

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1571t-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

										Malas au	Value on
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	All Other Resets
Bank	4										
20Ch	WPUA	_	—			W	PUA<5:0>			11 1111	11 1111
20Dh		Unimpleme	nted							—	—
20Eh to 21Fh	—	Unimpleme	nted							-	—
Bank	5										
28Ch	ODCONA	—	_	ODA	<5:4>	_		ODA<2:0>		11 -111	11 -111
28Dh to 29Fh	—	Unimpleme	Unimplemented							_	_
Bank	6										
30Ch	SLRCONA	_	_	SLRA	<5:4>	_		SLRA<2:0>		11 -111	11 -111
30Dh to 31Fh	_	Unimpleme	nted							_	_
Bank	7										
38Ch	INLVLA	_	_			INI	_VLA<5:0>			11 1111	11 1111
38Dh to 390h	-	Unimpleme	nted							-	-
391h	IOCAP	_	_			IO	CAP<5:0>			00 0000	00 0000
392h	IOCAN	_	_			10	CAN<5:0>			00 0000	00 0000
393h	IOCAF	_	—			IO	CAF<5:0>			00 0000	00 0000
394h to 39Fh	—	Unimpleme	nted							_	_
Bank 8											
40Ch to 41Fh	_	Unimpleme	nted							_	_
Bank	Bank 9										
48Ch to 49Fh	-	Unimpleme	nted							_	_

Legend: x = unknown; u = unchanged; q = value depends on condition; — = unimplemented; r = reserved. Shaded locations are unimplemented, read as '0'.**Note 1:**PIC12F1571/2 only.

2: PIC12(L)F1572 only.

3: Unimplemented, read as '1'.

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCSx) bits of the OSCCON register. The following clock sources can be selected using the SCSx bits:

- Default system oscillator determined by FOSCx bits in the Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCSx) BITS

The System Clock Select (SCSx) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When the SCSx bits of the OSCCON register = 00, the system clock source is determined by the value of the FOSC<1:0> bits in the Configuration Words.
- When the SCSx bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCSx bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCSx bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch does not
	update the SCSx bits of the OSCCON
	register. The user can monitor the OSTS
	bit of the OSCSTAT register to determine
	the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

TABLE 5-1:OSCILLATOR SWITCHING DELAYS

Switch From Switch To Frequency **Oscillator Delay** LFINTOSC⁽¹⁾ 31 kHz Sleep/POR MFINTOSC⁽¹⁾ Oscillator Warm-up Delay (TWARM)(2) 31.25 kHz-500 kHz HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz FC⁽¹⁾ Sleep/POR DC - 32 MHz 2 cycles EC⁽¹⁾ LFINTOSC DC - 32 MHz 1 cycle of each MFINTOSC⁽¹⁾ 31.25 kHz-500 kHz Any Clock Source 2 μs (approx.) HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz LFINTOSC⁽¹⁾ Any Clock Source 31 kHz 1 cycle of each **PLL Inactive** PLL Active 16-32 MHz 2 ms (approx.)

Note 1: PLL inactive.

2: See Section 26.0 "Electrical Specifications".

5.4 Clock Switching Before Sleep

When clock switching from an old clock to a new clock is requested, just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL. monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

6.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) operates like the BOR to detect low-voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR Voltage Threshold (VLPBOR) has a wider tolerance than the BOR (VBOR), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN<1:0> = 00) or disabled in Sleep mode (BOREN<1:0> = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the \overline{LPBOR} bit of the Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE and LVP bits of the Configuration Words (Table 6-2).

TABLE 6-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

6.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.3** "**PORTA Registers**" for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0 "Watchdog Timer (WDT)"** for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack overflows or underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in the Configuration Words. See **Section 3.5.2 "Overflow/Underflow Reset"** for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of the Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0 "Oscillator Module"** for more information.

The Power-up Timer runs independently of a MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel. See Table 10-1 for erase row size and the number of write latches for Flash program memory.

