

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f1572-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

FIGURE 2-1:	CORE BLOCK DIAGRAM

- Automatic Interrupt Context Saving
- 16-Level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

TABLE 3-4: PIC12(L)F1572 MEMORY MAP, BANK 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	_	08Dh	_	10Dh	_	18Dh		20Dh	_	28Dh	_	30Dh	_	38Dh	
00Eh	_	08Eh	_	10Eh	_	18Eh	_	20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	_	08Fh	_	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	_	090h		110h		190h	_	210h	—	290h		310h	_	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	-	311h	-	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h		312h	-	392h	IOCAN
013h	PIR3	093h	PIE3	113h	_	193h	PMDATL	213h	_	293h	_	313h	_	393h	IOCAF
014h		094h		114h		194h	PMDATH	214h		294h		314h		394h	_
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h		295h		315h		395h	_
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h		296h		316h		396h	_
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h		317h		397h	_
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h		218h	_	298h		318h		398h	_
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RCREG	219h	_	299h	_	319h		399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	_	29Ah	_	31Ah	_	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRG	21Bh	—	29Bh	_	31Bh	_	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	_	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	_	29Dh		31Dh	_	39Dh	_
01Eh	_	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh	_	39Eh	_
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh		29Fh		31Fh	_	39Fh	_
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses 70h-7Fh	175-	Accesses 70h-7Fh	1000	Accesses 70h-7Fh	075-	Accesses 70h-7Fh	2554	Accesses 70h-7Fh	07 5 5	Accesses 70h-7Fh	255k	Accesses 70h-7Fh
07Fh		UFFN		17-0		IFFU		21-0		ZEEN		31-1		3FFN	

Legend:
= Unimplemented data memory locations, read as '0'.
Note 1: PIC12F1572 only.

TABLE 3-6: PIC12(L)F1571/2 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30	BANK 30		
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)	
C0Bh	. ,	C8Bh	. , ,	D0Bh	. , ,	D8Bh	. ,	E0Bh	. ,	E8Bh	. ,	F0Bh	. ,	F8Bh	. ,	
C0Ch	-	C8Ch	—	D0Ch	—	D8Ch		E0Ch	—	E8Ch	_	F0Ch	—	F8Ch		
C0Dh	-	C8Dh	—	D0Dh	—			E0Dh	—	E8Dh	_	F0Dh	—			
C0Eh	_	C8Eh		D0Eh				E0Eh		E8Eh		F0Eh	—			
C0Fh	_	C8Fh		D0Fh				E0Fh		E8Fh		F0Fh	_			
C10h	_	C90h		D10h				E10h		E90h		F10h	_			
C11h	_	C91h		D11h				E11h		E91h		F11h	—			
C12h	-	C92h	—	D12h	—			E12h	—	E92h	—	F12h	—			
C13h	-	C93h	—	D13h	—			E13h	—	E93h	—	F13h	—			
C14h	_	C94h		D14h				E14h		E94h		F14h	—			
C15h	-	C95h	—	D15h	—			E15h	—	E95h	—	F15h	—			
C16h	-	C96h	—	D16h	—			E16h	—	E96h	_	F16h	—			
C17h	_	C97h		D17h			0	E17h		E97h		F17h	—		0	
C18h	_	C98h		D18h			See Table 3-7 for Register Mapping	E18h		E98h		F18h	_		See Table 3-7 for Register Mapping	
C19h	-	C99h	—	D19h	—		Details	E19h	—	E99h	_	F19h	—		Details	
C1Ah	_	C9Ah	—	D1Ah	—			E1Ah	—	E9Ah	_	F1Ah	—			
C1Bh	-	C9Bh	—	D1Bh	—			E1Bh	—	E9Bh	_	F1Bh	—			
C1Ch	-	C9Ch	—	D1Ch	—			E1Ch	—	E9Ch	_	F1Ch	—			
C1Dh	_	C9Dh		D1Dh				E1Dh		E9Dh		F1Dh	—			
C1Eh	_	C9Eh		D1Eh				E1Eh		E9Eh		F1Eh	_			
C1Fh	_	C9Fh		D1Fh				E1Fh		E9Fh		F1Fh	_			
C20h		CA0h		D20h				E20h		EA0h		F20h				
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'				Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'			
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh		
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h		
CFFh	Accesses 70h-7Fh	CEEh	Accesses 70h-7Fh	D7Fh	Accesses 70h-7Fh	DEEh	Accesses 70h-7Fh	E7Fh	Accesses 70h-7Fh	FFFh	Accesses 70h-7Fh	F7Fh	Accesses 70h-7Fh	FFFh	Accesses 70h-7Fh	

Legend: 🔲 = Unimplemented data memory locations, read as '0'.

