

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1571-e-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	31										
F8Ch FE3h	_	Unimpleme	nted		-	-					
FE4h	STATUS_ SHAD	—	—	—	-	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uui
FE5h	WREG_ SHAD	Working Re	/orking Register Shadow								uuuu uuu
FE6h	BSR_ SHAD	_	_	Bank Select Register Shadow						x xxxx	u uuui
FE7h	PCLATH_ SHAD	_	Program Co	ounter Latch H	ligh Register	Shadow				-xxx xxxx	นนนน นนนเ
FE8h	FSR0L_ SHAD	Indirect Dat	a Memory Ac	dress 0 Low	Pointer Shade	w				xxxx xxxx	นนนน นนนเ
FE9h	FSR0H_ SHAD	Indirect Dat	a Memory Ac	ddress 0 High	Pointer Shad	ow				xxxx xxxx	uuuu uuu
FEAh	FSR1L_ SHAD	Indirect Dat	a Memory Ac	dress 1 Low	Pointer Shado	w				xxxx xxxx	uuuu uuui
FEBh	FSR1H_ SHAD	Indirect Dat	Indirect Data Memory Address 1 High Pointer Shadow								uuuu uuui
FECh	—	Unimpleme	nted								_
FEDh	STKPTR	—			Current Stac	k Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stac	k Low Byte							xxxx xxxx	นนนน นนนเ

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-10**:

FEFh TOSH Top-of-Stack High Byte _

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1571/2 only. 2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

-xxx xxxx -uuu uuuu

-								
U-0		U-0	R/W-0/0	U-0	U-0	U-0	U-0	U-0
—		—	C1IE	_	—	_	—	—
bit 7								bit 0
Legend:								
R = Read	able bit		W = Writable	bit				
u = Bit is unchanged x = Bit is unknown				U = Unimpler	mented bit, read	as '0'		
'1' = Bit is set '0' = Bit is cleared			-n/n = Value at POR and BOR/Value at all other Resets					
bit 7-6	Un	implemen	ted: Read as ')'				
bit 5	C1	IE: Compa	rator C1 Interru	upt Enable bit				
	1 =	Enables t	he Comparato	r C1 interrupt				
	0 =	Disables	the Comparato	or C1 interrupt				
bit 4-0	bit 4-0 Unimplemented: Read as '0'							
Note:	Bit PEIE	E of the IN	CON register	must be				
	set to e	nable any p	peripheral interi	rupt.				

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Register Definitions: Watchdog Control 9.6

REGISTER 9	-1: WDIC				REGISTER		B 844 6/5
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
				WDTPS<4:0>	•		SWDIEN
Dit /							Dit U
l egend:							
R = Readable	bit	W = Writable	hit				
u = Reduuble	anged	x = Rit is unkr	nown	U = Unimplem	nented bit read	1 as '0'	
'1' = Bit is set		0' = Bit is clear	ared	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0>	Watchdog Ti	mer Period S	elect bits ⁽¹⁾			
	<u>Bit Value = Pr</u>	rescale Rate					
	11111 = Re	served; results	in minimum i	nterval (1:32)			
	•						
	•						
	10011 = Re	served; results	in minimum i	nterval (1:32)			
	10010 = 1 :8	3388608 (2 ²³) (Interval 256s	nominal)			
$10001 = 1:4194304 (2^{22}) (Interval 128s nominal)$							
	$10000 = 1:2097152 (2^{21}) (Interval 64s nominal)$						
	01111 = 1:1	048576 (2 ²⁰) (Interval 32s r	iominal)			
	01110 = 1.3 01101 = 1.2	24200 (2 ¹³) (II 9621 <i>44</i> (2 ¹⁸) (Ir	iterval 105 m	ninal)			
	01101 = 1.2 01100 = 1.1	.02144 (2) (ll 31072 (2 ¹⁷) (lr	iterval 4s nor	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal) (Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)	,			
	01001 = 1:1	6384 (Interval	512 ms nomi	nal)			
	01000 = 1:8	192 (Interval 2	56 ms nomin	al)			
	00111 = 1:4	096 (Interval 1	28 ms nomin	al)			
	00110 = 1:2	048 (Interval 6	4 ms nomina 2 ma nomina	l)			
	00101 = 1.1	024 (Interval 16	ms nominal))			
	000100 = 1:3 00011 = 1:2	256 (Interval 8 r	ns nominal)				
	00010 = 1:1	28 (Interval 4 r	ns nominal)				
	00001 = 1:6	64 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for V	/atchdog Timer	bit		
	If WDTE<1:0	> = 1x:					
	I his bit is ign	ored.					
	It WDTE<1:0	> = 01:					
	$\perp = WDI ISt$	umed off					
	This bit is ign	<u>~ – 00.</u> ored					

See Table 10-1 for erase row size and the number of write latches for Flash program memory.

TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC12(L)F1571	16	16	
PIC12(L)F1572	10	10	

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit, RD, of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

The PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1: FL

FLASH PROGRAM MEMORY READ FLOWCHART

NOTES:

PIC12(L)F1571/2

TABLE 14-2:	SUMM	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR											
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page				
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	118				

----___

Legend: Shaded cells are unused by the temperature indicator module.

