

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1571-e-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC12(L)F1571/2 devices are described within this data sheet. The block diagram of these devices is shown in Figure 1-1, the available peripherals are shown in Table 1-1 and the pinout descriptions are shown in Table 1-2.

TABLE 1-1:	DEVICE PERIPHERAL
	SUMMARY

Peripheral		PIC12(L)F1571	PIC12(L)F1572				
Analog-to-Digital Converter (A	ADC)	•	٠				
Complementary Wave Generation (CWG)	ator	•	•				
Digital-to-Analog Converter (I	DAC)	•	•				
Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (EUSAF		•					
Fixed Voltage Reference (FV	R)	٠	•				
Temperature Indicator		٠	٠				
Comparators							
	C1	•	•				
PWM Modules							
	PWM1	•	•				
	PWM2	•	•				
	PWM3	• • • • 1 • 2 • 3 •					
Timers							
	Timer0	•	٠				
	Timer1	•	٠				
	Timer2	•	•				

1.1 Register and Bit Naming Conventions

1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- · Long name: Peripheral abbreviation + short name

1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction, COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore, plus the name of the register in which the bit resides, to avoid naming contentions.

TABLE 3-10:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	2										
10Ch	LATA	_	_	LATA	<5:4>	_		LATA<2:0>		xx -xxx	uu -uuu
10Dh	—	Unimpleme	nted							_	_
10Eh	_	Unimpleme	nted							_	_
10Fh	_	Unimpleme	nted							_	-
110h	_	Unimpleme	Unimplemented								-
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PC	H<1:0>	_		C1NCH<2:0>	•	0000 -000	0000 -000
113h	_	Unimpleme	nted							_	
114h	_	Unimpleme	nted							_	
115h	CMOUT	_	_	_	_	_	_	_	MC1OUT	0	0
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF	VR<1:0>	ADFVI	R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DACEN	_	DACOE	—	DACP	SS<1:0>	—	—	0-0- 00	0-0- 00
119h	DAC1CON1	_	_	_			DACR<4:0	>		0 0000	0 0000
11Ah											
to 11Ch	—	Unimpleme	nted							-	—
11Dh	APFCON	RXDTSEL	CWGASEL	CWGBSEL	_	T1GSEL	TXCKSEL	P2SEL	P1SEL	000- 0000	000- 0000
11Eh	—	Unimpleme	nted							_	_
11Fh	_	Unimpleme	nted							_	_
Bank	3										
18Ch	ANSELA	_	_	_	ANSA4	_		ANSA<2:0>		1 -111	1 -111
18Dh	_	Unimpleme	nted		•		•			_	_
18Eh	_	Unimpleme	nted							_	_
18Fh	_	Unimpleme	nted							_	-
190h	_	Unimpleme	nted							_	-
191h	PMADRL	Flash Progr	am Memory	Address Regi	ster Low Byte)				0000 0000	0000 0000
192h	PMADRH	(3)	Flash Progra	am Memory A	Address Regis	ter High Byte				1000 0000	1000 0000
193h	PMDATL	Flash Progr	am Memory	Read Data Re	egister Low B	yte				XXXX XXXX	uuuu uuuu
194h	PMDATH	_	_	Flash Progra	am Memory R	ead Data Reg	gister High Byte			xx xxxx	uu uuuu
195h	PMCON1	(3)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Progr	am Memory	Control Regis	ter 2					0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	_	_	_	_	_	_	VREGPM	Reserved	01	01
198h	_	Unimpleme	nted							_	_
199h	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
19Ah	TXREG	USART Tra	nsmit Data R	legister						0000 0000	0000 0000
19Bh	SPBRGL	Baud Rate	Generator Da	ata Register L	ow					0000 0000	0000 0000
19Ch	SPBRGH	Baud Rate	Generator Da	ata Register H	ligh					0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.
 Note 1:
 PIC12F1571/2 only.

