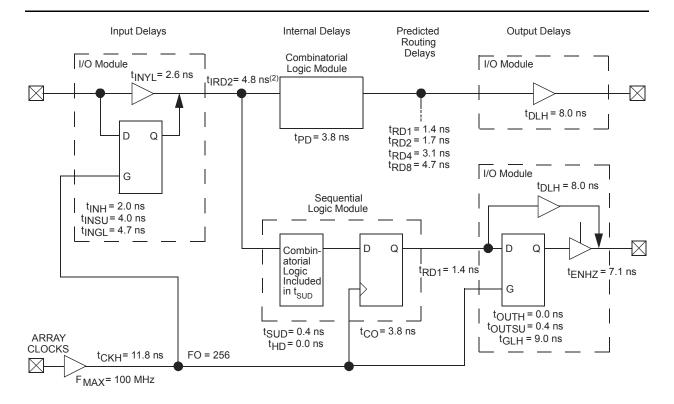
EQ2

where:

ICC standby is the current flowing when no inputs or outputs are changing

ICCactive is the current flowing due to CMOS switching.

IOL and IOH are TTL sink/source currents.


VOL and VOH are TTL level output voltages.

N is the number of outputs driving TTL loads to VOL.

M is the number of outputs driving TTL loads to VOH.

An accurate determination of N and M is problematical because their values depend on the family type, design details, and on the system I/O. The power can be divided into two components: static and active.

ACT 2 Timing Model¹

Notes:

- 1. Values shown for A1240A-2 at worst-case commercial conditions.
- 2. Input module predicted routing delay

Figure 2-1 • Timing Model

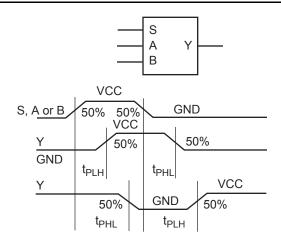
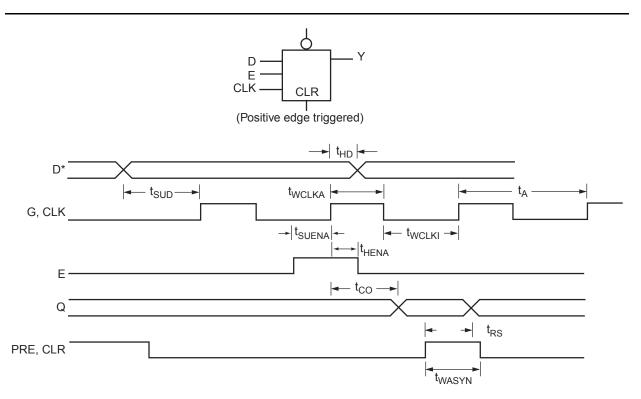



Figure 2-5 • Module Delays

Sequential Module Timing Characteristics

Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Figure 2-6 • Flip-Flops and Latches

Timing Derating Factor (Temperature and Voltage)

Table 2-9 • Timing Derating Factor (Temperature and Voltage)

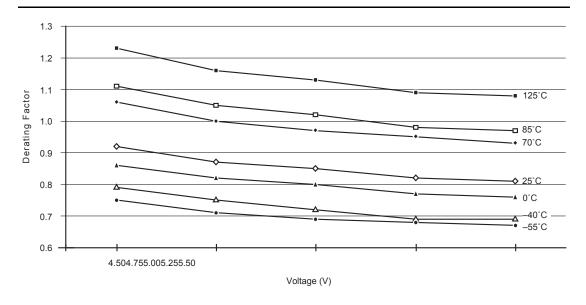

(Commercial Minimum/Maximum Specification) x	Indus	strial	Mili	tary
	Min.	Max.	Min.	Max.
	0.69	1.11	0.67	1.23

Table 2-10 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25^{\circ}C$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-11 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.75	0.79	0.86	0.92	1.06	1.11	1.23
4.75	0.71	0.75	0.82	0.87	1.00	1.05	1.13
5.00	0.69	0.72	0.80	0.85	0.97	1.02	1.13
5.25	0.68	0.69	0.77	0.82	0.95	0.98	1.09
5.50	0.67	0.69	0.76	0.81	0.93	0.97	1.08

Note: This derating factor applies to all routing and propagation delays.