TABLE 10-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC12(L)F1571	16	16	
PIC12(L)F1572	10	10	

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit, RD, of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

The PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FIGURE 10-1: FL

FLASH PROGRAM MEMORY READ FLOWCHART

PIC12(L)F1571/2

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User IDs, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2. When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h/8005h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	;	Select correct Bank
MOVLW	PROG_ADDR_LO	;	
MOVWF	PMADRL	;	Store LSB of address
CLRF	PMADRH	;	Clear MSB of address
BSF	PMCON1,CFGS	;	Select Configuration Space
BCF	INTCON,GIE	;	Disable interrupts
BSF	PMCON1,RD	;	Initiate read
NOP		;	Executed (See Figure 10-2)
NOP		;	Ignored (See Figure 10-2)
BSF	INTCON,GIE	;	Restore interrupts
MOVF	PMDATL,W	;	Get LSB of word
MOVWF	PROG_DATA_LO	;	Store in user location
MOVF	PMDATH,W	;	Get MSB of word
MOVWF	PROG_DATA_HI	;	Store in user location

11.4 **Register Definitions: PORTA**

REGISTER 11-2: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
—	—			RA	<5:0>		
bit 7							bit 0
l egend:							

Legend	
--------	--

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6	Unimplemented:	Read	as	'0'

- RA<5:0>: PORTA I/O Value bits⁽¹⁾ bit 5-0 1 = Port pin is > VIH 0 = Port pin is < VIL
- Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from the PORTA register are the return of actual I/O pin values.

REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA<5:4>		(1)	TRISA<2:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	
u = Bit is unchanged	x = Bit is unknown	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n/n = Value at POR and BOR/Value at all other Resets

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bits
	1 = PORTA pin configured as an input (tri-stated)0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '1' ⁽¹⁾
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bits
	1 = PORTA pin configured as an input (tri-stated)
	0 = PORTA pin configured as an output

Note 1: Unimplemented, read as '1'.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of							
	every conversion, regardless of whether							
	or not the ADC interrupt is enabled.							

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set, and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

19.1 Timer1 Operation

TABLE 19-1:

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 19-1 displays the Timer1 enable selections.

TIMER1 ENABLE

SELECTIONS								
TMR10N	TMR1GE	Timer1 Operation						
0	0	Off						
0	1	Off						
1	0	Always On						
1	1	Count Enabled						

19.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 19-2 displays the clock source selections.

19.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc, as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

19.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high, then Timer1 is enabled (TMR1ON = 1) when T1CKI is low

TABLE 19-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T1OSCEN ⁽¹⁾	Clock Source
11	x	LFINTOSC
10	x	External Clocking on T1CKI Pin
01	x	System Clock (Fosc)
00	x	Instruction Clock (Fosc/4)

Note 1: T1OSCEN is not available for these devices.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit				
u = Bit is unch	anged	x = Bit is unk	nown	U = Unimpler	mented bit, reac	l as '0'	
'1' = Bit is set		'0' = Bit is cle	ared	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	Asynchronous	<u>s mode:</u> d timer everflev	und				
	1 = Auto-bauto	d timer did not	wea overflow				
	Synchronous	mode:					
	Don't care.						
bit 6	RCIDL: Rece	ive Idle Flag bi	t				
	Asynchronou	<u>s mode:</u>					
	1 = Receiver	is idle	ed and the re	ceiver is receiv	ina		
	Synchronous	mode.			ing		
	Don't care.	110000.					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	nronous Clock	Polarity Selec	t bit			
	Asynchronou	<u>s mode:</u>					
	1 = Transmits	inverted data	to the TX/CK	pin VOK nin			
	0 = 1 ransmits	non-inverted	data to the TX	/CK pin			
	1 = Data is cl	ocked on rising	a edae of the a	clock			
	0 = Data is cl	ocked on fallin	g edge of the	clock			
bit 3	BRG16: 16-B	it Baud Rate	Generator bit				
	1 = 16-bit Ba	ud Rate Gener	rator is used				
	0 = 8-bit Bau	d Rate Genera	ator is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-	up Enable bit					
	Asynchronou:	<u>s mode:</u> ; is waiting for a	falling edge:	no character w	vill be received	RCIE bit will be	set WLIE will
	automati	cally clear after	r RCIF is set				
	0 = Receiver	is operating n	ormally				
	Synchronous	mode:					
hit 0			Enable bit				
		o-bauu Deleci s mode:					
	1 = Auto-Bau	ud Detect mode	e is enabled (o	clears when au	to-baud is com	olete)	
	0 = Auto-Bau	ud Detect mode	e is disabled				
	Synchronous	mode:					
	Don't care.						

REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER

FIGURE 21-10: SYNCHRONOUS TRANSMISSION

TABLE 21-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	186
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	_	_	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	_	_	TMR2IF	TMR1IF	78
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	185
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								
TXREG			EUSA	ART Transn	nit Data Reg	gister			177*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	184

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. * Page provides register information.

Note 1: PIC12(L)F1572 only.

21.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in Transmit mode; otherwise, the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

21.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes is identical (see **Section 21.5.1.3 "Synchronous Master Transmission")**, except in the case of Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 21.5.2.2 Synchronous Slave Transmission Setup
- 1. Set the SYNC and SPEN bits, and clear the CSRC bit.
- 2. Clear the ANSELx bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 21-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	186
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	—	_	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	—	_	TMR2IF	TMR1IF	78
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	185
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	184

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission. * Page provides register information.

Note 1: PIC12(L)F1572 only.

Rev. 10-000 146B 7/8/201 5 Period Duty Cycle Phase Offset PWMxCLK PWMxPR 10 PWMxPH 3 PWMxDC 5 PWMxOF 2 PWMxTMR 2 3 5 6 8 9 10 0 2 3 4 5 6 0 4 7 1 PWMxOUT OFx_match PHx_match DCx_match PRx_match PWMyTMR 3 0 3 2 0 2 0 2 4 2 0 3 4 1 4 1 1 PWMyPR 4 PWMyPH PWMyDC 1 PWMyOUT Note: PWMx = Master, PWMy = Slave

FIGURE 22-8:

INDEPENDENT RUN MODE TIMING DIAGRAM

PIC12(L)F1571,

REGISTER 22-4: PWMxCLKCON: PWMx CLOCK CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
		PS<2:0>			_	CS<	:1:0>	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit					
u = Bit is u	nchanged	x = Bit is unkr	nown	U = Unimplemented bit, read as '0'				
'1' = Bit is s	set	'0' = Bit is clea	ared	-n/n = Value a	t POR and BO	R/Value at all c	other Resets	
bit 7	Unimpleme	nted: Read as '	כי					
bit 6-4	PS<2:0>: CI	PS<2:0>: Clock Source Prescaler Select bits						
			L. 100					

	111 = Divides clock source by 128
	110 = Divides clock source by 64
	101 = Divides clock source by 32
	100 = Divides clock source by 16
	011 = Divides clock source by 8
	010 = Divides clock source by 4
	001 = Divides clock source by 2
	000 = No prescaler
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CS<1:0>: Clock Source Select bits
	11 = Reserved
	10 = LFINTOSC (continues to operate during Sleep)

01 = HFINTOSC (continues to operate during Sleep)

00 = FOSC

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow$ (destination)
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRWClear WSyntax:[label] CLRWOperands:NoneOperation: $00h \rightarrow (W)$
 $1 \rightarrow Z$ Status Affected:ZDescription:W register is cleared. Zero bit (Z) is
set.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} & W \rightarrow \text{INDFn} \\ & \text{Effective address is determined by} \\ & \text{FSR} + 1 (\text{preincrement}) \\ & \text{FSR} + 1 (\text{predecrement}) \\ & \text{FSR} + k (\text{relative offset}) \\ & \text{After the Move, the FSR value will be} \\ & \text{either:} \\ & \text{FSR} + 1 (\text{all increments}) \\ & \text{FSR} - 1 (\text{all decrements}) \\ & \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wraparound.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.