 2:
 PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

										Malas au	Value on
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	All Other Resets
Bank	4										
20Ch	WPUA	_	—			W	PUA<5:0>			11 1111	11 1111
20Dh		Unimpleme	nted							—	—
20Eh to 21Fh	—	Unimpleme	Inimplemented								
Bank	5										
28Ch	ODCONA	—	_	ODA	<5:4>	_		ODA<2:0>		11 -111	11 -111
28Dh to 29Fh	—	Unimpleme	nted							_	_
Bank	6										
30Ch	SLRCONA	_	_	SLRA	<5:4>	_		SLRA<2:0>		11 -111	11 -111
30Dh to 31Fh	_	Unimpleme	nted							_	_
Bank	7										
38Ch	INLVLA	_	_			INI	_VLA<5:0>			11 1111	11 1111
38Dh to 390h	-	Unimpleme	nted							-	-
391h	IOCAP	_	_			IO	CAP<5:0>			00 0000	00 0000
392h	IOCAN	_	_			10	CAN<5:0>			00 0000	00 0000
393h	IOCAF	_	—			IO	CAF<5:0>			00 0000	00 0000
394h to 39Fh	—	Unimpleme	nted							_	_
Bank	8										
40Ch to 41Fh	_	Unimpleme	nted							_	_
Bank	9										
48Ch to 49Fh	-	Unimpleme	nted							_	_

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.**Note 1:**PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

TABLE 3-10:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)
-------------	-------------------------------------	-------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	27										
D8Ch	—	Unimpleme	nimplemented								
D8Dh	—	Unimpleme	nted							_	_
D8Eh	PWMEN	_	_	_	_	_	PWM3EN_A	PWM2EN_A	PWM1EN_A	000	000
D8Fh	PWMLD	_	_	_	_	_	PWM3LDA_A	PWM2LDA_A	PWM1LDA_A	000	000
D90h	PWMOUT	_	_	_	_	_	PWM3OUT_A	PWM2OUT_A	PWM1OUT_A	000	000
D91h	PWM1PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
D92h	PWM1PHH				ł	PH<15:8>				XXXX XXXX	uuuu uuuu
D93h	PWM1DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
D94h	PWM1DCH				[DC<15:8>				XXXX XXXX	uuuu uuuu
D95h	PWM1PRL					PR<7:0>				XXXX XXXX	uuuu uuuu
D96h	PWM1PRH				I	PR<15:8>				XXXX XXXX	uuuu uuuu
D97h	PWM10FL					OF<7:0>				XXXX XXXX	uuuu uuuu
D98h	PWM10FH				(OF<15:8>				XXXX XXXX	uuuu uuuu
D99h	PWM1TMRL				٦	FMR<7:0>				XXXX XXXX	uuuu uuuu
D9Ah	PWM1TMRH				Т	MR<15:8>				XXXX XXXX	uuuu uuuu
D9Bh	PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	PWM1N	10DE<1:0>	_	_	0000 00	0000 00
D9Ch	PWM1INTE	_	_	_	_	PWM10FIE	PWM1PHIE	PWM1DCIE	PWM1PRIE	000	000
D9Dh	PWM1INTF	_	_	_	_	PWM10FIF	PWM1PHIF	PWM1DCIF	PWM1PRIF	000	000
D9Eh	PWM1CLKCON	_	F	PWM1PS<2:0)>	_	_	PWM10	CS<1:0>	-000 -000	-00000
D9Fh	PWM1LDCON	PWM1LDA	PWM1LDT	_	_	_	_	PWM1L	DS<1:0>	00000	0000
DA0h	PWM10FCON	_	PWM10	FM<1:0>	PWM10F0	_	_	PWM10	FS<1:0>	-000 -000	-00000
DA1h	PWM2PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
DA2h	PWM2PHH				I	PH<15:8>				XXXX XXXX	uuuu uuuu
DA3h	PWM2DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
DA4h	PWM2DCH				[DC<15:8>				XXXX XXXX	uuuu uuuu
DA5h	PWM2PRL					PR<7:0>				XXXX XXXX	uuuu uuuu
DA6h	PWM2PRH				I	PR<15:8>				XXXX XXXX	uuuu uuuu
DA7h	PWM2OFL					OF<7:0>				XXXX XXXX	uuuu uuuu
DA8h	PWM2OFH				(OF<15:8>				XXXX XXXX	uuuu uuuu
DA9h	PWM2TMRL				٦	FMR<7:0>				XXXX XXXX	uuuu uuuu
DAAh	PWM2TMRH				Т	MR<15:8>				XXXX XXXX	uuuu uuuu
DABh	PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	PWM2M	10DE<1:0>	_	—	0000 00	0000 00
DACh	PWM2INTE	_	_	_	_	PWM2OFIE	PWM2PHIE	PWM2DCIE	PWM2PRIE	000	000
DADh	PWM2INTF	_	_	_	_	PWM2OFIF	PWM2PHIF	PWM2DCIF	PWM2PRIF	000	000
DAEh	PWM2CLKCON	—	F	PWM2PS<2:0)>	—	—	PWM20	CS<1:0>	-000 -000	-00000
DAFh	PWM2LDCON	PWM2LDA	PWM2LDT	_	_	_	_	PWM2L	DS<1:0>	00000	0000

