

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1571-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

9189389729477 2019389729487	LENETTER (PRET disabler	νά}
HFINTOSC/ MEEN70000	Oscillator Ge	Delay ⁸⁵ 2-Cyan Sym
LFINTOSC		
IRCF<3:0>	≠ 0 X	= 0
System Clock		
SENERCECT SENERCECT	FINTER INTER SEALING	\$3
HFINTOSC/ MEENSTORIC		
LFINTOSC		
IRCF <3:0>	≠ 0	= 0
System Clock		
USINYOSO I LEINYOSO	FBYTOSC/MFIN7060	Depthements of the sector of t
LEBSTORO 1 LEBNYORC HEINYORC/ BRENTORC/		URBROSC Turre Offentiere WOT in Healing
LEINTORO I LEINTORO HEINTORO MENTORO BROF <3.9>		UNEXOS O Traver Off unieses WOY in Unselfed

r							
U-0	R-0/0	R-0/0	R-0/0	U-0	U-0	U-0	U-0
—	PWM3IF ⁽¹⁾	PWM2IF ⁽¹⁾	PWM1IF ⁽¹⁾	—	—		
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6	PWM3IF: PW	M3 Interrupt F	ag bit ⁽¹⁾				
	1 = Interrupt is	s pending					
	0 = Interrupt i	s not pending					
bit 5	PWM2IF: PW	M2 Interrupt F	ag bit ⁽¹⁾				
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 4	PWM1IF: PW	M1 Interrupt F	ag bit ⁽¹⁾				
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 3-0	Unimplemen	ted: Read as '	כ'				

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

- Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

; ; ;	; This row erase routine assumes the following: ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL ; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)							
		BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON, GIE PMADRL ADDRL, W PMADRL ADDRH, W PMADRH PMCON1, CFGS PMCON1, FREE PMCON1, WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>				
	Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>				
		BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts				

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Progra	am Memory	Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t				
S = Bit can only	be set	x = Bit is unkno	wn	U = Unimpler	nented bit, read	l as '0'	
'1' = Bit is set		'0' = Bit is clear	ed	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	106
PMCON2	Program Memory Control Register 2								107
PMADRL				PMAD	RL<7:0>				105
PMADRH	(1)	(1) PMADRH<6:0>							
PMDATL	PMDATL<7:0>								104
PMDATH	—	_			PMDAT	H<5:0>			104

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory. **Note 1:** Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	_	CLKOUTEN	BORE	N<1:0>	_	40
CONFIGI	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	42
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	12
CONFIGZ	7:0	—	—	—	—	—	—	WRT	<1:0>	43

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR is always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR is disabled in Sleep mode, BOR Fast Start is enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start is enabled.
LDO	All PIC12F1571/2 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

ADC Clock	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs		
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs		
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs		
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs		
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs		
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs		
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs		

TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

17.8 Register Definitions: Comparator Control

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
CxON	CxOUT	CxOE	CxPOL	—	CxSP	CxHYS	CxSYNC	
bit 7				·			bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit					
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'		
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
bit 7	CxON: Comp 1 = Comparat 0 = Comparat	arator Enable t tor is enabled tor is disabled a	bit and consumes	no active pow	er			
bit 6	$6 \qquad CxOUT: Comparator Output bit \frac{If CxPOL = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN} 0 = CxVP > CxVN \frac{If CxPOL = 0 \text{ (non-inverted polarity):}}{1 = CxVP > CxVN}$							
bit 5	CxOE: Comp 1 = CxOUT is	arator Output E s present on the	Enable bit e CxOUT pin; r	requires that the	e associated TF	RISx bit be clea	ared to actually	
	drive the 0 = CxOUT is	pin, not affecte s internal only	d by CxON					
bit 4	CxPOL: Com 1 = Comparat	parator Output tor output is inv	Polarity Select erted	et bit				
bit 3	Unimplemen	ted: Read as ')'					
bit 2	CxSP: Comp	arator Speed/P	ower Select b	it				
	1 = Comparat 0 = Comparat	tor mode is in N tor mode is in L	lormal Power, ow-Power, Lo	Higher Speed w-Speed mode	mode			
bit 1	CxHYS: Com 1 = Compara 0 = Compara	parator Hystere itor hysteresis i itor hysteresis i	esis Enable bi s enabled s disabled	t				
bit 0	CxSYNC: Co 1 = Compara output up 0 = Compara	mparator Outpu itor output to T odated on the fa itor output to Ti	ut Synchronou imer1 and I/C alling edge of mer1 and I/O	is Mode bit) pin is synchro Timer1 clock so pin is asynchro	onous to chang ource nous	ges on Timer1	clock source;	