RESET	Software Reset
Syntax:	[<i>label</i>] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

PIC12LF1571/2 PIC12F1571/2		Standard Operating Conditions (unless otherwise stated)						
Param.	Device	Min	T 1	Max	Unite	Conditions		
No.	Characteristics	MIN.	турт	wax.	Units	VDD	Note	
D018A*		—	2	2.4	mA	3.0	Fosc = 32 MHz, HFINTOSC (Note 3)	
D018A*		_	2.1	2.5	mA	3.0	Fosc = 32 MHz, HFINTOSC (Note 3)	
		—	2.2	2.6	mA	5.0		
D019A		_	1.7	1.9	mA	3.0	Fosc = 32 MHz, External Clock (ECH), High-Power mode (Note 3)	
D019A		_	1.8	2	mA	3.0	Fosc = 32 MHz,	
		_	1.9	2.3	mA	5.0	External Clock (ECH), High-Power mode (Note 3)	
D019B		-	2.2	5.9	μA	1.8	Fosc = 32 kHz,	
		—	4.3	8.3	μA	3.0	External Clock (ECL), Low-Power mode	
D019B		_	12	20	μΑ	2.3	Fosc = 32 kHz,	
		_	15	25	μΑ	3.0	External Clock (ECL), Low-Power mode	
		—	17	26	μA	5.0		
D019C		—	18	25	μA	1.8	Fosc = 500 kHz, External Clock (ECL), Low-Power mode	
			30	38	μA	3.0		
D019C		_	29	40	μA	2.3	Fosc = 500 kHz, External Clock (ECL),	
		_	37	51	μA	3.0		
		—	42	53	μA	5.0		

TABLE 26-2: SUPPLY CURRENT (IDD)(1,2) (CON	ITINUED)
--	----------

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: PLL required for 32 MHz operation.

FIGURE 27-4: IDD, EC OSCILLATOR, LOW-POWER MODE, Fosc = 500 kHz, PIC12F1571/2 ONLY

FIGURE 27-7: IDD TYPICAL, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY

FIGURE 27-8: IDD MAXIMUM, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (10/2013)

Original release of this document.

Revision B (2/2014)

Updated PIC12(L)F1571/2 Family Types table Program Memory Flash heading (*words* to *K words*).

Revision C (8/2014)

Updated PWM chapter. Changed to Final data sheet. Updated IDD and IPD parameters in the Electrical Specification chapter. Added Characterization Graphs.

Added Section 1.1: Register and Bit Naming Conventions.

Updated Figures 5-3 and 15-5. Updated Tables 3-1, 3-7, and 3-10. Updated Section 15.2.5. Updated Equation 15-1.

Revision D (8/2015)

Updated Clocking Structure, Memory, Low-Power Features, Family Types table and Pin Diagram Table on cover pages.

Added Sections 3.2: High-Endurance Flash and 5.4: Clock Switching Before Sleep. Added Table 29-2 and 8-pin UDFN packaging.

Updated Examples 3-2 and 15-1.

Updated Figures 8-1, 21-1, 22-8 through 22-13 and 23-1.

Updated Registers 7-5, 8-1, 22-6 and 23-3.

Updated Sections 8.2.2, 15.2.6, 16.0, 21.0, 21.4.2, 22.3.3, 23.9.1.2, 23.11.1, 26.1 and 29.1.

Updated Tables 1, 3-3, 3-4, 3-10, 5-1, 16-1, 17-3, 22-2, 23-2, 26-6, 26-8 and 29-1.