

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-UDFN Exposed Pad
Supplier Device Package	8-UDFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1571-e-rf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

3.3.2 SPECIAL FUNCTION REGISTER

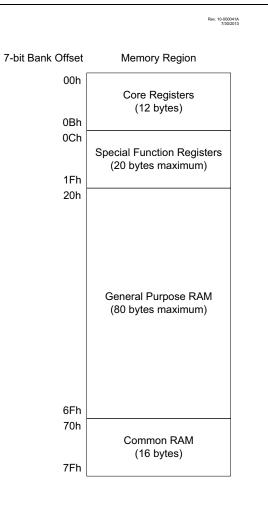
The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses: x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses: x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2 "Linear Data Memory"** for more information.


3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

3.3.5 DEVICE MEMORY MAPS

The memory maps for PIC12(L)F1571/2 are as shown in Table 3-3 through Table 3-8.

FIGURE 3-3: BANKED MEMORY PARTITIONING

TABLE 3-6: PIC12(L)F1571/2 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31				
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)				
C0Bh	(/	C8Bh	(,	D0Bh	(/	D8Bh	(/	E0Bh	(/	E8Bh	(/	F0Bh	(/	F8Bh	(/				
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch		E0Ch	—	E8Ch	—	F0Ch	—	F8Ch					
C0Dh	_	C8Dh	_	D0Dh	_			E0Dh	—	E8Dh	—	F0Dh	—						
C0Eh	_	C8Eh	_	D0Eh	_			E0Eh	_	E8Eh	_	F0Eh	_						
C0Fh		C8Fh	_	D0Fh	_			E0Fh		E8Fh		F0Fh							
C10h	_	C90h	_	D10h	_			E10h	—	E90h	—	F10h	—						
C11h	_	C91h	_	D11h	_			E11h	—	E91h	—	F11h	—						
C12h	_	C92h	_	D12h	_			E12h	—	E92h	—	F12h	—						
C13h	_	C93h	_	D13h	_			E13h	—	E93h	—	F13h	—						
C14h	_	C94h	_	D14h	—			E14h	_	E94h		F14h	_						
C15h	-	C95h	-	D15h				E15h	—	E95h	—	F15h	—						
C16h	_	C96h	_	D16h	_			E16h	—	E96h	—	F16h	—						
C17h	_	C97h	_	D17h	—		See Table 3-7 for Register Mapping			See Table 3-7 for Register Mapping	0	E17h	_	E97h		F17h	_		0
C18h		C98h	_	D18h	_						E18h		E98h		F18h		1	See Table 3-7 for Register Mapping	
C19h	_	C99h	_	D19h	_		Details	E19h	—	E99h	—	F19h	—		Details				
C1Ah	_	C9Ah	_	D1Ah	—			E1Ah	_	E9Ah		F1Ah	_						
C1Bh	-	C9Bh	-	D1Bh				E1Bh	—	E9Bh	—	F1Bh	—						
C1Ch	_	C9Ch	_	D1Ch	_			E1Ch	—	E9Ch	—	F1Ch	—						
C1Dh	_	C9Dh	_	D1Dh	—			E1Dh	_	E9Dh		F1Dh	_						
C1Eh		C9Eh	_	D1Eh	_			E1Eh		E9Eh		F1Eh							
C1Fh	_	C9Fh	_	D1Fh	_			E1Fh	—	E9Fh	—	F1Fh	—						
C20h		CA0h		D20h				E20h		EA0h		F20h							
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'				Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'						
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh					
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h					
	Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh		Accesses 70h-7Fh				
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh					

Legend: 🔲 = Unimplemented data memory locations, read as '0'.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications, while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources

The oscillator module can be configured in one of the following clock modes:

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. INTOSC Internal Oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low, medium and high-frequency clock sources, designated as LFINTOSC, MFINTOSC and HFINTOSC (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

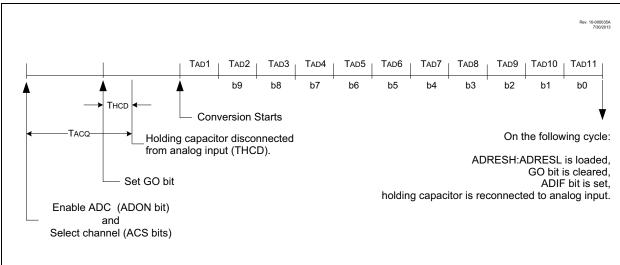
STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is Set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, PD is Set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged; x = unknown; - = unimplemented bit, reads as '0'.


Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

ADC Clock	Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0>	20 MHz 16 MHz 8 MHz		8 MHz	4 MHz	1 MHz				
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs				
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs				
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs				
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs				
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs				
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs				
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs				

TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

Note: The TAD period when using the FRC clock source can fall within a specified range (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u							
—	—	—	—	—	—	ADRES<9:8>		
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 1-0 **ADRES<9:8>**: ADC Result Register bits Upper two bits of 10-bit conversion result.

REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u						
	ADRES<7:0>												
bit 7							bit 0						

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result.

IGURE 19-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM T <u>1GGO/</u> DONE	Cleared by Hardware on Falling Edge of T1GVAL
t1g_in	Counting Enabled on Rising Edge of T1G
T1CKI	
T1GVAL	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by Software Cleared by Software Set by Hardware on Software Falling Edge of T1GVAL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			_	ANSA4	_	ANSA<2:0>			114
APFCON	RXDTSEL	CWGASEL	CWGBSEL	_	T1GSEL	TXCKSEL	P2SEL	P1SEL	110
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	56
PIE1	TMR1GIE	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	_	_	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	_	_	— TMR2IF TMR1IF		79
TMR1H	Holding Re	gister for the	Most Signific	ant Byte of	the 16-bit TM	MR1 Count			163*
TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of	the 16-bit T	MR1 Count			163*
TRISA	—	_	TRISA	<5:4>	_(1)	Т	RISA<2:0	>	113
T1CON	TMR10	CS<1:0>	T1CKPS	S<1:0>	_	T1SYNC		TMR10N	167
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS<1:0>		168

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

2: PIC12(L)F1572 only.

21.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH/SPBRGL register pair determines the period of the free-running baud rate timer. In Asynchronous mode, the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 21-3 contains the formulas for determining the baud rate. Example 21-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 21-3. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH/SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

 $Desired Baud Rate = \frac{Fosc}{64([SPBRGH:SPBRGL] + 1)}$ Solving for SPBRGH:SPBRGL: $\frac{Fosc}{Desired Baud Rate}$

 $X = \frac{\overline{Desired Baud Rate}}{64} - 1$ $= \frac{\frac{16000000}{9600}}{64} - 1$ = [25.042] = 25Calculated Baud Rate = $\frac{16000000}{64(25+1)}$ = 9615Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$ $= \frac{(9615 - 9600)}{9600} = 0.16\%$

TABLE 21-3: BAUD RATE FORMULAS

C	onfiguration B	its		Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kale Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1	8-bit/Asynchronous	
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	x	16-bit/Synchronous	

Legend: x = Don't care; n = value of SPBRGH/SPBRGL register pair.

TABLE 21-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

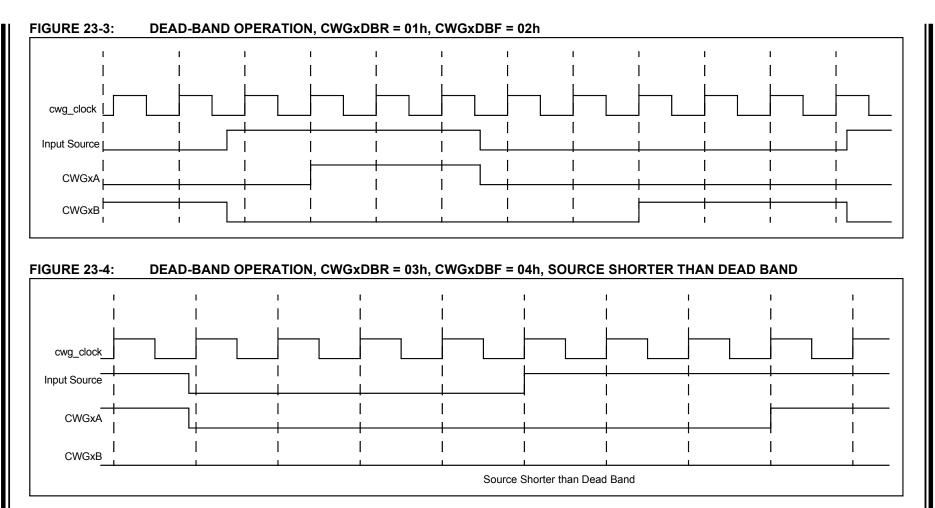
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	186
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	185
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>							187*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	184

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

REGISTER 22-13:	PWMxOFH: PWMx OFFSET COUNT HIGH REGISTER
-----------------	--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			OF<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is uncha	anged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets


bit 7-0 OF<15:8>: PWMx Offset High bits Upper eight bits of PWM offset count.