21.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard Non-Return-to-Zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port Idles in the mark state. Each character transmission consists of one Start bit, followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 21-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

21.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 21-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

21.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSELx bit.

Note: The TXIF transmitter interrupt flag is set when the TXEN enable bit is set.

21.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit transmission. The transmission of the Start bit, data bits and Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

21.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit ldle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true ldle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 21.5.1.2 "Clock Polarity"**.

21.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of the TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN		
bit 7	·						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit						
u = Bit is unch	anged	x = Bit is unk	x = Bit is unknown U = Unimplemented bit, read as '0'						
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit						
	Asynchronous	<u>s mode:</u> d timer everflev	und						
	1 = Auto-bauto	d timer did not	wea overflow						
	Synchronous	mode:							
	Don't care.								
bit 6	RCIDL: Rece	ive Idle Flag bi	it						
	Asynchronou	<u>s mode:</u>							
	1 = Receiver	is idle	ed and the re	ceiver is receiv	ina				
	Synchronous	mode.			ing				
	Don't care.	110000.							
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	SCKP: Synch	nronous Clock	Polarity Selec	t bit					
	Asynchronou	<u>s mode:</u>							
	1 = Transmits	inverted data	to the TX/CK	pin VOK nin					
	0 = 1 ransmits	non-inverted	data to the TX	/CK pin					
	1 = Data is cl	ocked on rising	a edae of the a	clock					
	0 = Data is cl	ocked on fallin	g edge of the	clock					
bit 3	BRG16: 16-B	it Baud Rate	Generator bit						
	1 = 16-bit Ba	ud Rate Gener	rator is used						
	0 = 8-bit Bau	d Rate Genera	ator is used						
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	WUE: Wake-	up Enable bit							
	Asynchronou:	<u>s mode:</u> ; is waiting for a	falling edge:	no character w	vill be received	RCIE bit will be	set WLIE will		
	automati	cally clear after	r RCIF is set						
	0 = Receiver	is operating n	ormally						
	Synchronous	mode:							
hit 0			Enable bit						
bit 0		o-bauu Deleci s mode:							
	1 = Auto-Bau	ud Detect mode	e is enabled (o	clears when au	to-baud is com	olete)			
	0 = Auto-Bau	ud Detect mode	e is disabled						
	Synchronous	mode:							
	Don't care.								

REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER

TABLE 21-3: BAUD RATE FORMULAS

Configuration Bits		Bits		Roud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Kale Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous			
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

Legend: x = Don't care; n = value of SPBRGH/SPBRGL register pair.

TABLE 21-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	186
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	185
SPBRGL	BRG<7:0>								187*
SPBRGH		BRG<15:8>						187*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	184

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

FIGURE 21-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

- 0605 (N.	proprio program program Program program program Program program	NUTURA Kanadari				WAYAYA WAYAYAYA	avanan. Avaan				192
- VALEE BR. <u></u>		, , , , , , , , , , , , , , , , , , ,	:								, , ,
806303 []] (368-]	······ · ·	······································							······ · ·		
80F	; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: 	: '' 	· · · · · · · · · · · · · · · · · · ·	: ; 	,	 Gillillilli	 innin UUUUU		\	ر مان ر
• • • • • •	e Na series de la companya de la compa	• • • • • • • • • • • •	- 1975-0	e. An an Anna an Anna Anna Anna Anna Anna							