Legend: x = unknown; u = unchanged; q = value depends on condition; - = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address, 0x000, to FSR address, 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			TUN∙	<5:0>		
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable I	bit				
u = Bit is unc	hanged	x = Bit is unkn	own	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all						R/Value at all	other Resets
bit 7-6	Unimpleme	nted: Read as '	כי				
bit 5-0	TUN<5:0>: F	Frequency Tunir	ig bits				
	100000 = N	linimum frequer	ю				
	•						
	•						
	111111 =						
	000000 = C	scillator module	is running at	the factory-calib	prated frequend	су	
	000001 =						
	•						
	•						
	011110 =						
	011111 = N	laximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>			SCS	55	
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	56
OSCTUNE	_	_		TUN<5:0>					
T1CON	TMR10	CS<1:0>	T1CKP	°S<1:0>		T1SYNC	_	TMR10N	167

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			_	_	CLKOUTEN	BOREI	N<1:0>	_	40
CONFIG1	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	42

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Power Control (PCON) Register 6.13

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- RESET Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 **Register Definitions: Power Control**

_____ DOON DOWED CONTROL DECISTED

REGISTER	6-2: PCO	N: POWER C	CONTROL RE	GISTER						
R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u			
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR			
bit 7							bit 0			
Legend:		HC = Hardwa	HC = Hardware Clearable bit HS = Hardware Settable bit							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion				
bit 7	STKOVF: St	ack Overflow F	Reset Flag bit							
	1 = A Stack	Overflow Rese	et occurred		6					
h: 1 0		Overnow Rese	Preset Flag hit	red or is cleared	a by firmware					
DIT 6	SIKUNF: St	ack Underflow	Reset Flag bit							
	1 = A Stack 0 = A Stack	Underflow Res	set occurred set has not occu	rred or is cleare	ed by firmware					
bit 5	Unimpleme	nted: Read as	'0'							
bit 4	RWDT: Wate	chdog Timer Re	eset Flag bit							
	1 = A Watch	dog Timer Res	et has not occur	red or is set by	firmware					
	0 = A Watch	dog Timer Res	et has occurred	(cleared by ha	rdware)					
bit 3	RMCLR: MC	LR Reset Flag	ı bit							
	1 = A MCLR	Reset has not	occurred or is s	et by firmware						
	0 = A MCLR	Reset has occ	curred (cleared b	y hardware)						
bit 2	RI: RESET Ir	struction Flag	bit							
	1 = A RESET	instruction ha	s not been exec	uted or set by f	irmware					
	0 = A RESET	instruction ha	s been executed	d (cleared by ha	ardware)					
bit 1	POR: Power	-on Reset Stat	us bit							
	1 = No Powe	er-on Reset occ	curred urred (must be s	et in software a	fter a Power-or	Reset occurs	,			
hit 0	$\overline{\mathbf{BOP}}$: Brown	-on Reset Occu	tus bit				,			
	1 = No Brown	n-out Reset on								
	0 = A Brown-	out Reset occur	red (must be set	in software after	a Power-on Res	set or Brown-ou	t Reset occurs)			