REGISTER 22-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER

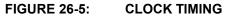
| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | OF< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

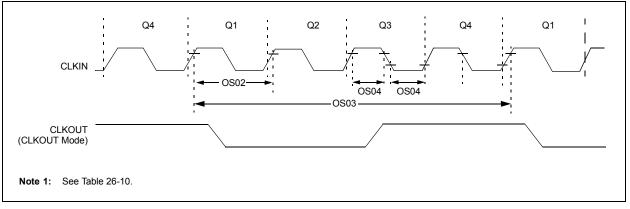
Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 OF<7:0>: PWMx Offset Low bits Lower eight bits of PWM offset count.

PIC12(L)F1571/2

Mnemonic,		Description	Quality	14-Bit Opcode				Status	N . 4
Oper	•	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	REGISTER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	z	2
CLRW	_	Clear W	1	00		0000		z	
COMF	f, d	Complement f	1	00		dfff		Z	2
DECF	f, d	Decrement f	1	00	0011			Z	2
INCF	f, d	Increment f	1	00		dfff		Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100		ffff		2
MOVF	f, d	Move f	1	00		dfff		Z	2
MOVWF	f, u	Move W to f	1	00	0000	1fff		2	2
RLF	f. d	Rotate Left f through Carry	1	00		dfff		с	2
	, -		1					-	2
RRF	f, d	Rotate Right f through Carry	-	00		dfff		C C DC 7	
SUBWF	f, d	Subtract W from f	1	00		dfff		, ,	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11		dfff		C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff		_	2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	tttt	Z	2
	r	BYTE-ORIENTED	SKIP OPERATIO	ONS	T	1	1	n	1
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE	REGISTER OPER	ATION	IS				
	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BCF									0
BCF BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
	,				01bb	bfff	ffff		Z
	,	BIT-ORIENTED Bit Test f, Skip if Clear	1				ffff		1, 2
BSF	f, b	BIT-ORIENTED	1 SKIP OPERATIO	NS	10bb		ffff		1
BSF	f, b f, b	BIT-ORIENTED Bit Test f, Skip if Clear Bit Test f, Skip if Set	1 SKIP OPERATION 1 (2)	NS 01	10bb	bfff	ffff		1, 2
BSF	f, b f, b	BIT-ORIENTED Bit Test f, Skip if Clear Bit Test f, Skip if Set	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1	NS 01	10bb 11bb	bfff	ffff ffff	C, DC, Z	1, 2
BSF BTFSC BTFSS	f, b f, b f, b	BIT-ORIENTED Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL	1 SKIP OPERATION 1 (2) 1 (2) OPERATIONS	NS 01 01	10bb 11bb	bfff bfff	ffff ffff kkkk	C, DC, Z Z	1, 2
BSF BTFSC BTFSS ADDLW	f, b f, b f, b k	BIT-ORIENTED Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL O Add literal and W	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1	NS 01 01 11	10bb 11bb 1110 1110	bfff bfff kkkk	ffff ffff kkkk kkkk		1, 2
BSF BTFSC BTFSS ADDLW ANDLW	f, b f, b f, b k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL O Add literal and W AND literal with W	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1 1 1	NS 01 01 11	10bb 11bb 1110 1110	bfff bfff kkkk kkkk	ffff ffff kkkk kkkk kkkk	Z	1, 2
BSF BTFSC BTFSS ADDLW ANDLW IORLW	f, b f, b f, b k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL Add literal and W AND literal with W Inclusive OR literal with W	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1 1 1 1 1	NS 01 01 11 11	10bb 11bb 1110 1001 1000 0000	bfff bfff kkkk kkkk kkkk	ffff ffff kkkk kkkk kkkk kkkk	Z	1, 2
BSF BTFSC BTFSS ADDLW ANDLW IORLW MOVLB MOVLP	f, b f, b f, b k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL O Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1 1 1 1 1 1 1	NS 01 01 11 11 11 00	10bb 11bb 1110 1001 1000 0000 0001	bfff bfff kkkk kkkk kkkk 001k	ffff ffff kkkk kkkk kkkk kkkk kkkk	Z	1, 2
BSF BTFSC BTFSS ADDLW ANDLW IORLW MOVLB	f, b f, b f, b k k k k k k k k k	BIT-ORIENTED Bit Test f, Skip if Clear Bit Test f, Skip if Set LITERAL 0 Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH	1 SKIP OPERATION 1 (2) 1 (2) DPERATIONS 1 1 1 1 1 1 1 1 1 1	NS 01 01 11 11 11 11 00 11	10bb 11bb 1110 1001 1000 0000 0001 0000	bfff bfff kkkk kkkk kkkk 001k 1kkk	ffff ffff kkkk kkkk kkkk kkkk kkkk kkk	Z	1, 2


TABLE 25-3: ENHANCED MID-RANGE INSTRUCTION SET


Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See the table in the MOVIW and MOVWI instruction descriptions.