4.7 Register Definitions: Device ID

		R	R	R	R	R	R
				DEV<	13:8>		
		bit 13					bit 8
			_	_	_	_	
R	R	R	R	R	R	R	R
			DEV<	<7:0>			
bit 7							bit 0

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

Legend:

R = Readable bit			
'0' = Bit is cleared	'1' = Bit is set	x = Bit is unknown	

bit 13-0 **DEV<13:0>:** Device ID bits

Refer to Table 4-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.

Note 1: This location cannot be written.

REGISTER 4-4: REVISIONID: REVISION ID REGISTER⁽¹⁾

		R	R	R	R	R	R				
			REV<13:8>								
		bit 13					bit 8				
R	R	R	R	R	R	R	R				
REV<7:0>											
bit 7							bit 0				

Logondi	
Leuenu.	

R = Readable bit	
'0' = Bit is cleared	'1' = Bit is set

x = Bit is unknown

bit 13-0 **REV<13:0>:** Revision ID bits

These bits are used to identify the device revision.

Note 1: This location cannot be written.

TABLE 4-1: DEVICE ID VALUES

DEVICE	Device ID	Revision ID
PIC12F1571	3051h	2xxxh
PIC12LF1571	3053h	2xxxh
PIC12F1572	3050h	2xxxh
PIC12LF1572	3052h	2xxxh

^{© 2013-2015} Microchip Technology Inc.

NOTES:

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the interrupt enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector, 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	—	—	—	ANSA4		ANSA<2:0>			114	
APFCON	RXDTSEL	CWGASEL	CWGBSEL	_	T1GSEL	TXCKSEL	P2SEL	P1SEL	110	
INLVLA	—	—		INLVLA<5:0>						
LATA	—	—	LATA<	:5:4>	_		LATA<2:0>			
ODCONA	—	—	ODA<	5:4>			115			
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		157	
PORTA	_	_			RA<	<5:0>			113	
SLRCONA	_	_	SLRA	<5:4>	_	:	SLRA<2:0>		116	
TRISA	_	_	TRISA	<5:4>	(1)	TRISA<2:0>			113	
WPUA	_	_			WPU	A<5:0>			115	

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

Note 1: Unimplemented, read as '1'.

TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	_	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	F	=OSC<2:0	>	42

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set, and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

15.3 Register Definitions: ADC Control

r									
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			CHS<4:0>			GO/DONE	ADON		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit						
u = Bit is u	nchanged	x = Bit is unkr	iown	U = Unimpler	nented bit, rea	d as '0'			
'1' = Bit is s	set	'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all c	ther Resets		
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-2	CHS<4:0>:	Analog Channel	Select bits						
	00000 = AN	10							
	00001 = AN	11							
	00010 = AN	12							
	00011 = AP	NJ Sorvod: no char		4					
	•			,					
	•								
	•								
	11100 = Re	eserved; no char	nel connected	ł					
	11101 = 101	nperature indica	alog Converte	(2)					
	11111 = FV	R (Fixed Voltag	e Reference)	Buffer 1 output ⁽	3)				
bit 1	GO/DONE:	ADC Conversion	n Status bit						
	1 = ADC co	nversion cycle is	s in progress						
	Setting	this bit starts an .	ADC conversion	on cycle. This b	it is automatica	lly cleared by ha	rdware when		
	the ADO	the ADC conversion has completed.							
	0 = ADC co	nversion comple	eted/not in pro	gress					
bit 0	ADON: ADO	C Enable bit							
	1 = ADC is e	enabled							
	0 = ADC IS (usabled and Cor	isumes no ope	eraung current					
Note 1:	See Section 14.	0 "Temperature	Indicator Mo	dule" for more	e information.				
2:	See Section 16.	0 "5-Bit Digital-	to-Analog Co	onverter (DAC)	Module" for n	nore informatior	۱.		