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	—	—	TMR2IE	TMR1IE
bit 7							bit 0

Legend:R = Readable bitW = Writable bitu = Bit is unchangedx = Bit is unknown'1' = Bit is set'0' = Bit is cleared-n/n = Value at POR and BOR/Value at all other Resets

bit 7	TMR1GIE: Timer1 Gate Interrupt Enable bit						
	1 = Enables the Timer1 gate acquisition interrupt0 = Disables the Timer1 gate acquisition interrupt						
bit 6	ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit						
	1 = Enables the ADC interrupt0 = Disables the ADC interrupt						
bit 5	RCIE: USART Receive Interrupt Enable bit ⁽¹⁾						
	1 = Enables the USART receive interrupt0 = Disables the USART receive interrupt						
bit 4	TXIE: USART Transmit Interrupt Enable bit ⁽¹⁾						
	1 = Enables the USART transmit interrupt0 = Disables the USART transmit interrupt						
bit 3-2	Unimplemented: Read as '0'						
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit						
	1 = Enables the Timer2 to PR2 match interrupt0 = Disables the Timer2 to PR2 match interrupt						
bit 0	TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt						

Note 1: PIC12(L)F1572 only.

2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 15-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit								
u = Bit is unch	anged	x = Bit is unkn	own	U = Unimpler	mented bit, read	l as '0'		
'1' = Bit is set		'0' = Bit is clea	ired	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
bit 7	ADFM: ADC	Result Format S	Select bit					
	 1 = Right justified; six Most Significant bits of ADRESH are set to '0' when the conversion result is loaded 0 = Left justified; six Least Significant bits of ADRESL are set to '0' when the conversion result is loaded 						esult is loaded sult is loaded	
bit 6-4	ADCS<2:0>:	ADC Conversion	on Clock Sele	ct bits				
	000 = Fosc/	/2						
	001 = Fosc/	/8						
	010 = FOSC/	32 (clock supplied f	rom an intern	al RC oscillator	•)			
	100 = Fosc/	(clock supplied i /4)			
	101 = Fosc/	/16						
	110 = Fosc/	/64						
	111 = FRC (clock supplied f	rom an interna	al RC oscillator	.)			
bit 3-2	Unimplemer	nted: Read as '0)'					
bit 1-0	ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits							
	00 = VRPOS	is connected to	Vdd					
	01 = Reserv	ed						
	10 = VRPOS	is connected to	external VREF	+ pinst Voltage Refer	ence (EVR)			
	TT = VI(100)			voluge i teleft				

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 26.0 "Electrical Specifications"** for details.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0				CHS<4:0>	GO/DONE	ADON	135		
ADCON1	ADFM		ADCS<2:0>	>		—	ADPRE	136	
ADCON2		TRIGSE	TRIGSEL<3:0> —				—	—	137
ADRESH	ADC Result Register High								138, 139
ADRESL	ADC Result Register Low								
ANSELA	—	—	-	ANSA4	-		ANSA<2:0>		114
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	-	—	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	-	—	TMR2IF	TMR1IF	78
TRISA		_	TRISA5	TRISA4	(1)	113			
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	CDAFVR<1:0> ADFVR<1:0>			125

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: — = unimplemented, read as '0'. Shaded cells are not used for the ADC module.

Note 1: Unimplemented, read as '1'.

2: PIC12(L)F1572 only.

17.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- · Programmable input selection
- Comparator output is available internally/externally
- · Programmable output polarity
- · Interrupt-On-Change
- · Wake-up from Sleep
- Programmable speed/power optimization
- · PWM shutdown
- · Programmable and Fixed Voltage Reference

17.1 Comparator Overview

A single comparator is shown in Figure 17-2 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are listed in Table 17-1.

