E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1232
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	72
Number of Gates	8000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1280a-plg84i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	S	peed Grad	e ¹		Applic	ation ¹	
Device/Package	Std.	-1	-2	С	I	М	В
A1225A Device				•		•	
84-Pin Plastic Leaded Chip Carrier (PL)	1	1	✓	1	1	-	-
100-Pin Plastic Quad Flatpack (PQ)	1	1	✓	1	1	-	-
100-Pin Very Thin Quad Flatpack (VQ)	1	~	✓	1	_	-	_
100-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	-	-	_
A1240A Device							
84-Pin Plastic Leaded Chip Carrier (PL)	1	~	✓	1	1	-	-
132-Pin Ceramic Pin Grid Array (PG)	1	1	<i>✓</i>	1	_	1	1
144-Pin Plastic Quad Flat Pack (PQ)	1	1	✓	1	1	-	-
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	-	-	_
A1280A Device							
160-Pin Plastic Quad Flatpack (PQ)	1	1	✓	1	1	-	-
172-Pin Ceramic Quad Flatpack (CQ)	1	~	✓	1	_	1	1
176-Pin Ceramic Pin Grid Array (PG)	1	1	1	1	_	1	1
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ)	1	1	1	1	_	-	-
Notes:	Availa	hility:	1	Sneed	d Grade:	1	

1. Applications: C = Commercial I = Industrial M = Military B = MIL-STD-883 Availability: $\checkmark = Available$ P = Planned- = Not planned Speed Grade: -1 = Approx. 15% faster than Std.

-2 = Approx. 25% faster than Std.

2. Contact your Microsemi SoC Products Group sales representative for product availability.

Device Resources

Device	Logic			User I/Os								
Series	Modules	Gates	PG176	PG132	PG100	PQ160	PQ144	PQ100	PL84	CQ172	TQ176	VQ100
A1225A	451	2,500	-	-	83	-	_	83	72	-	-	83
A1240A	684	4,000	-	104	-	-	104	-	72	-	104	_
A1280A	1,232	8,000	140	_	-	125	_	-	72	140	140	-

Contact your local Microsemi SoC Products Group representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

2 – Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings¹

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	–0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw excessive current.

Table 2-2 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	–55 to +125	°C
Power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Detailed Specifications

Table 2-3 • Electrical Specifications

		Con	nmercial	Industrial		Military			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	ilitary Max. - - - 0.40 0.8 VCC + 0.3 500 10 20 +10	Units	
VOH ¹	$(IOH = -10 \text{ mA})^2$	2.4	-	_	_	_	-	V	
	(IOH = –6 mA)	3.84	-	_	_	_	-	V	
	(IOH = -4 mA)	-	-	3.7	_	3.7	-	V	
VOL ¹	(IOL = 10 mA) ²	-	0.5	_	-	_	-	V	
	(IOL = 6 mA)	-	0.33	_	0.40	_	0.40	V	
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
VIH		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V	
Input Tran	sition Time t _R , t _F ²	-	500	_	500	-	500	ns	
C _{IO} I/O caj	pacitance ^{2,3}	-	10	_	10	-	10	pF	
Standby Current, ICC ⁴ (typical = 1 mA)		-	2	_	10	_	20	mA	
Leakage Current ⁵		-10	+10	-10	+10	-10	+10	μA	
ICC(D)	Dynamic VCC supply curren	t. See the	Power Dissip	ation see	ction.		1	1	

Notes:

1. Only one output tested at a time. VCC = minimum.

2. Not tested, for information only.

3. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz

4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operations.

5. VOUT, VIN = VCC or GND.

Static Power Component

Microsemi FPGAs have small static power components that result in lower power dissipation than PALs or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.

The power due to standby current is typically a small component of the overall power. Standby power is calculated in Table 2-5 for commercial, worst case conditions.

Table 2-5 • Standby Power Calculation

ICC	VCC	Power
2 mA	5.25 V	10.5 mW

The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual dissipation will average somewhere between as I/Os switch states with time.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.

An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

EQ 3

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by EQ 3.

Power (μ W) = C_{EQ} * VCC² * F

Where:

C_{EQ} is the equivalent capacitance expressed in pF.

VCC is the power supply in volts.

F is the switching frequency in MHz.

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Table 2-6.