FIGURE 21-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	[CC[03]-24] -	azientarian	je dozł	3[02]	xicaica	90%)	40240.	u a se a s			- 24	odecios(X)	niczęcnicki	nice i calerie	3
	nununuj. 28880 - L	ununun. Adda			uaua.		unun.	ununur.	Ξ.			nananad	er Viurunu	nunununu Set Set Sysse	3 806CO
	······		S 6 5					· · · · · · · · · · · · · · · · · · ·				;	ر ۶۰ 	·····	- WOB hay L
		; 	880-3 1 2	8:342; 		.:9886 			s Ž	Ś			•	1	800031 1981 1981
even period and a strand a st		stee ²	880038	34 ्रे	iear Ror	es mi	ared de	<u>(</u>):		Seen Erd	S	i Essociad	en Command	 Siès	neutor și
www.sin 4 the wave-up scala and and and an wave and the state and the solar wave and subject to solar wave and In statistics, this sequence should not depend on the presence of O concest	uso signal	Nie die orip	on white	: 6506.	i tii con	YX.ª	g of the	380 (268-9 26629	eukee Sidé C	Sine, the Sinesore	Sator starmatics Exaptend on the	inas ong osti os incois oc	p sooni ooqu This seques	ii ihe woke o le ski ookee.	3000 St

22.3 Offset Modes

The Offset modes provide the means to adjust the waveform of a slave PWM module relative to the waveform of a master PWM module in the same device.

22.3.1 INDEPENDENT RUN MODE

In Independent Run mode (OFM<1:0> = 00), the PWM module is unaffected by the other PWM modules in the device. The PWMxTMR associated with the PWM module in this mode starts counting as soon as the EN bit associated with this PWM module is set and continues counting until the EN bit is cleared. Period events reset the PWMxTMR to zero, after which, the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 22-8.

22.3.2 SLAVE RUN MODE WITH SYNC START

In Slave Run mode with Sync Start (OFM<1:0> = 01), the slave PWMxTMR waits for the master's OFx_match event. When this event occurs, if the EN bit is set, the PWMxTMR begins counting and continues to count until software clears the EN bit. Slave period events reset the PWMxTMR to zero, after which, the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 22-9.

22.3.3 ONE-SHOT SLAVE MODE WITH SYNC START

In One-Shot Slave mode with Synchronous Start (OFM<1:0> = 10), the slave PWMxTMR waits until the master's OFx_match event. The timer then begins counting, starting from the value that is already in the timer, and continues to count until the period match event. When the period event occurs, the timer resets to zero and stops counting. The timer then waits until the next master OFx_match event, after which, it begins counting again to repeat the cycle. An OFx_match event that occurs before the slave PWM has completed the previously triggered period will be ignored. A slave period that is greater than the master period, but less than twice the master period, will result in a slave output every other master period.

Note: During the time the slave timers are resetting to zero, if another offset match event is received, it is possible that the slave PWM would not recognize this match event and the slave timers would fail to begin counting again. This would result in missing duty cycles from the output of the slave PWM. To prevent this from happening, avoid using the same period for both the master and slave PWMs.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 22-10.

22.3.4 CONTINUOUS RUN SLAVE MODE WITH SYNC START AND TIMER RESET

In Continuous Run Slave mode with Synchronous Start and Timer Reset (OFM<1:0> = 11), the slave PWMxTMR is inhibited from counting after the slave PWM enable is set. The first master OFx match event starts the slave PWMxTMR. Subsequent master OFx match events reset the slave PWMxTMR timer value back to 1, after which, the slave PWMxTMR continues to count. The next master OFx match event resets the slave PWMxTMR back to 1 to repeat the cycle. Slave period events that occur before the master's OFx_match event will reset the slave PWMxTMR to zero, after which, the timer will continue to count. Slaves operating in this mode must have a PWMxPH register pair value equal to or greater than 1; otherwise, the phase match event will not occur precluding the start of the PWM output duty cycle.

The offset timing will persist If both the master and slave PWMxPR values are the same, and the Slave Offset mode is changed to Independent Run mode while the PWM module is operating.

A detailed timing diagram of this mode used in Standard PWM mode is shown in Figure 22-11.

Note:	Unexpected results will occur if the slave
	PWM_clock is a higher frequency than the
	master PWM_clock.