TABLE 17-1: AVAILABLE COMPARATORS

Device	C1
PIC12(L)F1571	•
PIC12(L)F1572	•

FIGURE 17-1: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

19.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit Timer/Counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow

- Wake-up on overflow (external clock, Asynchronous mode only)
- ADC auto-conversion trigger(s)
- Selectable gate source polarity
- Gate Toggle mode
- · Gate Single-Pulse mode
- Gate value status
- Gate event interrupt
- Figure 19-1 is a block diagram of the Timer1 module.

FIGURE 19-1: TIMER1 BLOCK DIAGRAM

PIC12(L)F1571/2

FIGURE 19-4: TIMER1 GATE TOGGLE MODE

21.3 Register Definitions: EUSART Control

REGISTER 21-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	1			u			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit				
u = Bit is unc	hanged	x = Bit is unkr	nown	U = Unimpler	mented bit, read	as '0'	
'1' = Bit is set	t	'0' = Bit is clea	ared	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
bit 7	CSRC: Clock	Source Select	bit				
	Asynchronous Don't care.	<u>s mode:</u>					
	Synchronous	mode:					
	1 = Master m 0 = Slave mc	node (clock ger ode (clock from	nerated internates our	ally from BRG)			
bit 6	TX9 : 9-Bit Tra	ansmit Enable I	oit	,			
	1 = Selects 9	bit transmissio	on				
	0 = Selects 8	B-bit transmissio	on				
bit 5	TXEN: Transr	mit Enable bit ⁽¹)				
	1 = Transmit	is enabled					
L:1 4		Is disabled	at h:t				
DIL 4	1 = Synchror		CLDIL				
	0 = Asynchro	onous mode					
bit 3	SENDB: Sen	d Break Chara	cter bit				
	Asynchronous	s mode:					
	1 = Sends Sy	ync Break on n	ext transmiss	ion (cleared by	hardware upon	completion)	
	0 = Sync Bre	mode:	n completed				
	Don't care.	<u>mode.</u>					
bit 2	BRGH: High I	Baud Rate Sel	ect bit				
	Asynchronous	<u>s mode:</u>					
	\perp = High species $0 = 1 \text{ ow speces}$	ea ed					
	Synchronous	mode:					
	Unused in this	s mode.					
bit 1	TRMT: Transr	mit Shift Regist	er Status bit				
	1 = TSR is er	mpty					
hit O		III ait of Tranaccit I	Data				
DILU		on or mansmith ss/data bit or a	unarity hit				
N. (.)							
Note 1: SF	KEN/CREN over	rides IXEN in	Sync mode.				

NOTES:

22.4 Reload Operation

Four of the PWM module control register pairs and one control bit are double-buffered so that all can be updated simultaneously. These include:

- PWMxPHH:PWMxPHL register pair
- PWMxDCH:PWMxDCL register pair
- PWMxPRH:PWMxPRL register pair
- PWMxOFH:PWMxOFL register pair
- · OFO control bit

When written to, these registers do not immediately affect the operation of the PWM. By default, writes to these registers will not be loaded into the PWM Operating Buffer registers until after the arming conditions are met. The arming control has two methods of operation:

- Immediate
- Triggered

The LDT bit of the PWMxLDCON register controls the arming method. Both methods require the LDA bit to be set. All four buffer pairs will load simultaneously at the loading event.

22.4.1 IMMEDIATE RELOAD

When the LDT bit is clear, then the immediate mode is selected and the buffers will be loaded at the first period event after the LDA bit is set. Immediate reloading is used when a PWM module is operating stand-alone or when the PWM module is operating as a master to other slave PWM modules.

22.4.2 TRIGGERED RELOAD

When the LDT bit is set, then the Triggered mode is selected and a trigger event is required for the LDA bit to take effect. The trigger source is the buffer load event of one of the other PWM modules in the device. The triggering source is selected by the LDS<1:0> bits of the PWMxLDCON register. The buffers will be loaded at the first period event following the trigger event. Triggered reloading is used when a PWM module is operating as a slave to another PWM and it is necessary to synchronize the buffer reloads in both modules.

