

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1571t-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC12(L)F1571/2

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

FIGURE 3-7: ACCESSING THE STACK EXAMPLE 3

5.2.2.7 32 MHz Internal Oscillator Frequency Selection

The internal oscillator block can be used with the 4x PLL associated with the external oscillator block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSCx bits in the Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCSx bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in the Configuration Words (SCS<1:0> = 00).
- The IRCFx bits in the OSCCON register must be set to the 8 MHz HFINTOSC to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCSx bits of the OSCCON register are set to '1x'. The SCSx bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.8 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 26.0 "Electrical Specifications"**.

5.5 Register Definitions: Oscillator Control

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>		—	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
bit 7	SPLLEN: So <u>If PLLEN in C</u> SPLLEN bit i <u>If PLLEN in C</u> 1 = 4x PLL I 0 = 4x PLL i	ftware PLL Ena Configuration W s ignored. 4x P Configuration W s enabled s disabled	able bit /ords = 1: 'LL is always e /ords = 0:	enabled (subjec	t to oscillator re	equirements).	
bit 6-3	IRCF<3:0>: 1111 = 16 M 1110 = 8 MH 1101 = 4 MH 1100 = 2 MH 1011 = 1 MH 1010 = 500 H 1001 = 250 H 1000 = 125 H 0111 = 500 H 0110 = 250 H 0110 = 250 H 0110 = 250 H 0101 = 125 H 0100 = 62.5 0011 = 31.25 0010 = 31.25 000x = 31 kH	Internal Oscilla Hz HF Iz or 32 MHz H Iz HF Iz HF (Hz HF ⁽¹⁾ (Hz HF ⁽¹⁾ (Hz HF ⁽¹⁾ (Hz MF (defaul (Hz MF (Hz MF kHz MF 5 kHz MF 5 kHz MF 1z LF	tor Frequency F (see Sectio t upon Reset)	Select bits n 5.2.2.1 "HFIN	ITOSC")		
bit 2	Unimplemer	nted: Read as '	0'				
bit 1-0	SCS<1:0>: S 1x = Interna 01 = Timer1 00 = Clock o	System Clock S I oscillator bloc oscillator determined by I	elect bits k FOSC<1:0> in	Configuration V	Words		

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

Note 1: Duplicate frequency derived from HFINTOSC.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 26.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in the Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTEx bits of the Configuration Words are set to '11', the WDT is always on. WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTEx bits of the Configuration Words are set to '10', the WDT is on, except in Sleep. WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTEx bits of the Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

TABLE 9-1: WE	T OPERATING MODES
---------------	-------------------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10	37	Awake	Active
10	Å	Sleep	Disabled
01	1	Х	Active
UT	0	Х	Disabled
00	Х	Х	Disabled

9.3 Time-out Period

The WDTPS<4:0> bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- · Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fails
- WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "**Oscillator Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section 3.0 "Memory Organization"** for more information.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP Cleared until the end of C			
Change INTOSC divider (IRCF<3:0> bits)	Unaffected		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>				SCS<1:0>		55
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	66
STATUS	—	_	_	TO	PD	Z	DC	С	19
WDTCON	—	—		WDTPS<4:0> SWDTEN					89

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	—	—	—	CLKOUTEN	BOREI	N<1:0>	—	42
	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Watchdog Timer.

ADC Clock	Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs		
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs		
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs		
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs		
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs		
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs		
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs		

TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

15.3 Register Definitions: ADC Control

r							
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit				
u = Bit is u	nchanged	x = Bit is unkr	iown	U = Unimpler	nented bit, rea	d as '0'	
'1' = Bit is s	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>:	Analog Channel	Select bits				
	00000 = AN	10					
	00001 = AN	11					
	00010 = AN	12					
	00011 = AP	NJ Sorvod: no char		4			
	•			,			
	•						
	•						
	11100 = Re	eserved; no char	nel connected	ł			
	11101 = 101	nperature indica	alog Converte	(2)			
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer 1 output ⁽	3)		
bit 1	GO/DONE:	ADC Conversion	n Status bit				
	1 = ADC co	nversion cycle is	s in progress				
	Setting	this bit starts an .	ADC conversion	on cycle. This b	it is automatica	lly cleared by ha	rdware when
	the ADO	C conversion ha	s completed.				
	0 = ADC co	nversion comple	eted/not in pro	gress			
bit 0	ADON: ADO	C Enable bit					
	1 = ADC is e	enabled					
	0 = ADC IS (usabled and Cor	isumes no ope	eraung current			
Note 1:	See Section 14.	0 "Temperature	Indicator Mo	dule" for more	e information.		
2:	See Section 16.	0 "5-Bit Digital-	to-Analog Co	onverter (DAC)	Module" for n	nore informatior	۱.