22.3.5 OFFSET MATCH IN CENTER-ALIGNED MODE

When a master is operating in Center-Aligned mode, the offset match event depends on which direction the PWMxTMR is counting. Clearing the OFO bit of the PWMxOFCON register will cause the OFx_match event to occur when the timer is counting up. Setting the OFO bit of the PWMxOFCON register will cause the OFx_match event to occur when the timer is counting down. The OFO bit is ignored in non-Center-Aligned modes.

The OFO bit is double-buffered and requires setting the LDA bit to take effect when the PWM module is operating.

Detailed timing diagrams of Center-Aligned mode using offset match control in Independent Slave with Sync Start mode can be seen in Figure 22-12 and Figure 22-13.

TABLE 22-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PWM
--------------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRC	F<3:0>		_	SCS	<1:0>	55
PIE3	_	PWM3IE	PWM2IE	PWM1IE	—	—	—	—	77
PIR3	_	PWM3IF	PWM2IF	PWM1IF	—	—	—	—	80
PWMEN	—	_	_	_	_	PWM3EN_A	PWM2EN_A	PWM1EN_A	227
PWMLD	_	_	_	_	—	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	227
PWMOUT	_	_	_	_	_	PWM3OUT_A	PWM2OUT_A	PWM10UT_A	227
PWM1PHL		•		P	PH<7:0>		•	•	222
PWM1PHH				PI	H<15:8>				222
PWM1DCL				D)C<7:0>				223
PWM1DCH				D	C<15:8>				223
PWM1PRH				P	PR<7:0>				224
PWM1PRL				PI	R<15:8>				224
PWM10FH				C)F<7:0>				225
PWM10FL				0	F<15:8>				225
PWM1TMRH				T	/IR<7:0>				226
PWM1TMRL				ΤM	1R<15:8>				226
PWM1CON	EN	OE	OUT	POL	MODE	E<1:0>	_	_	216
PWM1INTE	_	_	_	_	OFIE	PHIE	DCIE	PRIE	217
PWM1INTF	_	_	_	_	OFIF	PHIF	DCIF	PRIF	218
PWM1CLKCON	_		PS<2:0>		_	_	CS<	<1:0>	219
PWM1LDCON	LDA	LDT	_	_	_	_	LDS<1:0>		220
PWM10FCON	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	221
PWM2PHL				P	PH<7:0>				222
PWM2PHH				PI	H<15:8>				222
PWM2DCL				D)C<7:0>				223
PWM2DCH				D	C<15:8>				223
PWM2PRL				P	PR<7:0>				224
PWM2PRH				PI	R<15:8>				224
PWM2OFL				C)F<7:0>				225
PWM2OFH				0	F<15:8>				225
PWM2TMRL				TN	/IR<7:0>				226
PWM2TMRH				TN	1R<15:8>				226
PWM2CON	EN	OE	OUT	POL	MODE	=<1:0>		_	216
PWM2INTE	—	_	—	_	OFIE	PHIE	DCIE	PRIE	217
PWM2INTF	—	_	_	_	OFIF	PHIF	DCIF	PRIF	218
PWM2CLKCON	—		PS<2:0>		_	_	CS<	<1:0>	219
PWM2LDCON	LDA	LDT	—	_	_	_	LDS	<1:0>	220
PWM2OFCON	_	OFM	<1:0>	OFO	_	_	OFS	<1:0>	221
PWM3PHL		•		P	PH<7:0>		•		222
PWM3PHH				PI	H<15:8>				222
PWM3DCL				D)C<7:0>				223
PWM3DCH				D	C<15:8>				223
PWM3PRL				P	PR<7:0>				224
PWM3PRH				PI	R<15:8>				224
PWM3OFL				C)F<7:0>				225
PWM30FH				0	F<15:8>				225
PWM3TMRL				TI	/IR<7:0>				226
PWM3TMRH				TM	1R<15:8>				226
PWM3CON	EN	OE	OUT	POL	MODE	E<1:0>	_	_	216

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the PWM.