Note 1: The buffer load operation clears the LDA bit.

2: If the LDA bit is set at the same time as PWMxTMR = PWMxPR, the LDA bit is ignored until the next period event. Such is the case when triggered reload is selected and the triggering event occurs simultaneously with the target's period event.

22.5 Operation in Sleep Mode

Each PWM module will continue to operate in Sleep mode when either the HFINTOSC or LFINTOSC is selected as the clock source by PWMxCLKCON<1:0>.

22.6 Interrupts

Each PWM module has four independent interrupts based on the phase, duty cycle, period and offset match events. The interrupt flag is set on the rising edge of each of these signals. Refer to Figures 22-12 and 22-13 for detailed timing diagrams of the match signals.

23.5 Dead-Band Control

Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control.

Dead band is timed by counting CWG clock periods from zero, up to the value in the rising or falling Dead-Band Counter registers. See the CWGxDBR and CWGxDBF registers (Register 23-4 and Register 23-5, respectively).

23.6 Rising Edge Dead Band

The rising edge dead band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on.

The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

23.7 Falling Edge Dead Band

The falling edge dead band delays the turn-on of the CWGxB output from when the CWGxA output is turned off. The falling edge dead-band time starts when the falling edge of the input source goes true. When this happens, the CWGxA output is immediately turned off and the falling edge dead-band delay time starts. When the falling edge dead-band delay time is reached, the CWGxB output is turned on.

The CWGxDBF register sets the duration of the deadband interval on the falling edge of the input source signal. This duration is from 0 to 64 counts of dead band.

Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present.

If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 23-3 and Figure 23-4 for examples.

23.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 23-1 for more detail.

EQUATION 23-1: DEAD-BAND UNCERTAINTY

$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$

Example:
$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 62.5 ns$$

23.9 Auto-Shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

23.9.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- · Software generated
- External Input

23.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 23-6.

23.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are:

- Comparator C1 C1OUT_async
- CWG1FLT

Shutdown inputs are selected in the CWGxCON2 register (Register 23-3).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

26.3 DC Characteristics

TABLE 26-1: SUPPLY VOLTAGE

PIC12LF1571/2				Standard Operating Conditions (unless otherwise stated)					
PIC12F1	571/2								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
D001	Vdd	Supply Voltage							
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)		
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz (Note 3)		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾							
			1.5	_	_	V	Device in Sleep mode		
D002*			1.7	_		V	Device in Sleep mode		
D002A*	VPOR	Power-on Reset Release Voltage	2)						
				1.6		V			
D002A*				1.6	—	V			
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾							
			—	0.8	—	V			
D002B*				1.5	—	V			
D003	VFVR	Fixed Voltage Reference Voltage	_	1.024	_	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$		
D003A	VADFVR	FVR Gain Voltage Accuracy for ADC	-4	—	+4	%	$\begin{array}{l} 1x \mbox{ VFVR, ADFVR = 01, VDD } \geq 2.5V \\ 2x \mbox{ VFVR, ADFVR = 10, VDD } \geq 2.5V \\ 4x \mbox{ VFVR, ADFVR = 11, VDD } \geq 4.75V \end{array}$		
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator	-4	_	+4	%	$ \begin{array}{l} 1x \; VFVR, \; \overline{CDAFVR} = \; \texttt{01}, \; VDD \geq 2.5V \\ 2x \; VFVR, \; \overline{CDAFVR} = \; \texttt{10}, \; VDD \geq 2.5V \\ 4x \; VFVR, \; \overline{CDAFVR} = \; \texttt{11}, \; VDD \geq 4.75V \\ \end{array} $		
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 26-3, POR and POR Rearm with Slow Rising VDD.

3: PLL required for 32 MHz operation.

FIGURE 27-28: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC12F1571/2 ONLY