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

3: See Section 13.0 "Fixed Voltage Reference (FVR)" for more information.

16.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACxCON1 register.

The DAC output voltage can be determined by using Equation 16-1.

16.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 26-16.

16.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

EQUATION 16-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

$$DACx_output = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE-$$

Note: See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.

Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DACxOUTn) is not intended to drive an external load.

16.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

16.5 Effects of a Reset

A device Reset affects the following:

- DACx is disabled.
- DACx output voltage is removed from the DACxOUTn pin(s).
- The DACR<4:0> range select bits are cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	186
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	_	_	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	_	_	TMR2IF	TMR1IF	78
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	185*
SPBRGL				BRG	<7:0>				187*
SPBRGH	BRG<15:8>								
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	184

 TABLE 21-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

Note 1: PIC12(L)F1572 only.

REGISTER 22-13: PWMxOFH: PWMx OFFSET COUNT
--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			OF<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all	other Resets

bit 7-0 OF<15:8>: PWMx Offset High bits Upper eight bits of PWM offset count.

REGISTER 22-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | OF< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 OF<7:0>: PWMx Offset Low bits Lower eight bits of PWM offset count.

FIGURE 26-2: VOLTAGE FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C, PIC12LF1571/2 ONLY

26.3 DC Characteristics

TABLE 26-1: SUPPLY VOLTAGE

PIC12LF	1571/2		Standard Operating Conditions (unless otherwise stated)					
PIC12F1571/2								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
			1.5		—	V	Device in Sleep mode	
D002*			1.7		—	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage ⁽²⁾						
			—	1.6	—	V		
D002A*				1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾		-				
			—	0.8	—	V		
D002B*				1.5	_	V		
D003	VFVR	Fixed Voltage Reference Voltage	—	1.024	—	V	$-40^\circ C \le T A \le +85^\circ C$	
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-4	_	+4	%	$\begin{array}{l} 1x \mbox{ VFVR, ADFVR = 01, VDD } \ge 2.5V \\ 2x \mbox{ VFVR, ADFVR = 10, VDD } \ge 2.5V \\ 4x \mbox{ VFVR, ADFVR = 11, VDD } \ge 4.75V \end{array}$	
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator	-4	_	+4	%	$ \begin{array}{l} 1x \; VFVR, \; \overline{CDAFVR} = \; \texttt{01}, \; VDD \geq 2.5V \\ 2x \; VFVR, \; \overline{CDAFVR} = \; \texttt{10}, \; VDD \geq 2.5V \\ 4x \; VFVR, \; \overline{CDAFVR} = \; \texttt{11}, \; VDD \geq 4.75V \\ \end{array} $	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	_	V/ms	Ensures that the Power-on Reset signal is released properly	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 26-3, POR and POR Rearm with Slow Rising VDD.

3: PLL required for 32 MHz operation.

TABLE 26-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C (Note 2)
OS09	LFosc	Internal LFINTOSC Frequency	_		31	I	kHz	
OS10*	Twarm	HFINTOSC Wake-up from Sleep Start-up Time	_		5	15	μS	
		LFINTOSC Wake-up from Sleep Start-up Time	_		0.5		ms	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

2: See Figure 26-6: "HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

TABLE 26-9:PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

Param No.	Sym.	Characteristic		Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4		8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	_	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	-	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 26-14: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based		
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = x11 (ADC FRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—	11	_	Tad	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time		5.0		μS			
AD133*	THCD	Holding Capacitor Disconnect Time		1/2 TAD 1/2 TAD + 1TCY	_		Fosc-based, ADCS<2:0> = $x11$ (ADC FRC mode)		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 27-4: IDD, EC OSCILLATOR, LOW-POWER MODE, Fosc = 500 kHz, PIC12F1571/2 ONLY

FIGURE 27-36: IPD, PWM, HFINTOSC MODE (16 MHz), PIC12LF1571/2 ONLY

FIGURE 27-37: IPD, PWM, HFINTOSC MODE (16 MHz), PIC12F1571/2 ONLY

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-254A Sheet 1 of 2