Figure 2-9 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, T_J = 4.75 V, 70°C)

A1225A Timing Characteristics (continued)

Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

I/O Mod	ule Input Propagation Delays		-2 S	peed	-1 Speed		Std. Speed		Units
Paramet	ter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]							
t _{IRD1}	FO = 1 Routing Delay			4.1		4.6		5.4	ns
t _{IRD2}	FO = 2 Routing Delay			4.6		5.2		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			5.3		6.0		7.1	ns
t _{IRD4}	FO = 4 Routing Delay			5.7		6.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			7.4		8.3		9.8	ns
Global (Clock Network								
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL}	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.4		4.1		4.5		ns
		FO = 256	3.8		4.5		5.0		
t _{CKSW}	Maximum Skew	FO = 32		0.7		0.7		0.7	ns
		FO = 256		3.5		3.5		3.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		
t _P	Minimum Period	FO = 32	7.7		8.3		9.1		ns
		FO = 256	8.1		8.8		10.0		
f _{MAX}	Maximum Frequency	FO = 32		130.0		120.0		110.0	ns
		FO = 256		125.0		115.0		100.0]

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1240A Timing Characteristics (continued)

Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	O Module Input Propagation Delays			-2 Speed		-1 Speed		Std. Speed	
Paramet	ter/Description		Min.	Max.	Min.	Max.	Min.	Max.	
t _{INYH}	Pad to Y High			2.9		3.3		3.8	ns
t _{INYL}	Pad to Y Low			2.6		3.0		3.5	ns
t _{INGH}	G to Y High			5.0		5.7		6.6	ns
t _{INGL}	G to Y Low			4.7		5.4		6.3	ns
Input Mo	odule Predicted Input Routing Del	ays [*]		.1.					
t _{IRD1}	FO = 1 Routing Delay			4.2		4.8		5.6	ns
t _{IRD2}	FO = 2 Routing Delay			4.8		5.4		6.4	ns
t _{IRD3}	FO = 3 Routing Delay			5.4		6.1		7.2	ns
t _{IRD4}	FO = 4 Routing Delay			5.9		6.7		7.9	ns
t _{IRD8}	FO = 8 Routing Delay			7.9		8.9		10.5	ns
Global (Clock Network		•	•		•		•	•
t _{CKH}	Input Low to High	FO = 32		10.2		11.0		12.8	ns
		FO = 256		11.8		13.0		15.7	
t _{CKL}	Input High to Low	FO = 32		10.2		11.0		12.8	ns
		FO = 256		12.0		13.2		15.9	
t _{PWH}	Minimum Pulse Width High	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{PWL}	Minimum Pulse Width Low	FO = 32	3.8		4.5		5.5		ns
		FO = 256	4.1		5.0		5.8		
t _{CKSW}	Maximum Skew	FO = 32		0.5		0.5		0.5	ns
		FO = 256		2.5		2.5		2.5	
t _{SUEXT}	Input Latch External Setup	FO = 32	0.0		0.0		0.0		ns
		FO = 256	0.0		0.0		0.0		
t _{HEXT}	Input Latch External Hold	FO = 32	7.0		7.0		7.0		ns
		FO = 256	11.2		11.2		11.2		1
t _P	Minimum Period	FO = 32	8.1		9.1		11.1		ns
		FO = 256	8.8		10.0		11.7		1
f _{MAX}	Maximum Frequency	FO = 32		125.0		110.0		90.0	ns
		FO = 256		115.0		100.0		85.0	1

Note: *These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

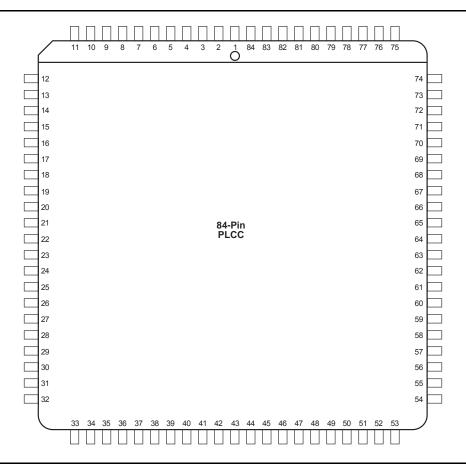
2-16 Revision 8

Detailed Specifications

A1280A Timing Characteristics

Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, T, I = 70°C

Logic Mo	Logic Module Propagation Delays ¹		peed ³	-1 Speed		Std. Speed		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t_{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²					·		
t _{RD1}	FO = 1 Routing Delay		1.7		2.0		2.3	ns
t _{RD2}	FO = 2 Routing Delay		2.5		2.8		3.3	ns
t _{RD3}	FO = 3 Routing Delay		3.0		3.4		4.0	ns
t _{RD4}	FO = 4 Routing Delay		3.7		4.2		4.9	ns
t _{RD8}	FO = 8 Routing Delay		6.7		7.5		8.8	ns
Sequenti	al Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	5.5		6.0		7.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	5.5		6.0		7.0		ns
t _A	Flip-Flop Clock Input Period	11.7		13.3		18.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		85.0		75.0		50.0	MHz


Notes:

- 1. For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn} , t_{CO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} —whichever is appropriate.
- Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
 estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
 performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
 shipment.
- 3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.
- 4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

2-18 Revision 8

PL84

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

PQ100				
Pin Number	A1225A Function			
2	DCLK, I/O			
4	MODE			
9	GND			
16	VCC			
17	VCC			
22	GND			
34	GND			
40	VCC			
46	GND			
52	SDO			
57	GND			
64	GND			