15.3 Register Definitions: ADC Control

r										
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
			CHS<4:0>			GO/DONE	ADON			
bit 7							bit 0			
Legend:										
R = Reada	ble bit	W = Writable	bit							
u = Bit is u	nchanged	x = Bit is unkr	iown	U = Unimpler	nented bit, rea	d as '0'				
'1' = Bit is s	set	'0' = Bit is clea	'0' = Bit is cleared -n/n = Value at POR and BOR/Value at							
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-2	CHS<4:0>:	Analog Channel	Select bits							
	00000 = ANO									
	00001 = AN1									
	00010 = AN2									
	00011 = AP	NJ Sorvod: no char		4						
	•			,						
	•									
	•									
	11100 = Re	eserved; no char	nel connected	ł						
	11101 = 101	nperature indica	alog Converte	(2)						
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer 1 output ⁽	3)					
bit 1	GO/DONE:	ADC Conversion	n Status bit							
	1 = ADC co	nversion cycle is	s in progress							
	Setting	this bit starts an .	ADC conversion	on cycle. This b	it is automatica	lly cleared by ha	rdware when			
	the ADO	C conversion ha	s completed.							
	0 = ADC co	nversion comple	eted/not in pro	gress						
bit 0	ADON: ADO	C Enable bit								
	1 = ADC is e	enabled								
	0 = ADC IS (usabled and Cor	isumes no ope	eraung current						
Note 1:	See Section 14.	0 "Temperature	Indicator Mo	dule" for more	e information.					
2:	See Section 16.	0 "5-Bit Digital-	to-Analog Co	onverter (DAC)	Module" for n	nore informatior	۱.			

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

3: See Section 13.0 "Fixed Voltage Reference (FVR)" for more information.

REGISTER 15-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result.

REGISTER 15-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRE | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result.

bit 5-0 **Reserved**: Do not use

REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| — | — | — | — | — | — | ADRE | S<9:8> |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 1-0 **ADRES<9:8>**: ADC Result Register bits Upper two bits of 10-bit conversion result.

REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADRES<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result.

16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to the:

- External VREF+ pin
- VDD supply voltage
- FVR buffered output

The negative input source (VSOURCE-) of the DAC can be connected to the:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

21.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard Non-Return-to-Zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port Idles in the mark state. Each character transmission consists of one Start bit, followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 21-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

21.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 21-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

21.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSELx bit.

Note: The TXIF transmitter interrupt flag is set when the TXEN enable bit is set.

21.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit transmission. The transmission of the Start bit, data bits and Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

21.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit ldle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true ldle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 21.5.1.2 "Clock Polarity"**.

21.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of the TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

PIC12(L)F1571/2

TABLE 26-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		0.5	MHz	External Clock (ECL)	
			DC	—	4	MHz	External Clock (ECM)	
			DC	—	20	MHz	External Clock (ECH)	
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	×	ns	External Clock (EC)	
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc	

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2	—	—	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 prescaler used		
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	—	1024	—	Tosc			
33*	TPWRT	Power-up Timer Period	40	65	140	ms	PWRTE = 0		
34*	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS			
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0		
			2.35	2.45	2.58	V	BORV = 1 (PIC12F1571/2)		
			1.80	1.90	2.05	V	BORV = 1 (PIC12LF1571/2)		
36*	VHYST	Brown-out Reset Hysteresis	0	25	60	mV	$-40^{\circ}C \leq TA \leq +85^{\circ}C$		
37*	TBORDC	Brown-out Reset DC Response Time	1	16	35	μS	$VDD \leq VBOR$		
38	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

FIGURE 26-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

TABLE 26-15: COMPARATOR SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = +25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CM01	VIOFF	Input Offset Voltage	_	±7.5	±60	mV	CxSP = 1, VICM = VDD/2		
CM02	VICM	Input Common-Mode Voltage	0	_	Vdd	V			
CM03	CMRR	Common-Mode Rejection Ration	_	50	_	dB			
CM04A	TRESP ⁽²⁾	Response Time Rising Edge	—	400	800	ns	CxSP = 1		
CM04B]	Response Time Falling Edge	—	200	400	ns	CxSP = 1		
CM04C]	Response Time Rising Edge	_	1200		ns	CxSP = 0		
CM04D		Response Time Falling Edge	_	550	_	ns	CxSP = 0		
CM05*	TMC2OV	Comparator Mode Change to Output Valid	—	—	10	μS			
CM06	CHYSTER	Comparator Hysteresis	—	25	_	mV	CxHYS = 1, CxSP = 1		

* These parameters are characterized but not tested.

Note 1: See Section 27.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Response time measured with one comparator input at VDD/2, while the other input transitions from 2: Vss to VDD.

TABLE 26-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = +25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size		VDD/32		V		
DAC02*	CACC	Absolute Accuracy		—	± 1/2	LSb		
DAC03*	CR	Unit Resistor Value (R)	_	5K	_	Ω		
DAC04*	CST	Settling Time ⁽²⁾	_	—	10	μS		

These parameters are characterized but not tested.

Note 1: See Section 27.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

TABLE 26-17: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions		
US120	TCKH2DTV	V SYNC XMIT (Master and Slave) Clock High to Data-Out Valid		80	ns	$3.0V \le V\text{DD} \le 5.5V$		
				100	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
US121	US121 TCKRF Clock Out Rise Time and Fall Time		—	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
		(Master mode)	—	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$		
US122	TDTRF	Data-Out Rise Time and Fall Time		45	ns	$3.0V \leq V\text{DD} \leq 5.5V$		
				50	ns	$1.8V \le V\text{DD} \le 5.5V$		

FIGURE 26-14: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 26-18: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Param. No.SymbolCharacteristicMin.Max.UnitsConditions								
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-Hold before $CK \downarrow$ (DT hold time)	10		ns				
US126	TCKL2DTL	Data-Hold after CK \downarrow (DT hold time)	15		ns				

29.2 Package Details

The following sections give the technical details of the packages.

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-018D Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E			
Contact Pad Spacing	С	4.40		
Overall Width	Z		5.85	
Contact Pad Width (X8)	X1		0.45	
Contact Pad Length (X8)	Y1			1.45
Distance Between Pads	G1	2.95		
Distance Between Pads	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15