Table 2-6 • CEQ Values for Microsemi FPGAs

Item	CEQ Value
Modules (C _{EQM})	5.8
Input Buffers (C _{EQI})	12.9
Output Buffers (C _{EQO})	23.8
Routed Array Clock Buffer Loads (C _{EQCR})	3.9

2-5

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n)_{inputs}

+ (p * (C_{EQO} + C_L) * fp)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * f_{q1})_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * f_{q2})_{routed Clk2} + (r₂ * f_{q2})_{routed Clk2}

Where:

m = Number of logic modules switching at fm

n = Number of input buffers switching at fn

p = Number of output buffers switching at f_p

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

r₁ = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

C_{EOM} = Equivalent capacitance of logic modules in pF

C_{EOI} = Equivalent capacitance of input buffers in pF

C_{FOO} = Equivalent capacitance of output buffers in pF

C_{EQCR} = Equivalent capacitance of routed array clock in pF

C₁ = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

fn = Average input buffer switching rate in MHz

fp = Average output buffer switching rate in MHz

 f_{q1} = Average first routed array clock rate in MHz

f_{g2} = Average second routed array clock rate in MHz

Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1225A	106	106.0
A1240A	134	134.2
A1280A	168	167.8

EQ 4

Detailed Specifications

Determining Average Switching Frequency

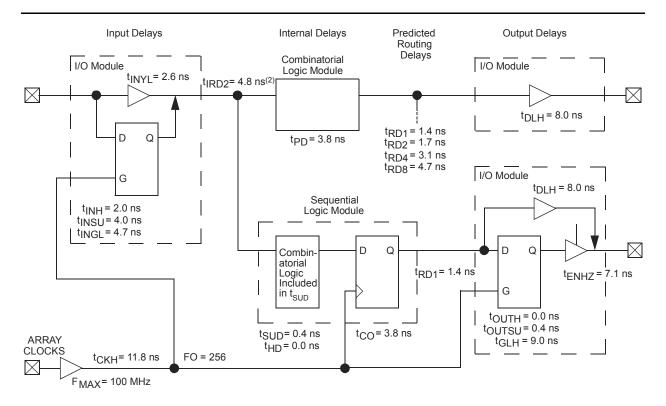
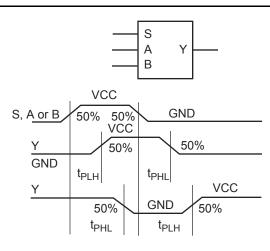
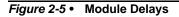

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are given in Table 2-8.

Table 2-8 • Guidelines for Predicting Power Dissipation	or Predicting Power Dissipation	Table 2-8 • Guidelines for
---	---------------------------------	----------------------------

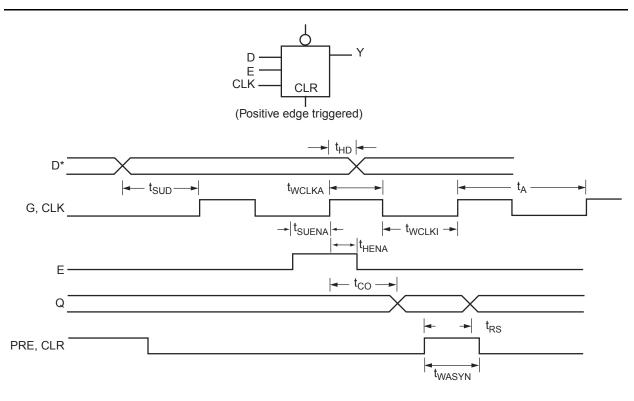
Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (f _m)	F/10
Average input switching rate (f _n)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (f _{q1})	F
Average second routed array clock rate (f _{q2})	F/2

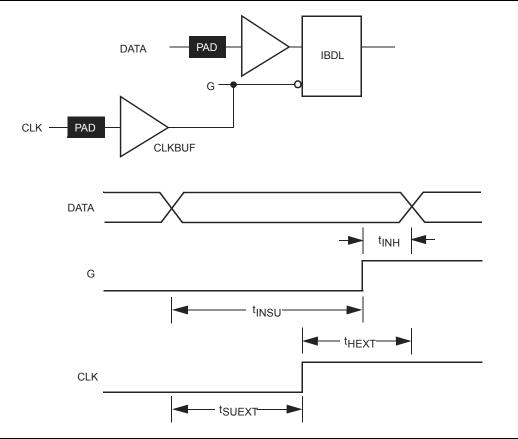
ACT 2 Timing Model¹

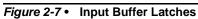

Notes:


1. Values shown for A1240A-2 at worst-case commercial conditions.

2. Input module predicted routing delay


Figure 2-1 • Timing Model


Sequential Module Timing Characteristics



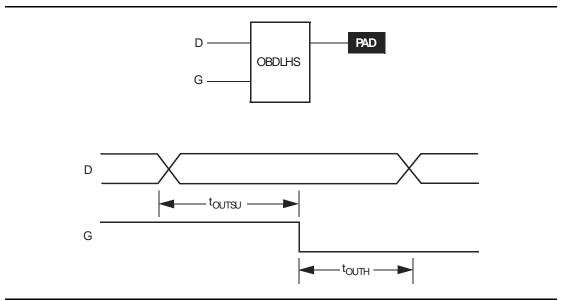

Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.