PQ100				
Pin Number	A1225A Function			
65	VCC			
66	VCC			
67	VCC			
72	GND			
79	SDI, I/O			
84	GND			
87	PRA, I/O			
89	CLKA, I/O			
90	VCC			
92	CLKB, I/O			
94	PRB, I/O			
96	GND			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 8

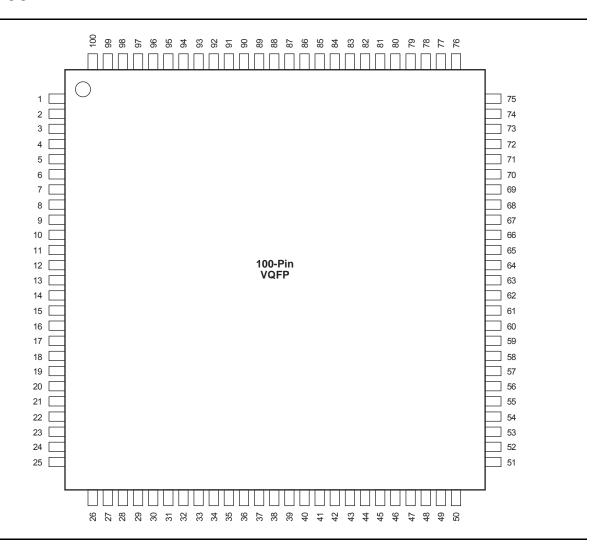
PQ160

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

	PQ160			
Pin Number	A1280A Function	Pin Nur		
2	DCLK, I/O	69		
6	VCC	80		
11	GND	82		
16	PRB, I/O	86		
18	CLKB, I/O	89		
20	VCC	98		
21	CLKA, I/O	99		
23	PRA, I/O	109		
30	GND	114		
35	VCC	120		
38	SDI, I/O	125		
40	GND	130		
44	GND	135		
49	GND	138		
54	VCC	139		
57	VCC	140		
58	VCC	145		
59	GND	150		
60	VCC	155		
61	GND	159		
64	GND	160		


PQ160				
Pin Number	A1280A Function			
69	GND			
80	GND			
82	SDO			
86	VCC			
89	GN			
98	GND			
99	GND			
109	GND			
114	VCC			
120	GND			
125	GND			
130	GND			
135	VCC			
138	VCC			
139	VCC			
140	GND			
145	GND			
150	VCC			
155	GND			
159	MODE			
160	GND			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

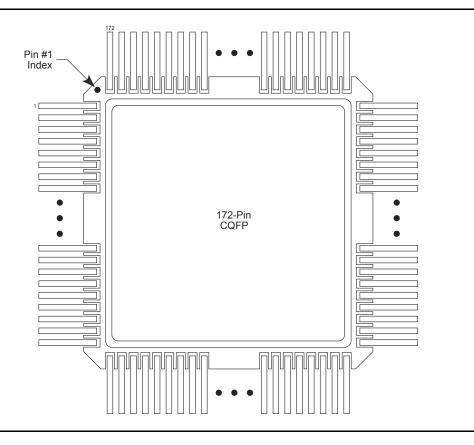
3-8 Revision 8

VQ100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

VQ100		
Pin Number	A1225A Function	
2	MODE	
7	GND	
14	VCC	
15	VCC	
20	GND	
32	GND	
38	VCC	
44	GND	
50	SDO	
55	GND	
62	GND	
63	VCC	

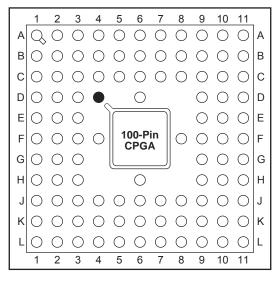

VQ100		
Pin Number	A1225A Function	
64	VCC	
65	VCC	
70	GND	
77	SDI, I/O	
82	GND	
85	PRA, I/O	
87	CLKA, I/O	
88	VCC	
90	CLKB, I/O	
92	PRB, I/O	
94	GND	
100	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-10 Revision 8

CQ172

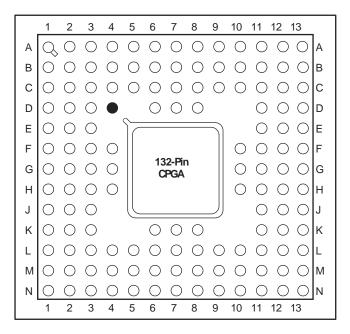

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 8

PG100

Orientation Pin


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 8

PG132

Orientation Pin

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-18 Revision 8

4 - Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	Page
Revision 8 (January 2012)	,,,,	
	Package names used in Table 1 • ACT 2 Product Family Profile and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	Ι
	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35819).	2-21
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35819).	3-2
Revision 7 (June 2006)	The "Ordering Information" section was revised to include RoHS information.	II
Revision 6 (December 2000)	In the "PG176" package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a user I/O. Pin A9 is CLKA, I/O.	3-21

Datasheet Information

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

4-2 Revision 8

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.