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

3: See Section 13.0 "Fixed Voltage Reference (FVR)" for more information.

REGISTER 15-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit				
u = Bit is unch	anged	x = Bit is unkn	own	U = Unimpler	mented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ired	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
bit 7	ADFM: ADC	Result Format S	Select bit				
	1 = Right jus 0 = Left justif	tified; six Most Si fied; six Least Sig	ignificant bits c gnificant bits of	of ADRESH are ADRESL are s	set to '0' when t et to '0' when th	the conversion re ne conversion re	esult is loaded sult is loaded
bit 6-4	ADCS<2:0>:	ADC Conversion	on Clock Sele	ct bits			
	000 = Fosc/	/2					
	001 = Fosc/	/8					
	$0 \perp 0 = FOSC/$	32 (clock supplied f	rom an intern	al PC oscillator	·)		
	100 = FRC)		
	101 = Fosc/	/16					
	110 = Fosc/	/64					
	111 = FRC (clock supplied f	rom an interna	al RC oscillator	.)		
bit 3-2	Unimplemer	nted: Read as '0)'				
bit 1-0	ADPREF<1:	0>: ADC Positiv	e Voltage Ref	erence Configu	uration bits		
	00 = VRPOS	is connected to	Vdd				
	01 = Reserv	ed		(1)			
	10 = VRPOS	is connected to	external VREF	+ pin'''			
	II - VRPUS	is connected to	Internal Fixed	vollage Relefe			

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 26.0 "Electrical Specifications"** for details.

16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to the:

- External VREF+ pin
- VDD supply voltage
- FVR buffered output

The negative input source (VSOURCE-) of the DAC can be connected to the:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACxOUT1 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

16.6 Register Definitions: DAC Control

REGISTER 16-1: DACxCON0: DACx VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0
DACEN	—	DACOE	_	DACPS	SS<1:0>	_	—
bit 7							bit 0
[
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is uncha	anged	x = Bit is unkn	iown	U = Unimplen	nented bit, read	as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
bit 7	DACEN: DAC	Enable bit					
	1 = DACx is e	enabled					
	0 = DACx is c	disabled					
bit 6	Unimplemen	ted: Read as 'd)'				
bit 5	DACOE: DAC	C Voltage Outpu	ut Enable bit				
	1 = DACx vol	Itage level is ou	Itput on the D	ACxOUT1 pin			
	0 = DACx vol	Itage level is di	sconnected fr	om the DACxC)UT1 pin		
bit 4	Unimplemen	ted: Read as ')'				
bit 3-2	DACPSS<1:0	>: DAC Positiv	e Source Sel	ect bits			
	11 = Reserve	ed					
	10 = FVR_buffer2						
	01 = VREF+ p	bin					
bit 1-0	Unimplemen	ted: Read as ')′				

REGISTER 16-2: DACxCON1: DACx VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
DACxCON0	DACEN		DACOE		DACPS	S<1:0>		_	145
DACxCON1	_	_	_	DACR<4:0>				145	

Legend: — = Unimplemented location, read as '0'.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0		
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN		
bit 7	·						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit						
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, reac	l as '0'			
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit						
	Asynchronous	<u>s mode:</u> d timer everflev	und						
	1 = Auto-bauto	d timer did not	wea overflow						
	Synchronous	mode:							
	Don't care.								
bit 6	RCIDL: Rece	ive Idle Flag bi	it						
	Asynchronou	<u>s mode:</u>							
	1 = Receiver	is idle	ed and the re	ceiver is receiv	ina				
	Synchronous	mode.			ing				
	Don't care.	110000.							
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	SCKP: Synch	nronous Clock	Polarity Selec	t bit					
	Asynchronou	<u>s mode:</u>							
	1 = Transmits	inverted data	to the TX/CK	pin VOK nin					
	0 = 1 ransmits	non-inverted	data to the TX	/CK pin					
	1 = Data is cl	ocked on rising	<u>mode:</u> acked on rising edge of the clock						
	0 = Data is cl	ocked on fallin	g edge of the	clock					
bit 3	BRG16: 16-B	it Baud Rate	Generator bit						
	1 = 16-bit Ba	ud Rate Gener	rator is used						
	0 = 8-bit Bau	d Rate Genera	ator is used						
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	WUE: Wake-	up Enable bit							
	Asynchronou:	<u>s mode:</u> ; is waiting for a	falling edge:	no character w	vill be received	RCIE bit will be	set WLIE will		
	automati	cally clear after	r RCIF is set						
	0 = Receiver	is operating n	ormally						
	Synchronous	mode:							
hit 0			Enable bit						
bit 0		o-bauu Deleci s mode:							
	1 = Auto-Bau	ud Detect mode	e is enabled (o	clears when au	to-baud is com	olete)			
	0 = Auto-Bau	ud Detect mode	e is disabled						
	Synchronous	mode:							
	Don't care.								

REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER

21.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U"), which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges, including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 21-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 21-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH/SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register, the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits, as shown in Table 21-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Detection will occur on the byte <u>following</u> the Break character (see Section 21.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - **3:** During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 21-6.	BRG COUNTER	CLOCK RATES
IADLL ZI-0.	DIG COUNTER	CLOCK NAILS

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, the SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 21-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	<u>χ</u> 0000h			<u> </u>	<u>X X X X X</u>	X X	001Ch
RX Pin		Sta	Fedge #1	Edge #2	Edge #3	Edge #4	7 5	Edge #5 Stop bit
BRG Clock	DININNINIINIINIINIINIINII		ហុំហហហ	www	mmm	www	(um	; #NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ABDEN bit	Set by User —		1 1 1 1				<u>`</u>	— Auto Cleared
RCIDL			I I					1 1
RCIF bit (Interrupt)		·						: : /
Read RCREG		 	1 1 1				\sum	
SPBRGL		 	XXh					1Ch
SPBRGH		•	XXh				X	00h

21.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character, the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two-character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,
	the corresponding ANSELx bit must be
	cleared for the receiver to function.

21.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSELx bit must be cleared.

21.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens, the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear, then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set, then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

21.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift 9 bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

21.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SPBRGH/SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSELx bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 4. Ensure bits, CREN and SREN, are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register, and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit, RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit, RCIF, will be set when reception of a character is complete. An interrupt will be generated if the enable bit, RCIE, was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

FIGURE 22-11: CONTINUOUS SLAVE RUN MODE WITH IMMEDIATE RESET AND SYNC START TIMING DIAGRAM

PIC12(L)F1571/2

FIGURE 27-21: IPD BASE, LOW-POWER SLEEP MODE, PIC12LF1571/2 ONLY

FIGURE 27-22: IPD BASE, LOW-POWER SLEEP MODE, PIC12F1571/2 ONLY

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (10/2013)

Original release of this document.

Revision B (2/2014)

Updated PIC12(L)F1571/2 Family Types table Program Memory Flash heading (*words* to *K words*).

Revision C (8/2014)

Updated PWM chapter. Changed to Final data sheet. Updated IDD and IPD parameters in the Electrical Specification chapter. Added Characterization Graphs.

Added Section 1.1: Register and Bit Naming Conventions.

Updated Figures 5-3 and 15-5. Updated Tables 3-1, 3-7, and 3-10. Updated Section 15.2.5. Updated Equation 15-1.

Revision D (8/2015)

Updated Clocking Structure, Memory, Low-Power Features, Family Types table and Pin Diagram Table on cover pages.

Added Sections 3.2: High-Endurance Flash and 5.4: Clock Switching Before Sleep. Added Table 29-2 and 8-pin UDFN packaging.

Updated Examples 3-2 and 15-1.

Updated Figures 8-1, 21-1, 22-8 through 22-13 and 23-1.

Updated Registers 7-5, 8-1, 22-6 and 23-3.

Updated Sections 8.2.2, 15.2.6, 16.0, 21.0, 21.4.2, 22.3.3, 23.9.1.2, 23.11.1, 26.1 and 29.1.

Updated Tables 1, 3-3, 3-4, 3-10, 5-1, 16-1, 17-3, 22-2, 23-2, 26-6, 26-8 and 29-1.