REGISTER 23-2: CWGxCON1: CWGx CONTROL REGISTER 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-0/0	R/W-0/0	R/W-0/0
GxASDI	_B<1:0>	GxASDI	_A<1:0>	—		GxIS<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6	GxASDLB<1:0>: CWGx Shutdown State for CWGxB bits
	When an Auto-Shutdown Event is Present (GxASE = 1):
	11 = CWGxB pin is driven to '1', regardless of the setting of the GxPOLB bit
	10 = CWGxB pin is driven to '0', regardless of the setting of the GxPOLB bit
	01 = CWGxB pin is tri-stated
	00 = CWGxB pin is driven to its inactive state after the selected dead-band interval; GxPOLB will still control the polarity of the output
bit 5-4	GxASDLA<1:0>: CWGx Shutdown State for CWGxA bits
	When an Auto-Shutdown Event is Present (GxASE = 1):
	11 = CWGxA pin is driven to '1', regardless of the setting of the GxPOLA bit
	10 = CWGxA pin is driven to '0', regardless of the setting of the GxPOLA bit
	01 = CWGxA pin is tri-stated
	00 = CWGxA pin is driven to its inactive state after the selected dead-band interval; GxPOLA will still control the polarity of the output
bit 3	Unimplemented: Read as '0'
bit 2-0	GxIS<2:0>: CWGx Input Source Select bits
	111 = Reserved
	110 = Reserved
	101 = Reserved
	100 = PWM3 – PWM3_out
	0.11 - D(1/M) = D(1/M) = 0.000

- 011 = PWM2 PWM2_out 010 = PWM1 - PWM1_out
- 001 = Reserved
- 000 = Comparator C1 C1OUT_async

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	$(f < 7 >) \rightarrow C$ $(f < 6:0 >) \rightarrow dest < 7:1 >$ $0 \rightarrow dest < 0 >$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ← 0

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$\begin{array}{l} 0 \rightarrow \text{dest<7>} \\ (\text{f<7:1>}) \rightarrow \text{dest<6:0>}, \\ (\text{f<0>}) \rightarrow \text{C}, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 → register f → C

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

26.0 ELECTRICAL SPECIFICATIONS

26.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +125°C	С
Storage temperature	С
Voltage on pins with respect to Vss:	
on Vod pin	
PIC12F1571/20.3V to +6.5V	V
PIC12LF1571/20.3V to +4.0V	V
on MCLR pin	V
on all other pins0.3V to (VDD + 0.3V	')
Maximum current:	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \le T_A \le +85^{\circ}C$	A
+85°C \leq TA \leq +125°C	A
on Vod pin ⁽¹⁾	
$-40^{\circ}C \le T_A \le +85^{\circ}C$	A
+85°C \leq TA \leq +125°C	A
Sunk by any standard I/O pin	A
Sourced by any standard I/O pin	A
Clamp current, Ік (VPIN < 0 or VPIN > VDD)±20 m/	A
Total power dissipation ⁽²⁾	۷

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 26-6: "Thermal Characteristics" to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 26-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
I/O Ports:										
D030		with TTL Buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D030A			—	_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D031		with Schmitt Trigger Buffer	—	_	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C Levels	—	_	0.3 Vdd	V				
		with SMbus Levels	—	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D032		MCLR	—	_	0.2 Vdd	V				
	VIH	Input High Voltage								
		I/O Ports:								
D040		with TTL Buffer	2.0		_	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger Buffer	0.8 Vdd		_	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C Levels	0.7 Vdd		_	V				
		with SMbus Levels	2.1	_	—	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D042		MCLR	0.8 Vdd	_	_	V				
	lı∟	Input Leakage Current ⁽¹⁾								
D060		I/O Ports	—	± 5	± 125	nA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD},\\ &\text{Pin at high-impedance, +85°C} \end{split}$			
			—	± 5	± 1000	nA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD},\\ &\text{Pin at high-impedance, } +125^\circ\text{C} \end{split}$			
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD},\\ &\text{Pin at high-impedance, +85°C} \end{split}$			
	IPUR	Weak Pull-up Current								
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS			
			25	140	300	μA	VDD = 5.0V, VPIN = VSS			
	Vol	Output Low Voltage								
D080		I/O Ports	—	—	0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V			
	Voн	Output High Voltage								
D090		I/O Ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V			
Capacitive Loading Specifications on Output Pins										
D101A*	CIO	All I/O Pins		_	50	pF				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

FIGURE 26-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