PIC12(L)F1571/2

TABLE 26-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Stanuaru										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL)			
			DC	—	4	MHz	External Clock (ECM)			
			DC	—	20	MHz	External Clock (ECH)			
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	×	ns	External Clock (EC)			
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc			

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

PIC12(L)F1571/2

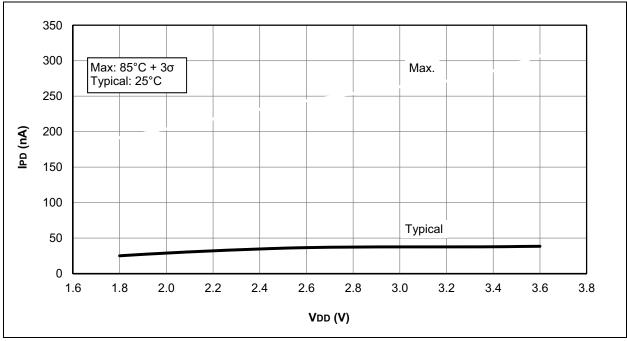


FIGURE 27-21: IPD BASE, LOW-POWER SLEEP MODE, PIC12LF1571/2 ONLY

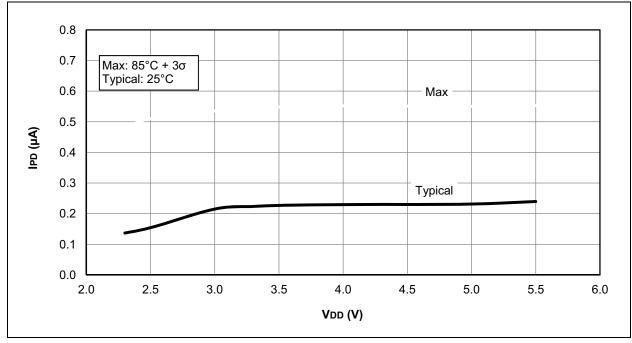
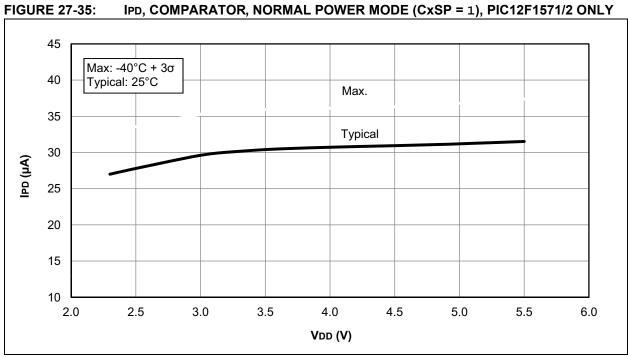



FIGURE 27-22: IPD BASE, LOW-POWER SLEEP MODE, PIC12F1571/2 ONLY

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (10/2013)

Original release of this document.

Revision B (2/2014)

Updated PIC12(L)F1571/2 Family Types table Program Memory Flash heading (*words* to *K words*).

Revision C (8/2014)

Updated PWM chapter. Changed to Final data sheet. Updated IDD and IPD parameters in the Electrical Specification chapter. Added Characterization Graphs.

Added Section 1.1: Register and Bit Naming Conventions.

Updated Figures 5-3 and 15-5. Updated Tables 3-1, 3-7, and 3-10. Updated Section 15.2.5. Updated Equation 15-1.

Revision D (8/2015)

Updated Clocking Structure, Memory, Low-Power Features, Family Types table and Pin Diagram Table on cover pages.

Added Sections 3.2: High-Endurance Flash and 5.4: Clock Switching Before Sleep. Added Table 29-2 and 8-pin UDFN packaging.

Updated Examples 3-2 and 15-1.

Updated Figures 8-1, 21-1, 22-8 through 22-13 and 23-1.

Updated Registers 7-5, 8-1, 22-6 and 23-3.

Updated Sections 8.2.2, 15.2.6, 16.0, 21.0, 21.4.2, 22.3.3, 23.9.1.2, 23.11.1, 26.1 and 29.1.

Updated Tables 1, 3-3, 3-4, 3-10, 5-1, 16-1, 17-3, 22-2, 23-2, 26-6, 26-8 and 29-1.

NOTES: