

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1571-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Peripherals:

- 10-Bit Analog-to-Digital Converter (ADC):
 - Up to four external channels
 - Conversion available during Sleep
- Comparator:
 - Low-Power/High-Speed modes
 - Fixed Voltage Reference at (non)inverting input(s)
 - Comparator outputs externally accessible
 - Synchronization with Timer1 clock source
 - Software hysteresis enable
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive reference selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- · Voltage Reference:
 - Fixed voltage reference with 1.024V, 2.048V and 4.096V output levels

PIC12(L)F1571/2 FAMILY TYPES

Clocking Structure:

- Precision Internal Oscillator:
 - Factory calibrated ±1%, typical
 - Software-selectable clock speeds from 31 kHz to 32 MHz
- External Oscillator Block with:
 - Resonator modes up to 20 MHz
 - Two External Clock modes up to 32 MHz
- Fail-Safe Clock Monitor
- Digital Oscillator Input Available

Device	Data Sheet Index	Program Memory Flash (K words)	Data SRAM (bytes)	High-Endurance Flash (bytes)	I/O Pins	8-Bit/16-Bit Timers	Comparators	16-Bit PWM	10-Bit ADC (ch)	5-Bit DAC	CWG	EUSART	Debug ⁽¹⁾	XLP
PIC12(L)F1571	Α	1	128	128	6	2/4 ⁽²⁾	1	3	4	1	1	0	Ι	Y
PIC12(L)F1572	Α	2	256	128	6	2/4 ⁽²⁾	1	3	4	1	1	1	Ι	Y

Note 1: I – Debugging integrated on chip.

2: Three additional 16-bit timers available when not using the 16-bit PWM outputs.

Data Sheet Index: (Unshaded devices are described in this document.)

A DS40001723 PIC12(L)F1571/2 Data Sheet, 8-Pin Flash, 8-Bit MCU with High-Precision 16-Bit PWM.

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other Resets
Bank	27 (Continued)										
DB0h	PWM2OFCON		- PWM20FM<1:0> PWM20F0 PWM20FS<1:0>								-00000
DB1h	PWM3PHL					PH<7:0>				XXXX XXXX	uuuu uuuu
DB2h	PWM3PHH				F	PH<15:8>				XXXX XXXX	uuuu uuuu
DB3h	PWM3DCL					DC<7:0>				XXXX XXXX	uuuu uuuu
DB4h	PWM3DCH				[DC<15:8>				XXXX XXXX	uuuu uuuu
DB5h	PWM3PRL					PR<7:0>				XXXX XXXX	uuuu uuuu
DB6h	PWM3PRH				F	PR<15:8>				XXXX XXXX	uuuu uuuu
DB7h	PWM3OFL		OF<7:0> xxxx xxxx uuuu uuu								uuuu uuuu
DA8h	PWM3OFH		OF<15:8> xxxx xxxx uuuu uu							uuuu uuuu	
DA9h	PWM3TMRL				٦	[MR<7:0>				XXXX XXXX	uuuu uuuu
DBAh	PWM3TMRH				Т	MR<15:8>				XXXX XXXX	uuuu uuuu
DBBh	PWM3CON	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	PWM3M	IODE<1:0>	_	_	0000 00	0000 00
DBCh	PWM3INTE	_	_	—	_	PWM3OFIE	PWM3PHIE	PWM3DCIE	PWM3PRIE	000	000
DBDh	PWM3INTF	_	_	—	_	PWM3OFIF	PWM3PHIF	PWM3DCIF	PWM3PRIF	000	000
DBEh	PWM3CLKCON	_	I	PWM3PS<2:0)>	_	_	PWM30	CS<1:0>	-000 -000	-00000
DBFh	PWM3LDCON	PWM3LDA	PWM3LDT	—	_	_	_	PWM3LI	DS<1:0>	00000	0000
DC0h	PWM3OFCON	-	PWM3C	FM<1:0>	PWM3OFO	_	_	PWM3O	FS<1:0>	-000 -000	-00000
Bank	28-30										
58Ch to 59Fh	—	Unimpleme	nted							-	-