Figure 2-6 • Flip-Flops and Latches

Detailed Specifications

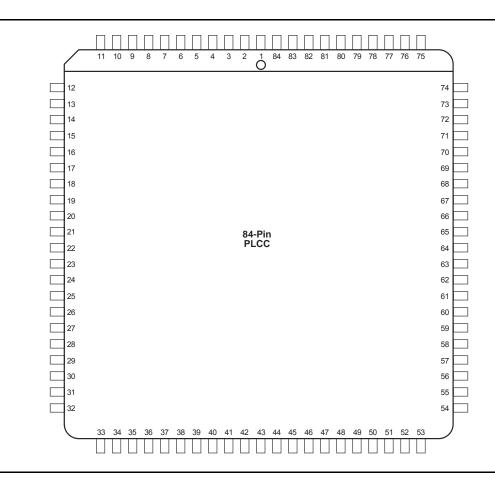
A1225A Timing Characteristics

Table 2-12 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Logic Mo	odule Propagation Delays ¹	–2 Sj	beed ³	–1 S	peed	Std. S	Speed	Units
Paramet	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	1
t _{PD1}	Single Module		3.8		4.3		5.0	ns
t _{CO}	Sequential Clock to Q		3.8		4.3		5.0	ns
t _{GO}	Latch G to Q		3.8		4.3		5.0	ns
t _{RS}	Flip-Flop (Latch) Reset to Q		3.8		4.3		5.0	ns
Predicte	d Routing Delays ²							
t _{RD1}	FO = 1 Routing Delay		1.1		1.2		1.4	ns
t _{RD2}	FO = 2 Routing Delay		1.7		1.9		2.2	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.6		3.0	ns
t _{RD4}	FO = 4 Routing Delay		2.8		3.1		3.7	ns
t _{RD8}	FO = 8 Routing Delay		4.4		4.9		5.8	ns
Sequent	ial Timing Characteristics ^{3,4}							
t _{SUD}	Flip-Flop (Latch) Data Input Setup	0.4		0.4		0.5		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Setup	0.8		0.9		1.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.5		5.0		6.0		ns
t _{WASYN}	Flip-Flop (Latch) Clock Asynchronous Pulse Width	4.5		5.0		6.0		ns
t _A	Flip-Flop Clock Input Period	9.4		11.0		13.0		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Setup	0.4		0.4		0.5		ns
t _{оитн}	Output Buffer Latch Hold	0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch Setup	0.4		0.4		0.5		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency		105.0		90.0		75.0	MHz

Notes:

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$ —whichever is appropriate.


 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

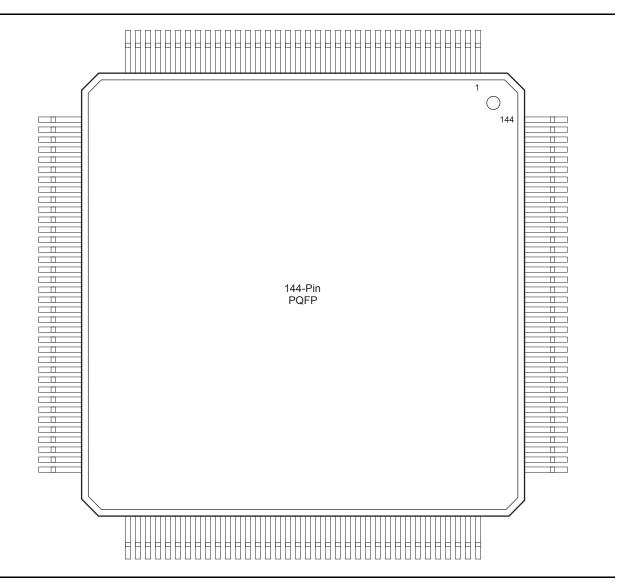
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the DirectTime Analyzer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

3 – Package Pin Assignments

PL84

Note


For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

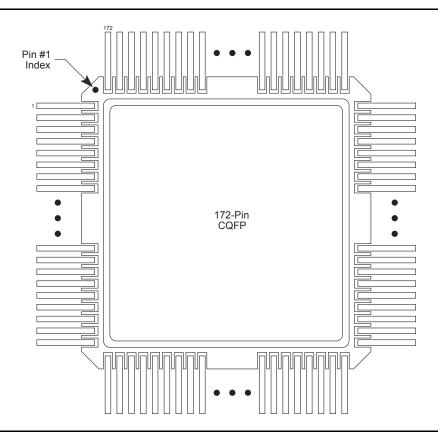
	PQ100		PQ100	
Pin Number	A1225A Function	Pin Number	A1225A Function	
2	DCLK, I/O	65	VCC	
4	MODE	66	VCC	
9	GND	67	VCC	
16	VCC	72	GND	
17	VCC	79	SDI, I/O	
22	GND	84	GND	
34	GND	87	PRA, I/O	
40	VCC	89	CLKA, I/O	
46	GND	90	VCC	
52	SDO	92	CLKB, I/O	
57	GND	94	PRB, I/O	
64	GND	96	GND	

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi ACT 2 Family FPGAs


Package Pin Assignments

PQ144			PQ144	
Pin Number	A1240A Function	Pin Number	A1240A Function	
2	MODE	89	VCC	
9	GND	90	VCC	
10	GND	91	VCC	
11	GND	92	VCC	
18	VCC	93	VCC	
19	VCC	100	GND	
20	VCC	101	GND	
21	VCC	102	GND	
28	GND	110	SDI, I/O	
29	GND	116	GND	
30	GND	117	GND	
44	GND	118	GND	
45	GND	123	PRA, I/O	
46	GND	125	CLKA, I/O	
54	VCC	126	VCC	
55	VCC	127	VCC	
56	VCC	128	VCC	
64	GND	130	CLKB, I/O	
65	GND	132	PRB, I/O	
71	SDO	136	GND	
79	GND	137	GND	
80	GND	138	GND	
81	GND	144	DCLK, I/O	
88	GND			

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ172

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

CQ172		CQ172	
Pin Number	A1280A Function	Pin Number	A1280A Function
1	MODE	107	VCC
7	GND	108	GND
12	VCC	109	VCC
17	GND	110	VCC
22	GND	113	VCC
23	VCC	118	GND
24	VCC	123	GND
27	VCC	131	SDI, I/O
32	GND	136	VCC
37	GND	141	GND
50	VCC	148	PRA, I/O
55	GND	150	CLKA, I/O
65	GND	151	VCC
66	VCC	152	GND
75	GND	154	CLKB, I/O
80	VCC	156	PRB, I/O
85	SDO	161	GND
98	GND	166	VCC
103	GND	171	DCLK, I/O
106	GND	L L	

Notes:

1. All unlisted pin numbers are user I/Os.

2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

	PG132
Pin Number	A1240A Function
A1	MODE
B5	GND
B6	CLKB, I/O
B7	CLKA, I/O
B8	PRA, I/O
B9	GND
B12	SDI, I/O
C3	DCLK, I/O
C5	GND
C6	PRB, I/O
C7	VCC
C9	GND
D7	VCC
E3	GND
E11	GND
E12	GND
F4	GND
G2	VCC

	PG132
Pin Number	A1240A Function
G3	VCC
G4	VCC
G10	VCC
G11	VCC
G12	VCC
G13	VCC
H13	GND
J2	GND
J3	GND
J11	GND
K7	VCC
K12	GND
L5	GND
L7	VCC
L9	GND
M9	GND
N12	SDO

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG176		PG176	
Pin Number	A1280A Function	Pin Number	A1280A Functio
A9	CLKA, I/O	H3	VCC
B3	DCLK, I/O	H4	GND
B8	CLKB, I/O	H12	GND
B14	SDI, I/O	H13	VCC
C3	MODE	H14	VCC
C8	GND	J4	VCC
C9	PRA, I/O	J12	GND
D4	GND	J13	GND
D5	VCC	J14	VCC
D6	GND	K4	GND
D7	PRB, I/O	K12	GND
D8	VCC	L4	GND
D10	GND	M4	GND
D11	VCC	M5	VCC
D12	GND	M6	GND
E4	GND	M8	GND
E12	GND	M10	GND
F4	VCC	M11	VCC
F12	GND	M12	GND
G4	GND	N8	VCC
G12	VCC	P13	SDO
H2	VCC		

- 1. All unlisted pin numbers are user I/Os.
- 2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.