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'. Note 1: PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

FIGURE 5-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

5.2.2.7 32 MHz Internal Oscillator Frequency Selection

The internal oscillator block can be used with the 4x PLL associated with the external oscillator block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSCx bits in the Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<1:0> = 00).
- The SCSx bits in the OSCCON register must be cleared to use the clock determined by FOSC<1:0> in the Configuration Words (SCS<1:0> = 00).
- The IRCFx bits in the OSCCON register must be set to the 8 MHz HFINTOSC to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCSx bits of the OSCCON register are set to '1x'. The SCSx bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.8 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-3 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 26.0 "Electrical Specifications"**.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCSx) bits of the OSCCON register. The following clock sources can be selected using the SCSx bits:

- Default system oscillator determined by FOSCx bits in the Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCSx) BITS

The System Clock Select (SCSx) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When the SCSx bits of the OSCCON register = 00, the system clock source is determined by the value of the FOSC<1:0> bits in the Configuration Words.
- When the SCSx bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCSx bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCSx bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch does not
	update the SCSx bits of the OSCCON
	register. The user can monitor the OSTS
	bit of the OSCSTAT register to determine
	the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

TABLE 5-1:OSCILLATOR SWITCHING DELAYS

Switch From Switch To Frequency **Oscillator Delay** LFINTOSC⁽¹⁾ 31 kHz Sleep/POR MFINTOSC⁽¹⁾ Oscillator Warm-up Delay (TWARM)(2) 31.25 kHz-500 kHz HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz FC⁽¹⁾ Sleep/POR DC - 32 MHz 2 cycles EC⁽¹⁾ LFINTOSC DC - 32 MHz 1 cycle of each MFINTOSC⁽¹⁾ 31.25 kHz-500 kHz Any Clock Source 2 μs (approx.) HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz LFINTOSC⁽¹⁾ Any Clock Source 31 kHz 1 cycle of each **PLL Inactive** PLL Active 16-32 MHz 2 ms (approx.)

Note 1: PLL inactive.

2: See Section 26.0 "Electrical Specifications".

5.4 Clock Switching Before Sleep

When clock switching from an old clock to a new clock is requested, just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL. monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

6.2.1 BOR IS ALWAYS ON

When the BORENx bits of the Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BORENx bits of the Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BORENx bits of the Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 6-2: BROWN-OUT SITUATIONS

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is Set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, PD is Set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during Normal Operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged; x = unknown; - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

20.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see **Section 20.2 "Timer2 Interrupt"**).

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · A write to the TMR2 register
- · A write to the T2CON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- · Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

20.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

20.3 Timer2 Output

The output of TMR2 is T2_match.

The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

20.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 21-1, Register 21-2 and Register 21-3, respectively.

When the receiver or transmitter section is not enabled, then the corresponding RX or TX pin may be used for general purpose input and output.

21.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U"), which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges, including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 21-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 21-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH/SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register, the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits, as shown in Table 21-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Detection will occur on the byte <u>following</u> the Break character (see Section 21.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - **3:** During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 21-6.	BRG COUNTER	CLOCK RATES
IADLL ZI-0.	DIG COUNTER	CLOCK NAILS

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, the SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 21-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	<u>χ</u> 0000h			<u> </u>	<u>X X X X X</u>	X X	001Ch
RX Pin		Sta	Fedge #1	Edge #2	Edge #3	Edge #4	7 5	Edge #5 Stop bit
BRG Clock	DININNINIINIINIINIINIINII		ហុំហហហ	www	mmm	www	(um	; #NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ABDEN bit	Set by User —		1 1 1 1				<u>`</u>	— Auto Cleared
RCIDL			I I					1 1
RCIF bit (Interrupt)		·						: : /
Read RCREG		 					\sum	
SPBRGL		 	XXh					1Ch
SPBRGH		•	XXh				X	00h

SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM FIGURE 22-9: Rev. 10-000 147B 7/8/201 5 Period Duty Cycle Phase Offset

REGISTER 22-4: PWMxCLKCON: PWMx CLOCK CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
		PS<2:0>		_	_	CS<	:1:0>
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit				
u = Bit is u	nchanged	x = Bit is unkr	nown	U = Unimplem	ented bit, read	as '0'	
'1' = Bit is s	'1' = Bit is set '0' = Bit is cleared			-n/n = Value a	t POR and BO	R/Value at all c	other Resets
bit 7	it 7 Unimplemented: Read as '0'						
bit 6-4	PS<2:0>: CI	ock Source Pres	scaler Select b	oits			
			h 400				

	111 = Divides clock source by 128
	110 = Divides clock source by 64
	101 = Divides clock source by 32
	100 = Divides clock source by 16
	011 = Divides clock source by 8
	010 = Divides clock source by 4
	001 = Divides clock source by 2
	000 = No prescaler
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CS<1:0>: Clock Source Select bits
	11 = Reserved
	10 = LFINTOSC (continues to operate during Sleep)

01 = HFINTOSC (continues to operate during Sleep)

00 = FOSC

REGISTER 22-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	15:8>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	oit				
u = Bit is unchanged x = Bit is unknow		own	U = Unimpler	nented bit, read	d as '0'		
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7-0 **PR<15:8>**: PWMx Period High bits Upper eight bits of PWM period count.

REGISTER 22-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PR< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

=ogona.		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 **PR<7:0>**: PWMx Period Low bits Lower eight bits of PWM period count.

REGISTER 22-13: PWMxOFH: PWMx OFFSET COUNT
--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			OF<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit				
u = Bit is unchanged		x = Bit is unknown		U = Unimplemented bit, read as '0'			
'1' = Bit is set		'0' = Bit is clea	ared	-n/n = Value a	at POR and BC	R/Value at all	other Resets

bit 7-0 OF<15:8>: PWMx Offset High bits Upper eight bits of PWM offset count.

REGISTER 22-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | OF< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 OF<7:0>: PWMx Offset Low bits Lower eight bits of PWM offset count.

25.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte-Oriented
- · Bit-Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 25-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

25.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator, 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F).
W	Working register (accumulator).
b	Bit address within an 8-bit file register.
k	Literal field, constant data or label.
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number (0-1).
mm	Pre-Post Increment-Decrement mode selection.

TABLE 25-2: ABBREVIATION DESCRIPTIONS

Field	Description		
PC	Program Counter		
TO	Time-out bit		
С	Carry bit		
DC	Digit Carry bit		
Z	Zero bit		
PD	Power-Down bit		

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRWRelative Branch with WSyntax:[label] BRWOperands:None

Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

TABLE 29-1:8-LEAD 3x3x0.9 DFN (MF) TOP
MARKING

Part Number	Marking
PIC12F1571-E/MF	MFY0/YYWW/NNN
PIC12F1572-E/MF	MGA0/YYWW/NNN
PIC12F1571-I/MF	MFZ0
PIC12F1572-I/MF	MGB0
PIC12LF1571-E/MF	MGC0
PIC12LF1572-E/MF	MGE0
PIC12LF1571-I/MF	MGD0
PIC12LF1572-I/MF	MGF0

TABLE 29-2:8-LEAD 3x3x0.5 UDFN (RF)TOP MARKING

Part Number	Marking
PIC12F1571-E/MF	MFY0/YYWW/NNN
PIC12F1572-E/MF	MGA0/YYWW/NNN
PIC12F1571-I/MF	MFZ0
PIC12F1572-I/MF	MGB0
PIC12LF1571-E/MF	MGC0
PIC12LF1572-E/MF	MGE0
PIC12LF1571-I/MF	MGD0
PIC12LF1572-I/MF	MGF0

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-254A Sheet 1 of 2